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ESTIMATING POPULATION CHANGE FROM COUNT DATA: APPLICATION
TO THE NORTH AMERICAN BREEDING BIRD SURVEY

WiLLIAM A. LINK AND JOHN R. SAUER
Patuxeni Wildlife Research Center, Laurel, Maryland 20708 USA

Abstract.  For birds and many other animal taxa, surveys that collect count data form
a'primary source of information on population change. Because counts are only indices to
population size, care must be taken in using them in analyses of population change. Temporal
or geographic differences in the proportion of animals counted can be misinterpreted as
differences in population size, Thersfore, temporally or geographically varying factors that
influence the propertion of animals coumed must be incorporated as covariables in the
analysis of population parameters from count data, We describe the North American Breed-
ing Bird Survey (BBS) for illustration, The BBS is & majot, landscape-level survey of birds
in North America; it s typical of many count sarveys, i that the same sample units (survey
routes) are sampled each vear, and change is modeled on these routes over time, We identify
covariables related to observer ability, the omission of which can bias esumation of pop-
ulation change from BBS data. Controlling for observer effects or other potential sources
of confounding requires the specification of models relating counts to population size. We
begin with a partial model! specification relating expected counts to population sizes; we
describe estimators currently in use in relation to this partial specification. Additional
assumptions lead to a class of overdispersed multinomial models, for which we describe

. estimators of population change and procedures for parsimonious model selection. We
illustrate the use of overdispersed multinomial models by an application to data for Carolina
Wren (Thryothorus ludovicianus).
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INTRODUCTION data, it must be remembered that counts are neither
censuses nor density estimates. Their use for estimation
of relative abundances requires careful statement of
assumptions and rigorous evaluation of the validity of
these assumptions (Geissler and Noon 1981, Barker
and Sauer 1992). We expand on these points in this
paper, using the North American Breeding Bird Survey
(BBS) for illustration.

The North American Breeding Bird Survey was ini-
tiated in 1966 to monitor bird population change. It is
unique in its geographic extent and the large number
of species it surveys. Presently, the BBS monitors

Over 650 species of birds breed in North America
{Robbins et al. 1983). For the vast majority of these,
there is no feasible way to estimate population sizes.
Sophisticated mark-resight, capture-recapture, and
transect methods can be applied to local populations,
but are generally too labor intensive to implement in
large-scale surveys. Exceptions tend to be limited to
hunted species, which are monitored through aerial sur-
veys with ground counts for visibility adjustments
(Lancia et al. 1994). These methodologies, however,

are not well suited to the monitoring of most avian . ) . :
populations. >400 species of birds, using data obtained on an annual

For most species, a less ambitious goal may, nev- basis at >3500 roadside survey routes in the conti-
ertheless, be pursued. Counts provided under stan- nental United States, southern Canada, and northern
dardized conditions by skilled observers can be re- Mexico. Highly competent observers count the num-
garded as indices to population size and used to esti- bers of birds seen or heard in a 3-min period at each
mate patterns of relative population abundance; the of 50 stops along each 24.5-mile (39.4-km) survey
type of patterns studied may be spatial (geographic route, and report the total counts by species. Details of
range) or temporal (population increases or declines the history of the BBS, data collection protocols, and
through time). However, in any application of count analytical procedures previously used are given by

Robbins et al. (1986), Peterjohn (1994), and Peterjohn
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tember 1997, For reprints of this Invited Feature, see footnote The design of the BBS is quite typical of a large
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which counts are conducted at the same sites over a
series of vears, and change is estimated within and
among sites. Because the BBS has been well studied,
many factors have been identified that, at best, com-
plicate analysis of its data and, at worst, limit its use-
fulness as a source of information on population change
(e.g.. Robbins et al. 1986, Sauer et al. 1994, Peterjohn
et al. 1995). We believe that many of the lessons
fearned in analysis of BBS data are appropriate for
other similar surveys; thus, although our emphasis in
this presentation is on the BBS, we believe that the
conceptual and methodological issues discussed have
a much wider relevance and applicability.

FUNDAMENTAL IsSUES RELATED TO THE ANALYSIS
oF COUNT DATA

Any analysis of count data makes assumptions about
variation in the proportion of animals counted, but such
assumptions frequently are not stated explicitly. Tem~
poral patterns of relative abundance in count data are
only directly descriptive of corresponding patterns in
populations if the proportion counted is constant
through time. The same can be said with regard to
spatial patterns in count data.

Although it is unlikely that the proportion counted
is constant through space or time, variation in this pro-
portion might not bias estimation of relative abun-
dance, provided that there is no spatial or temporal
pattern to the variation. If no pattern exists, this vari-
ation is simply a source of inefficiency in estimation
of relative abundance, If a patterns exists, however, bias
is a possibility: changes in the proportion counted could
easily be misinterpreted as population change. To il-
lustrate, Fig. 1 presents data for the House Sparrow
{Passer domesticus) on BBS Route 1 in Alabama. The
impression given by plotting the counts against vears
is of a sharp decline in the population in the 1970s,
followed by a steady increase (in the early 1980s) to
a plateau in the late 1980s (top panel, Fig. 1; the curve
is a LOESS smooth, with tension parameter /' = 0.5).
The bottom panel, however, reveals that these “dy-
namics™ are actually artifacts of observer changes in
1973 and 1981. An analysis of covariance regression
shows that, having controlled for the difference in ob-
server abilities, the counts are fairly stable with respect
to time (lower panel, Fig. 1).

