> UNITED STATES DISTRICT COURT EASTERN DISTRICT OF LOUISIANA

IN RE：OIL SPILL BY THE
DOCKET NO．MDL－2179
OIL RIG DEEPWATER HORIZON SECTION＂J＂ IN THE GULF OF MEXICO ON NEW ORLEANS，LA APRIL 20， 2010 OCTOBER 16， 2013
********************************************************************)

IN RE：THE COMPLAINT AND
DOCKET NO．10－CV－2771
PETITION OF TRITON ASSET SECTION＂J＂
LEASING GMBH，ET AL

UNITED STATES OF AMERICA DOCKET NO．10－CV－4536
V．
BP EXPLORATION \＆PRODUCTION，
INC．，ET AL

DAY 10 MORNING SESSION
TRANSCRIPT OF NONJURY TRIAL PROCEEDINGS
HEARD BEFORE THE HONORABLE CARL J．BARBIER UNITED STATES DISTRICT JUDGE

APPEARANCES：

FOR THE PLAINTIFFS：HERMAN HERMAN \＆KATZ
BY：STEPHEN J．HERMAN，ESQ．
820 O＇KEEFE AVENUE
NEW ORLEANS，LA 70113

DOMENGEAUX WRIGHT ROY \＆EDWARDS
BY：JAMES P．ROY，ESQ．
556 JEFFERSON STREET，SUITE 500 POST OFFICE BOX 3668
LAFAYETTE，LA 70502

UNOFFICIAL TRANSCRIPT
SUSAN A．ZIELIE，CRR，RMR，FCRR
へロロт

```
APPEARANCES CONTINUED:
```

LEVIN PAPANTONIO THOMAS MITCHELL RAFFERTY \& PROCTOR
BY: BRIAN H. BARR, ESQ.
316 SOUTH BAYLEN STREET, SUITE 600 PENSACOLA, FL 32502

WEITZ \& LUXENBERG
BY: ROBIN L. GREENWALD, ESQ. 700 BROADWAY
NEW YORK CITY, NY 10003

IRPINO LAW FIRM
BY: ANTHONY IRPINO, ESQ.
2216 MAGAZINE STREET
NEW ORLEANS, LA 70130

LUNDY, LUNDY, SOILEAU \& SOUTH
BY: MATTHEW E. LUNDY, ESQ.
501 BROAD STREET
LAKE CHARLES, LA 70601

MORGAN \& MORGAN
BY: FRANK M. PETOSA, ESQ.
188 EAST CAPITOL STREET, SUITE 777 JACKSON, MS 39201

FOR THE STATES'
INTERESTS:
ALABAMA ATTORNEY GENERAL'S OFFICE
BY: COREY L. MAZE, ESQ.
WINFIELD J. SINCLAIR, ESQ.
500 DEXTER AVENUE
MONTGOMERY, AL 36130

UNOFFICIAL TRANSCRIPT
SUSAN A. ZIELIE, CRR, RMR, FCRR


```
APPEARANCES CONTINUED:
```

FOR THE STATE OF
LOUISIANA:
STATE OF LOUISIANA
BY: JAMES D. CALDWELL,
ATTORNEY GENERAL
1885 NORTH THIRD STREET
POST OFFICE BOX 94005
BATON ROUGE, LA 70804
KANNER \& WHITELEY
BY: ALLAN KANNER, ESQ.
DOUGLAS R. KRAUS, ESQ.
701 CAMP STREET
NEW ORLEANS, LA 70130
U.S. DEPARTMENT OF JUSTICE
TORTS BRANCH, CIVIL DIVISION
BY: STEPHEN G. FLYNN, ESQ.
POST OFFICE BOX 14271
WASHINGTON, DC 20044
U.S. DEPARTMENT OF JUSTICE
ENVIRONMENT \& NATURAL RESOURCES
DIVISION
ENVIRONMENTAL ENFORCEMENT SECTION
BY: THOMAS BENSON, ESQ.
STEVEN O'ROURKE, ESQ.
SCOTT CERNICH, ESQ.
A. NATHANIEL CHAKERES, ESQ.
ANNA CROSS, ESQ.
BETHANY ENGEL, ESQ.
RICHARD GLADSTEIN, ESQ.
JUDY HARVEY, ESQ.
SARAH HIMMELHOCH, ESQ.
P.O. BOX 7611
WASHINGTON, DC 20044

```
APPEARANCES CONTINUED:
```