Clearly, then, it is important to identify factors that
can bring about changes in the proportion counted, and
to see whether there is evidence of temporal or spatial
differences in counts related to these factors, but not
to population changes.

The value of BBS data is enhanced by the standard-
ization of data collection protocols and the careful se-
lection of observers capable of identifying (visually
and aurally) all species likely to be encountered on their
routes. Nevertheless, considerable differences exist in
the abilities of individual observers, and the ability of
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Fic. 1.. Count data for the House Sparrow on BBS Route

1, Alabama. The top panel includes LOESS smooth (tension
parameter / = 0.5) without controlling for observer differ-
ences. The bottom panel has distinct symbols for each ob-
server and fitted values from an ANCOVA model.

the average observer has changed through time (Sauer
et al. 1994). Simply put, new recruits to the BBS tend
to be more skilled observers than the observers they
replace. They tend to count more birds, particularly of
species that are difficult to count; it has been suggested
that these more qualified observers might tend to ignore
more common and abundant species. They also identify
more species of birds.

Patterns of change in counts thus reflect not only
changes in population sizes, but also changes in the
pool of observers; population change can be confound-
ed with observer change. It might be anticipated that
trend estimates for ““difficult” species would be pos-
itively biased, as would trend estimates for species
richness. On the other hand, it is conceivable that, for
some more common species, the effect of increasing
observer ability would be to introduce a negative bias
to trend estimates.

Trends in observer ability can be documented in
large-scale analyses of BBS data. One way of doing
so is to estimate interval-specific population change
(trend), first having controlled for observer differences,
and then without controlling for observer differences.
Consistent differences in these pairs of estimates point
to the need for such controls; if not needed, such con-
trols are likely to cause inefficiency, rather than bias.
In particular, evidence for an increasing trend in ob-
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Fic..2. Mean counts of the Blue-gray Gnat-
catcher from BBS in the Upper Coastal Plain
physiographic stratum in Maryland; Means ad-
justed for observer effects (Bll) are presented
with a LOESS smooth (Hastie and Tibshirani
1990} with tension parameter f = 0.5. Unad-
justed mean counts (X) overstate the pattern of
population change, Data consist of 794 obser-
vations on 33 BBS routes by 149 observers.
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server ability exists if consistently larger (more posi-
tive) trend estimates occur when differences are not
controlled for. Sauer et al. (1994) analyzed BBS data
for 409 species, using regression procedures, and found
that 72.6% of the species considered had larger trend
estimates when observer covariables were omitted.
Sauer et al. (1994) also used several other analyses to
document trend in observer ability in BBS data. James
et al. (1996) provided resuits of LOESS-based trend
analyses carried out both including and omitting con-
trols for observer cffects. We have noted (Link and
Sauer 1997h) that 20 of 26 species in their analyses
had more positive trend estimates when observers were
not controlled for; this result provides further evidence
of trend in BBS observer ability.

Further effects relating to observers include a ten-
dency for smaller than expected counts in the first year
of an observer’s service on a route {perhaps as a con-
sequence of inexperience with the logistics of con-
ducting the survey), and declines in counts associated
with hearing loss as observers age (Kendall et al. 1996,
Link and Sauer 1997q). If these effects are not con-
trolled for in analysis, the former is likely to result in
a positive bias in estimates of population change; the
latter is likely to cause a negative bias.

As a general indication of the importance of these
observer effects, we include Fig. 2, which provides an
estimate of the pattern of change in the population of
Blue-gray Gnatcatchers (Polioptila caerulea) in the
Upper Coastal Plain of Maryland. This estimate was
obtained by controlling for observer effects in a manner
to be described in later sections. In addition to having
controlled for change in observer ability, we included
in the model a significant “‘first year of count” effect
and an “observer senescence effect” (for observers
counting at a time >>20 years after their first year); these
effects were estimated to be 23% and 43% diminutions
of counts, respectively. Superimposed on the graphic
are mean counts, which are not corrected for observer
effects. The pattern of change in the Blue-gray Gnat-
catcher population is very poorly represented by the

1996

unadjusted mean counts. Thus, a crucial component of
the analysis of BBS data is an appropriate accounting
for the effects of observers on counts.

To this point (and in most of this paper), our dis-
cussion has focused on estimation of temporal patterns
of population change from count data. BBS data are
also used to address many hypotheses about spatial
patterns of population size and change. Observer ef-
fects are only one of many factors that could influence
the proportion of birds detected on different BBS routes
(e.g., differences in habitats; Sauer et al. 1995). Con-
trolling for differences in observer effects among
routes is much more difficult than controlling for ob-
server effects within routes. Many of the published
analyses of spatial patterns in abundance attempt no
sort of adjustments for observer effects (e.g., Maurer
1994). Flather and Sauer (1996) controlled for within-
route observer effects, but did not attempt to incor-
porate among-route adjustments. Changes in the ability
of the pool of observers can clearly cause bias in tem-
poral analyses of population change; the same biases
can exist in spatial analyses of change, if the pattern
of observer change is spatially heterogeneous. Thus,
we believe that evaluation of these {and other) between-
route effects should be a high priority for future spatial
analyses of BBS data.

MODELS RELATING COUNTS TO POPULATION SIZES

BBS data cannot be used to directly estimate pop-
ulation sizes, because of the nature of count data and
the possible bias of roadside route locations. However,
the pattern of changes in counts for individual observ-
ers can be expected to generally follow the pattern of
change in population size, which we refer to as the
population trajectory. This limited assumption about
the associations of change in counts and population
sizes allows us to describe models relating counts to
population trajectories and methods for selecting and
fitting models of population trajectories to BBS data.

Let N, denote a local population size in some region
including route / in the jth year of counts, /. The notions
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of a local population size, and the region associated
with it, are of necessity vague, as BBS sampling cannot
guarantee ecither a census or 2 known fixed area of
sampling. A referee has suggested that the following
model description could benefit by substituting ““den-
sity”” for local population size, but, in our view, this
simply introduces an alternative set of ambiguities. For
population monitoring, the important consideration is
not the actual population size or density, but the pattern
of change through time associated with it. Thus, we
suppose that the vector of population sizes is a single
realization of a stochastic process with

1

where A(f;) = 0, so that 8, is the logarithm of the
expected population size in year f,, and E(V,) denotes
the expected value of the population size. We refer to
F(8) = expihf®)} as the population trajectory on route
i, and to h(r) as the log-trajectory. Let p, denote the
expected count on route  in the jth year of observation.
Denoting the observer who provides the jth count on
route { by index j(7), we assume that

log{E(N)} = 8, + h{t)

log{py} = v + 348 + A1) (2)

where the parameters v, represent observer effects,
the function 8,(r) describes time-dependent nuisance
factors affecting counts but not related to the popula-
tion size, and A{f). as in Eq. 1, describes changes in
the population. An application of this model to data
collected on Carolina Wren ( Thryothorus ludovicianus)
is presented later in the paper.

Model statements in Eqgs. | and 2 describe a relation
between the pattern of change in counts and the pattern
of change in population size. For instance, a simple
special case is when §,(/) is identically equal to zero;
then, the ratio of expected values for counts made by
the same observer in two different years is the same
as the ratio of expected values for population sizes in
the same two years, and the population trajectory is
reflected in the pattern of counts.

The population trajectory can be thought of as a
scaled, and possibly smoothed, version of the vector
of population sizes. The requirement that 2(z;) = 0 sets
the trajectory value, f(#), equal to 1 at time 7 = /.
Values of the trajectory at other time points can be
thought of as describing the total proportional change
in the population over the time period from 7, to f,.
Thus, for example. if f(#,) = 0.80, then the population
declined ~20% over the time interval (7, ). If 1, — 1,
= 5 years, then the 20% total rate of decline can be
expressed as an annual rate of 0.809% — 1 = —4.36%,
which is the geometric mean rate of change over the
interval.

We suggest that the term “trend” thus be defined as
the geometric mean rate of change over a specified
interval. The geometric mean rate of change over time
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period (1,, 4,] on route i can be written in terms of the
log-trajectory as B{7,. 1,) — 1, where
hilty) = h,»(t.,)}

o L, 3)

Biller &) = CXP{

This is in keeping with the vernacular use of the term
“trend” as a description of an overall tendency, without
regard to fluctuations in the trajectory. Alternative def-
initions of ‘“‘trend” are possible; our purpose here is
to suggest that the term be reserved for some simple
summary of the more complex pattern in the trajectory.

We note that if the trajectory is not linear on the log
scale, the trend must be understood as an interval-spe-
cific quantity; the trend may well be positive over some
period of time and negative over another. In discussion
of population change, we view it as critical that the
terms “trajectory” and “trend” be clearly distin-
guished. The distinction between the terms has impor-
tant consequences for analysis and interpretation of
survey data. Trend describes the change in a population
over a specific interval; trajectory describes the manner
in which the change occurred. Trajectory estimation
provides greater detail, at greater cost in terms of data
resources.

Egs. 1 and 2 provide a partial specification of a gen-
eral model for the relation between count data and cor-
responding population sizes. The specification is in-
complete in several ways, most notably in that it does
not describe the probability mechanism generating
counts. Furthermore, without appropriate constraints
on the functions 3,(¢) in Eq. 2, it is impossible to es-
timate the trajectory from count data. Nevertheless,
Egs. 1 and 2 provide a basic framework for estimating
population change from BBS count data, allowing for
the control of observer effects and time-related nui-
sance effects that are unrelated to the status of the
population under consideration. For simplicity, we will
refer to Eqs. 1 and 2 as the “‘means model” for count
data. In subsequent sections, we discuss specific ap-
plications of the means model; that is, we describe the
selection of functions f(?) and 3(¢) relating counts to
population size.

The means model described is indexed by subscripts
“” corresponding to routes. This allows for the pos-
sibility of spatial variation in trajectory and trends. In
practice, it may be found that BBS data are not adequate
for the estimation of complex trajectories at the route
level, so that it may be necessary to assume equal tra-
jectories for geographically proximate routes. Trend
estimates are then obtained at whatever scale on which
it is reasonable to estimate a common trajectory (the
“common trajectory region’”). Summarizing trend es-
timates over larger geographic regions requires that
individual estimates be combined by an abundance-
weighted average. Ideally, these abundance weights
would be based on population sizes; these are, of
course, unknown. The usual expedient is to use the size
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of the common trajectory region and a mean count for
observers on routes in that region. The appropriateness
of such abundance weights depends on a number of
assumptions, the validity of which require further in-
vestigation,

ANALYTIC METHODS USED FOR BBS AND OTHER
CouNT DATA

We now describe several analytic procedures that
have been applied to count data in terms of the means
model we have presented.