FOR BP EXPLORATION \&
PRODUCTION INC.,
BP AMERICA PRODUCTION
COMPANY, BP PLC:
LISKOW \& LEWIS
BY: DON K. HAYCRAFT, ESQ.
ONE SHELL SQUARE
701 POYDRAS STREET
SUITE 5000
NEW ORLEANS, LA 70139
KIRKLAND \& ELLIS
BY: J. ANDREW LANGAN, ESQ.
HARIKLIA KARIS, ESQ.
PAUL D. COLLIER, ESQ.
MATTHEW T. REGAN, ESQ.
BARRY E. FIELDS, ESQ.
300 N. LASALLE
CHICAGO, IL 60654

KIRKLAND \& ELLIS
BY: MR. BOLES, ESQ.
333 SOUTH HOPE STREET
LOS ANGELES, CA 90071

KIRKLAND \& ELLIS
BY: ROBERT R. GASAWAY, ESQ. JOSEPH A. EISERT, ESQ. BRIDGET K. O'CONNOR, ESQ.
655 FIFTEENTH STREET, N.W. WASHINGTON, DC 20005

COVINGTON \& BURLING
BY: ROBERT C. "MIKE" BROCK, ESQ.
1201 PENNSYLVANIA AVENUE, NW
WASHINGTON, DC 20004

APPEARANCES CONTINUED:

FOR TRANSOCEAN HOLDINGS
LLC, TRANSOCEAN
OFFSHORE DEEPWATER
DRILLING INC., AND
TRANSOCEAN DEEPWATER
INC.:
FRILOT
BY: KERRY J. MILLER, ESQ. ENERGY CENTRE
1100 POYDRAS STREET, SUITE 3700
NEW ORLEANS, LA 70163

SUTHERLAND ASBILL \& BRENNAN
BY: STEVEN L. ROBERTS, ESQ. 1001 FANNIN STREET, SUITE 3700 HOUSTON, TX 77002

MUNGER TOLLES \& OLSON
BY: MICHAEL R. DOYEN, ESQ. BRAD D. BRIAN, ESQ. LUIS LI, ESQ. GRANT A. DAVIS-DENNY, ESQ. ALLEN M. KATZ, ESQ.
335 SOUTH GRAND AVENUE, 35TH FLOOR LOS ANGELES, CA 90071

FOR HALLIBURTON
ENERGY SERVICES, INC.:

GODWIN LEWIS
BY: DONALD E. GODWIN, ESQ.
JENNY L. MARTINEZ, ESQ.
BRUCE W. BOWMAN, JR., ESQ.
PRESCOTT W. SMITH, ESQ.
SEAN W. FLEMING, ESQ.
RENAISSANCE TOWER
1201 ELM STREET, SUITE 1700
DALLAS, TX 75270.

APPEARANCES CONTINUED:

GODWIN LEWIS
BY: R. ALAN YORK, ESQ. GWENDOLYN E. RICHARD, ESQ.
1331 LAMAR, SUITE 1665
HOUSTON, TX 77010

FOR ANADARKO
PETROLEUM CORPORATION, ANADARKO E\&P COMPANY LP:

KUCHLER POLK SCHELL
WEINER \& RICHESON
BY: DEBORAH D. KUCHLER, ESQ.
1615 POYDRAS STREET, SUITE 1300
NEW ORLEANS, LA 70112

BINGHAM MCCUTCHEN
BY: WARREN A. FITCH, ESQ. KY E. KIRBY, ESQ.
2020 K STREET, NW
WASHINGTON, DC 20006

OFFICIAL COURT REPORTER: SUSAN A. ZIELIE RMR, FCCR
CERTIFIED REALTIME REPORTER
REGISTERED MERIT REPORTER
500 POYDRAS STREET, ROOM HB406
NEW ORLEANS, LA 70130
(504) 589-7781
susan_zielie@laed.uscourts.gov

PROCEEDINGS RECORDED BY MECHANICAL STENOGRAPHY. TRANSCRIPT PRODUCED BY COMPUTER.