Approximate ANCOVA methods.—We use the term
‘‘approximate ANCOVA methods™ to describe tech-
niques that were used for over a decade to analyze BBS
data (Geissler and Sauer 1990). These techniques were
implemented assuming a simple form of the means
model (Eq. 2), in which 3,(#) is identically zero and the
log-trajectory is linear, viz.,

)

Analysis was carried out by least squares estimation of
Eq. 2, with E{log(¥, + C)} used in place of log(p;);
here, Y, denotes the count on route § in year j, and C
denotes a small positive constant (usually 0.5) added
to all counts to avoid domain errors in the application
of the logarithm. No specific error structure was used
in evaluating the estimates of trend B,. Variances were
only estimated for composite trend estimates, through
bootstrapping.

Applications of the approximate ANCOVA method
implicitly acknowledged the possibility of a nonlinear
fog-trajectory. The possibility was accommodated by
estimating period-specific trends, using only the data
over the range of years for which an estimate of the
geometric mean rate of change was desired. Thus, for
example, Robbins et al. (1989) fit “early™ and “late™
trends corresponding to the periods 1966-1978 and
1978-1987.

Were it desirable, ANCOVA methods could be
adapted to other specifications of the means model, thus
allowing nonzero (), and the modeling of nonlinear
log-trajectories. However, the ANCOVA methods can
only be thought of as approximating Eq. 2 of the means
model, because E{log(}, + ()} is not the same as
log{E(Y,)}. For common species, the approximation
works rcasonably well, but for rarer specics, the ap-
proximation can lead to biased estimation of the trend
and its variance (Link and Sauer 1994, Sauer et al.
1996).

Estimating equation methods.—An improvement
over the ANCOVA methods is provided by analyses
using estimating equations that correspond to the score
functions of a Poisson regression model with means
governed by Eq. 2. Link and Sauer (1994) described
trend estimators of this sort, assuming that (7} is iden-
tically zero, and that the trajectory is log-linear (as in
Eg. 4). Again, these overly restrictive assumptions are

log{py} = v + BAG — 4).
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not essential to the application of the method. The as-
sumption of Poisson distributions used in obtaining the
estimating equations is not essential to their use, es-
pecially if model-based estimates of variances for trend
estimates are not used. In the 19921993 BBS summary
(Peterjohn et al. 1994), estimating equation estimates
of trend were used with bootstrap estimates of variance.

LOESS-based methods.—The foregoing methods
were developed under the requirement that a specific
parametric model for the log-trajectory be chosen. Al-
ternative analyses of BBS data have used nonpara-
metric and semiparametric procedures to estimate the
fog-trajectory under the minimal assumption that it is
a smooth function. James et al. (1996} described the
use of LOESS (locally weighted least squares regres-
sion; Hastie and Tibshirani 1990) to analyze BBS data.
This procedure is similar to a running average: fitted
values are obtained by local smoothing of nearby data
values. The degree of smoothing in LOESS-based anal-
yses is governed by a “‘tension parameter,” f, laking
values between zero and one. When fis small, the fitted
trajectory essentially ““connects the dots™ for counts
by each observer. When f'is close to 1, the fitted tra-
jectory becomes closer to a straight line.

James et al. (1996) present LOESS analyses of BBS
data, with and without controls for observer cffects.
We note that the model of James et al. differs slightly
from the means model (Eqs. 1 and 2), in that it assumes
observer effects to be additive on the square-root scale.
Although we caution against the use of models that do
not incorporate observer effects (Link and Sauer
19976), we regard semiparametric LOESS with con-
trols for observer effects as a useful tool for prelimi-
nary examination of population trajectories. Methods
for optimal selection of the tension parameter have
been developed, but, to our knowledge, have not been
applied to the analysis of BBS data. We caution against
the uncritical examination of nonlinearities in LOESS
estimates of trajectories, especially when the tension
parameter has been arbitrarily selected.

LOESS-based trend analyses can be carried out using
bootstrap estimates of variance; James et al. (1996) fit
trajectories on a route-by-route basis, and assess the
variability of their combined estimate of trend by the
sample variance of the abundance-weighted trend es-
timates. As is the case with ANCOVA and estimating-
equations methods of trend estimation, LOESS-based
methods do not specify the within-route variance struc-
ture of counts,

NEw PROCEDURES BASED ON OVERDISPERSED
MULTINOMIAL MODELS

Recently developed methods for estimation of tra-
jectory and trend from count data control for differ-
ences among observers by treating each observer’s vec-
tor of counts as an overdispersed multinomial random
variable. We have described these methods in formal
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terms elsewhere (Link and Sauer 19974); here, we de-
scribe their motivation and application to BBS data.
The overdispersed multinomial models can be regarded
as extensions of the estimating-equations estimators,
developed with the intention of specifying a within-
route variance structure of counts. These procedures
allow for parsimonious estimation of population tra-
jectories in the context of the means model (Egs. 1 and
2).

Omission of observer effects in analyses can bias
trend estimates; on the other hand, modeling observer
differences requires the inclusion of a large number of
parameters in the model. The median number of years
of counts by BBS observers is estimated to be 4.8;
typically, a new observer effect must be modeled for
each five years of data on a route. To give a concrete
example, routes with 18 years of data have up to 10
observers, with an average of 4 observers. Parametric
modeling of a quadratic log-trajectory for the data from
such a route would involve two parameters of interest
(linear and quadratic terms) and four nuisance param-
eters (observer effects v,,,). If a common quadratic log-
trajectory were applied to a collection of 10 such
routes, roughly 42 parameters would be needed, of
which only two are of interest. This proliferation of
nuisance parameters can have serious consequences in
the implementation of numerical optimization proce-
dures. Newton-Raphson optimization inciudes the in-
version of numerous p X p matrices, where p is the
number of parameters; thus, modeling observer effects
can be computationally burdensome.

A solution to this difficulty is to carry out parametric
analyses, having conditioned on sufficient statistics for
nuisance parameters (McCullagh and Nelder 1989).
The statistical procedure of conditioning on sufficient
statistics replaces a full parametric likelihood with a
conditional likelihood that is essentially equivalent in
terms of the parameters of interest, but that does not
involve the nuisance parameters. The practical conse-
quence of this is immense: in the foregoing example,
maximum likelihood estimation is reduced from a 42-
dimensional optimization to a two-dimensional opti-
mization.

In the Poisson regression model used to develop the
estimating-cquations estimates described in the pre-
vious section, the process of conditioning on sufficient
statistics for the observer parameters v, has appealing
and intuitive consequences. Conditioning on the total
counts by each observer results in replacing the full
likelihood by a product of multinomial likelihoods, one
for each observer. The multinomial random variables
corresponding to each observer have as many cells as
years in which the observer counted; the index of the
multinomial is the total count by the observer, and the
cell probabilities are proportional to the obscrver’s ex-
pected counts. The advantage of this new, conditional
likelihood is that it does not depend on the observer
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effects, v, All of the parameters of the full likelihood
are retained, with most or all of the information about
them, but the nuisance parameters are omitted.

Suppose, for a simple example, that the population
were increasing at a constant rate of 10% per year, 50
that expected values of counts would follow Eq. 4, with
B = 1.10. Then, the counts for an individual observer
that counted in years 1,2, 3, 4, and 7 would be expected
to be in the proportions

BliB2uprupiapl.
Because the cell probabilitics must sum to 1, it is easy
to verify that the cell probabilities are 15.6%, 17.2%,
18.9%, 20.8%, and 27.6%. Given this model, and
knowing that an observer had counted a total of 100
birds, we would expect that ~16 of the birds were
observed in year 1, ~17 in year 2, etc.

In practice, we do not know the value of 8, but must
work back from the data to the parameters. Suppose
that, of 100 birds counted by an individual, 15 were
in year 1, 21 in year 2, 28 in year 3, 10 in year 4, and
26 in year 7. The multinomial likelihood to be maxi-
mized is proportional to:

B! 15 B? b7
(Bl+ BZ+B§+B4+B7) (BI+B2+B‘*+ B«i., [37)

e L
Bl+BZ+B3+ﬁ4+B7 BI+B2+B3+B4+B7

B7 26

x ( ) ,
BB R pitp

Although no closed form exists for the value {3 that
maximizes this expression, the maximizer is easily ob-
tained using Newton-Raphson or other numerical pro-
cedures. The maximum likelihood estimator of § for
this likelihood is 1.054; the data indicate a 5.4% per
year rate of increase in the population. Under the mul-
tinomial model, the standard error of this cstimate is
4.9%, based on the information matrix.

In this example, data for a single observer have been
treated as a single multinomial random variable. BBS
routes typically have several observers; in this case,
the likelihood that is maximized is the product of mul-
tinomial likelihoods, one for each observer, but gov-
erned by the same set of parameters. In the general case
of the means model (see Eq. 2), the cell probability
corresponding to count ¥ is

b el A )
T w2, exp{d(n) + ALY
Aiy=5() k=410

Note that the nuisance parameters y;;, {from Eq. 2) have
factored out of the numerator and denominator in the
right-hand side of Eq. 5. In our subsequent discussion,
we will denote the collection of m’s corresponding to
the jth observer on route / by a vector m, and suppress
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dependence of / on i in our notation. The total number
of birds counted by this observer will be denoted by
T,, and the observer’s vector of counts denoted by Y.

Closer examination of the example data set reveals
an inadequacy in the fit of the multinomial random
variable to the data; expected cell frequencies under
the simple model of a linear log-trajectory are 17.5,
18.5, 19.5, 20.5, and 24.0. There is considerable vari-
ation in the counts about these values. The Pearson chi-
squared statistic for goodness-of-fit takes the value
10.005 on 3 degrees of freedom (df = 5 cells — 1
parameter estimated — 1); the corresponding P value
of 0.0185 indicates an unsatisfactory fit of the model
to the data. Two possible explanations can be offered:
first, that the specified means model (linear log-trajec-
tory, with 8{¢) = 0) is incorrect, or second, that the
assumption of Poisson distributions for counts is in-
correct.

We have found that, even with the specification of
fairly complex means models, there is a tendency for
the product multinomial likelihood model to yield un-
acceptable goodness-of-fit statistics for BBS data. This
is not surprising; the explanation is that the assumption
of Poisson distributions in counts is inadequate. For-
tunately, however, this inadequacy does not require that
the appealing multinomial approach be jettisoned.

When count data show overdispersion relative to
Poisson random variables, a convenient model is the
negative binomial, obtained by assuming a gamma
mixture. This model specifies that the counts are Pois-
son random variables, but with random means, sampled
from gamma distributions. This model can be thought
of as incorporating the effects of population stochas-
ticity on the counts (for details, ¢f. Link and Sauer
1997a).

Conditioning on totals for negative binomial counts
has a remarkably similar consequence to conditioning
on totals for Poisson random variables. Conditioning
on totals of Poisson random variables yields a multi-
nomial distribution; conditioning on totals for negative
binomial random variables (i.e., overdispersed Poisson
random variables) yields an overdispersed multinomial
distribution. This distribution is known as the Dirichlet
compound multinomial (DCM). Under the conditional
multinomial model, the mean vector and variance—co-
variance matrix for Y, can be written as w(m,) and
V(). respectively. Under the DCM model, the mean
vector is the same, and the variance—covariance matrix
is only slightly modified, to ¢,V(m,); the quantity &, is
referred to as the overdispersion parameter. This ov-
erdispersion parameter is estimated by the Pearson chi-
squared statistic. Thus, in the foregoing example, the
standard error of the estimated 3 under the multinomial
model was estimated to be 4.9% this needs to be scaled
by a factor of V10.005 = 3.16, to 15.7%.

Maximum likelihood estimation under the DCM
model presents considerable difficulties in implemen-
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tation. Newton-Raphson optimization algorithms tend
to fail to converge. However, this difficulty can be
averted by the use of a quasilikelihood approximation
(McCullagh and Nelder 1989) to the DCM likelihood.
The quasilikelihood approach begins by treating the
counts as Poisson random variables: the multinomial
model is fitted and the overdispersion parameter is es-
timated by a goodness-of-fit statistic. The multinomial
model is then refitted, after the observations have been
weighted by the overdispersion parameters. The pro-
cess of fitting the multinomial model and estimating
overdispersion parameters can be carried out repeat-
edly; we suggest that one or two itcrations will be
sufficient.

The principal benefit of this overdispersed multi-
nomial approach is that it allows for consideration of
within-route variation, All of the other procedures de-
scribed can only provide estimates of precision for
composite estimates of trend. The modeling of within-
route variation also allows for model selection via like-
lihood ratio tests, so that the merits of alternative means
models can be investigated. in a manner that we shall
proceed to describe.

MODEL SELECTION UNDER THE DCM MODEL

The DCM likelihood for Y,, evaluated at estimates
4 is approximated by

n | NS tasa) \ 10 /e + ¥)
0N [T 0{(zs,e) | 1S 78,00+ 1)

{6)

Here, I'(x) is the gamma function, and g, is a parameter
related to the overdispersion by

b, — |1
QI:]; 1_¢
J S

Given specifications of the means model (i.e., candidate
parametric forms for A7) and §(¢) in Egs. | and 2),
estimates of the parameters m, can be obtained using
the quasilikelihood procedures previously outlined.
Substituting these values in Eq. 6 provides the basis
for likelihood ratio tests between nested models.

For non-nested models, we recommend the use of
Akaike’s information criterion as a means for screening
potential models. Akaike’s information criterion (AIC)
is defined by

+ 2(number of parameters estimated).

Low values of AIC indicate acceptable models. Thus.
AIC favors models with large likelihoods and few pa-
rameters. Generally speaking, models within one or two
AIC points are regarded as equally acceptable.

AIC provides a rcasonable criterion for model se-
lection. Nevertheless, the selection of appropriate mod-
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els for count data is a difficult task. Care must be taken
to ensure that the collection of candidate models in-
cludes models describing biologically relevant sources
of variation in population change. It is also important
to consider candidate models that account for temporal
changes in the proportion of birds counted, allowing
for changes related to individual observers and to
changes in the pool of observers.

AN ExampLE: THE CAROLINA WREN IN MARYLAND

We illustrate the process of model selection using
data for the Carolina Wren (Zhryothorus ludovicianus).
We use data collected during the period 19661992 on
the 20 BBS routes of the Northern Piedmont stratum
in Maryland. An exceptionally hard winter (1976~
1977) is thought to have substantially reduced popu-
lation numbers for the Carolina Wren.

There were 78 different observers participating in
the collection of these data; of these, 26 only provided
data for a single vear, and another four did not count
any Carolina Wrens. Data for these 30 individuals pro-
vide no information about population change; their
contribution to the likelihood is constant with respect
to the parameters of interest, so they can be excluded
from the analysis. The remaining 48 observers partic-
ipated for an average of 8.6 yr (quartiles: 2.3, 6.5, 11.8
yr), and provided a total of 411 counts. The average
count was 5.4 birds/yr (quartiles: 2.0, 4.0, and 7.6 birds/
yr).

We applied the means model {(Eq. 2) to a stratum-
level analysis of these data. That is, we assumed a
common log-trajectory h(7) for the collection of routes.
Candidate log-trajectories were of the form

7
Wty = 2 aut — E1( > 1976).
k=

That is, they allowed up to a seventh-degree polyno-
mial, and the inclusion of an intervention effect, &,
related to the hard winter. Here, and in the sequel, the
function I{x) is the indicator function, taking the values
one or zero, depending on whether x is true or false.

We controlled for the possibility of initiation effects
(lower than expected counts in an observer’s first year
of service) by setting

8(r) = AI(Year 7 is observer’s first
year of participation).

For each of the seven possible degrees of polyno-
mial, we considered four different models, obtained by
the decisions whether or not to impose restrictions A
= ( or £ = 0. Table 1 reports trend estimates, estimates
of their standard crrors, and values of AIC for the 28
candidate models. The fit of models with nonzero §
(i.e., those that include an intervention corresponding
to the hard winter of 1976-1977) is clearly superior to
that of models in which the restriction § = 0 is made.

Also, little benefit is seen tn modeling a first-year
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TABLE 1. Model selection for Carolina Wren data. The first
three columns describe the model (degree of polynomial
used in trajectory; indicator for obiserver initiation effects,
& indicator for intervention effect related tothe hard winter
of 1976, £). Model selection is based on minimizing the
Akaike information criterion (AIC). The firabtwocolumns
sunmmarize the fitted trajectory: B is the estimated trend for
the period 19661992, and (B} is the estimated standard
error of trend estimate.

Degree A £ AIC B SE(B)
1 0 0 1722.84 5.78 0.76
2 0 0O 1691.89 3.39 0.77
3 0 0 1636.35 10.33 1,18
a 0 0 1599.25 18.45 227
5 0 0 1586.78 11.89 1.85
6 0 0 1550.28 8.55 1.48
7 0 0 1552.74 8:37 1.53
1 1 0 1725.00 5.71 0.79
2 i 0 1693.18 3,30 0.80
3 | 0 1636.84 10.91 1.23
4 i 0 1596.76 19.17 2.27
5 1 0 1585.42 12.94 1.92
6 i 0 1552.47 9.03 1.57
7 i 0 1555.16 3.86 1.64
1 0 i 1493.55 7,72 0,49
2 0 i 1451.63 878 0.71
3 0 i 1475.96 11.48 1.05
4 0 i 1477.92 11.99 1.35
5 0 1 1471.52 9.94 1.34
6 0 i 146988 9.47 137
7 0 1 1471.72 9.03 1.40
1 1 1 149505 7.58 0.50
2 i i 1493.13 8.65 0.73
3 i 1 1478.42 11.38 1,09
4 i i 1480.40 11.86 1.40
5 i 1 1473.94 9.76 1.42
6 1 1 1472.28 921 1.43
7 1 i 147428 8.68 1.56

count effect for observers; this stands in contrast to the
Blue-gray Gnatcatcher example (Fig. 2) and to a similar
analysis of the Wood Thrush (Hylocichla mustelina),
in which a first-year effect corresponding to an 8%
undercount was noted (Link and Sauer 1997a). Three
acceptable models (fifth-, sixth-, and seventh-degree
polynomials, with & = 0 and £ # 0) are essentially
equivalent in their fits; of these, the minimum AIC
value is for the sixth-degree polynomial. The differ-
ences among these trajectory estimates are slight; the
effect of the choice is most likely to be consequential
if the trajectory is to be used to make projections of
population status beyond the range of years in the data
set. We would discourage such projections, noting that
a major feature of this trajectory is the intervention due
to a severe winter, an effect that could not have been
predicted from the data for preceding years.

The effect due to the severe winter (1976-1977) is
estimated as an 83.0% drop in the population size (95%
C1: 75.1%, 88.4%). This effect, and the pattern of pop-
ulation change estimated under the sixth-degree poly-
nomial model, are displayed in Fig. 3. Error bars there
are for comparison of population sizes with the pop-
ulation in 1966. Despite the intervention, over the en-
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tire period (1966-1992), the population of Carolina
Wrens is estimated to have grown at an average annual
rate of almost 10% per year (9.47 * 1.37%, mean *
1 se). Note (Table 1) that there is considerable vari-
ability in the estimates of trend; however, among the
acceptable models and the overparameterized models,
smaller differences are found. The indication is that the
insufficiently parameterized models produce biased es-
timates of trend.

Fig. 3 highlights the importance of interpreting
“trend” as an interval-specific quantity: for example,
the trend for the period 1974—1980 is negative, whereas
that for the entire period is positive. In the presence of
a nonlinear trajectory, trend is simply a convenient
summary for a particular interval of time, and should
not be used as the sole descriptor of population change.

A final comment on this example is that the trajectory
need not be modeled as a polynomial on the log scale.
Any other function governed by estimable parameters
could be considered. In fact, given adequate replica-
tion, a “year-effects” model can be implemented, al-
lowing adjusted vearly estimates of relative population
size. The adjusted mean counts in Fig. 2 were obtained
in this fashion.

COMPOSITE ANALYSIS FOR LARGER
GEOGRAPHIC AREAS

Geographic aspects of the BBS sample can greatly
complicate analysis. Bird species differ in abundance
over their ranges, and if population change is not con-
sistent in regions of high and low abundance, simple
averages of population trends among survey routes or
state-stratum regions will not be unbiased estimates of
change for the total population. The simple average of
trends provides an estimate of the mean population
trend, but to estimate total population change, each
route-specific trend estimate must be weighted by the
population size for the route, which is, of course, un-
known. The use of adjusted mean counts as surrogates

for population size (under assumptions that there is
little regional variability in sighting proportions) may
be the only option if regional heterogeneity in trend
exists.

Estimation of regional trends is further complicated
by large differences in the precision of trend estimates
among individual routes and among state-stratum
regions. Simple averaging of estimates that differ great-
ly in precision can lead to highly inefficient estimates.
Area weights are necessary to accommodate differ-
ences in the areas covered by each state-stratum area.

Geissler and Sauer (1990) addressed these issues by
incorporating several weights into the estimation of
composite trends. They weighted trends estimated on
routes by (1) an estimate of mean abundance for the
route; (2) an index of precision for the route (based on
the design matrix of the ANCOVA analysis); and (3)
an area weight for the state-stratum in which the route
occurred. This rather ad hoc approach had the seren-
dipitous effect of mitigating the influence of routes with
incomplete coverage, which tend to positively bias es-
timates of trend, due to unmodeled start-up effects
(Kendall et al. 1996). At the same time, this weighting
scheme incorporated the abundance weight to allow
estimation of trend for the total population.

If trend and population size are independent, a pre-
cision weighted average of local trend estimates pro-
vides a reasonable composite estimate of trend, without
the need for abundance weighting. For small geograph-
ic areas, it may even be reasonable to make the as-
sumption of a common trajectory, and thus avoid the
problems of abundance weighting. This is the approach
we used in the analysis of Carolina Wren data of the
previous section.

The reasonableness of the equal trajectory assump-
tion can be assessed under the overdispersed multi-
nomial model. We applied such a hypothesis-testing
procedure to the Carolina Wren data. First, we chose
a parsimonious mode! using AIC, as previously de-
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scribed (the selected model had a sixth-degree poly-
nomial log-trajectory and an intervention effect cor-
responding to the severe winter of 19761977, for a
seven-parameter model). Fifteen of the 20 BBS routes
in the Maryland Northern Piedmont Stratum had ad-
equate data to fit the seven-parameter model. We fit the
seven-parameter model to these routes twice, first al-
lowing the parameters to vary among routes, and then
under the assumption of a common model. The null
hypothesis of a common mode! was then tested by com-
paring twice the difference in maximum loglikelihoods
to the appropriate chi-squared distribution. The value
x> = 117.31 on 98 degrees of freedom corresponds to
a P value of 0.089, indicating only weak evidence of
heterogeneity in trajectories. Because V117.31/98 =
1.09, it may be desirable to increase estimated standard
errors by 9%.

We suggest that large-scale regional summaries be
conducted using empirical Bayes procedures. The in-
dividual trend estimates for the component regions are
“shrunk’’ toward the prior mean estimated for the col-
lection, accommodating the differences in precision of
the estimates (Link and Sauer 1996). These empirical
Bayes estimates can then be averaged with weights of
relative abundance and area to provide an estimated
trend for the population total.

Spatial comparisons of relative abundance from BBS
data must be viewed with some skepticism. The fun-
damental difference between spatial and temporal anal-
ysis of BBS data is that the assumption of consistency
in detectability can be plausibly advanced in consid-
ering counts for individual observers taken at the same
site, through time; this assumption is less plausible for
comparisons of counts among routes at a large geo-
graphic scale. Regional differences in observer ability
and basic regional differences in detectability of birds
may exist, with the potential to bias estimates of rel-
ative abundance (Sauer et al. 1995). Unfortunately, lit-
tle information is available on counts for individual
observers at distant sites; hence, this component of
detectability has never been modeled.

CONCLUSIONS

Analysis of count data should begin with the frank
acknowledgment that counts are not necessarily very
good surrogates for population sizes. Pattern in counts
is reflective not only of corresponding pattern in pop-
ulation sizes, but also of corresponding patterns in the
proportion of animals counted. Surveys producing
count data should be designed, inasmuch as possible,
to minimize variation in the proportion of animals
counted. Complete removal of this variation is not like-
ly to be possible, hence, analysts must be aware of
potential sources of pattern in this proportion, and must
design analytic methods accordingly. Thus, analysis of
count data requires a delicate interaction among sta-
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tistical modeling, biological intuition, and familiarity
with the methods of the surveys producing the counts.

For the BBS. we have shown that several factors
produce pattern in the proportion of birds counted;
these include differences among observers and changes
through time in the ability of individual observers.
These factors can be incorporated into analyses through
use of covariates for within-observer effects (e.g., Ken-
dall et al. 1996) and by conditioning to accommodate
among-observer effects (Sauer et al. 1994, Link and
Sauer 1994). Missing data from inconsistently sur-
veyed routes further complicate analysis. Geographic
structuring in the data raises the issue of appropriate
scale for composite analyses.

The overdispersed multinomial analysis (Link and
Sauer 1997a) provides a means of accommodating
these constraints. This method conditions on observer
totals, allows for the incorporation of start-up and other
effects as covariates, provides valid estimates of vari-
ance of trend, and can be applied at the scale of in-
dividual routes or regions. It also allows more com-
plicated covariable analysis, as shown in the interven-
tion analysis of the example. We feel that modeling on
individual routes is unlikely to provide sufficient in-
formation for adequate modeling of start-up effects or
higher level polynomials; hence, we apply the analysis
at a relatively low geographic scale (physiographic
strata within states) and then use weighted averages of
these estimates to summarize trends at higher scales.
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