1

```
        I N D E X
    Testimony of:
```

        ROBERT CLIFFORD MERRILL, JR.
            Direct by Mr. Boles 2642
            Cross by Mr. Chakeres 2682
        MICHAEL ZALDIVAR
        Direct by Mr. Fields
                                2700
    |  | 1 | P-R-O-C-E-E-D-I-N-G-S |
| :---: | :---: | :---: |
|  | 2 | OCTOBER 16, 2013 |
|  | 3 | M ORNING S E S S I O N |
|  | 4 | (COURT CALLED TO ORDER) |
|  | 5 | 8:00 A.M. |
| 08:06AM | 6 |  |
| 08:06AM | 7 | THE COURT: Morning, everyone. Please be seated. |
| 08:07AM | 8 | All right. Go ahead, Mr. Brock. I'm just opening |
| 08:07AM | 9 | something up here. I'm listening. Go ahead. |
| 08:07AM | 10 | MR. BROCK: Our first witness this morning, Your Honor, |
| 08:07AM | 11 | will be Mr. Bob Merrill. |
| 08:07AM | 12 | I had two preliminary matters before we call him |
| 08:07AM | 13 | to the stand, if that's okay. |
| 08:07AM | 14 | THE COURT: Sure. |
| 08:07AM | 15 | MR. BROCK: First, I have the exhibits for Dr. Curtis |
| 08:07AM | 16 | Whitson. They've been circulated, and there are no objections |
| 08:07AM | 17 | to these exhibits. |
| 08:07AM | 18 | THE COURT: Without objection, those are admitted. |
| 08:07AM | 19 | (Exhibits admitted.) |
| 08:07AM 20 | 20 | MR. BROCK: Second, there was an issue that came up |
| 08:07AM | 21 | yesterday that $I$ just want to address very briefly and give Your |
| 08:07AM | 22 | Honor a bit of background so that you'll understand I hope a |
| 08:07AM | 23 | little better what we're doing. |
| 08:07AM 2 | 24 | As Your Honor may remember, we had deadlines set |
| 08:08AM | 25 | for the exchange of demonstrative exhibits. That was originally |


| $08: 08 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $08: 08 \mathrm{AM}$ | 2 |
| $08: 08 \mathrm{AM}$ | 3 | 08:08AM 4 08:08AM 5 08:08AM 6 08:08AM 7 08:08AM 8 08:08AM 9

08:08AM 10

08:08AM 11

08:08AM 12

08:08AM 13

08:08AM 14

08:08AM 15
08:09AM 16

08:09AM 17

08:09AM 18
08:09AM 19

08:09AM 20

08:09AM 21

08:09AM 22
08:09AM 23
08:09AM 24

08:09AM 25

September the 27th. And the idea was to disclose all exhibits that we could anticipate using at trial.

On that disclosure date, we disclosed 287 exhibits and the United States disclosed a handful, I think around 20. On the eve of trial, the 4th and evening of the 4th and 5th, the United States disclosed 120 new demonstrative exhibits that they said that they would use in their direct examinations. 100 on Saturday night. And I apologize for the detail --

THE COURT: Let me just stop you for just a second. I'm wondering why you're raising this. This was brought to my attention on the morning the trial started, and $I$ had word from Judge Shushan that you all had worked out any remaining issues pertaining to this.

MR. BROCK: Yes, sir. And I thought that we had, so I was just trying to give you the background on that so $I$ could give you the next statement, and I'll do it very quickly if that's okay.

The resolution of that was that we withdraw our timeliness objection to the late-filed exhibits, and the United States said as to those demonstrative exhibits that he had disclosed prior to that date, that they would not object to those.

So when our lawyers say to Your Honor in court when we're examining a witness there's no objection to that

| $08: 09 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $08: 09 \mathrm{AM}$ | 2 | 08:09AM 3 08:09AM 4 08:09AM 5 08:09AM 6 08:09AM 7 08:09AM 8 08:09AM 9 08:09AM 10 08:10AM 11

08:10AM 12

08:10AM 13

08:10AM 14

08:10AM 15

08:10AM 16

08:10AM 17

08:10AM 18

08:10AM 19

08:10AM 20

08:10AM 21

08:10AM 22

08:10AM 23

08:10AM 24

08:10AM 25
exhibit, that's what we are referring to, the resolution that we made that there would not be objections to our exhibits.

This has come up several times, but it came up three times yesterday with Exhibit D-23603, D-24222, and D-23608.A.1. I don't think there's any useful purpose at this point in me offering the deconvolution exhibit, so I won't offer that.

We would have had a discussion about it if it had been permitted.

THE COURT: You're talking about exhibits that the government objected to?

MR. BROCK: Yesterday, yes, sir. Where they had said they did not have objections.

THE COURT: Okay. Well, let me just say, I don't recall the basis of the -- I didn't think that the basis of those objections yesterday -- the ones I recall, and I'm sure you know more about the details of this than I do right now -but my recollection is the objections were based on other matters, not on a timeliness issue. I don't know if that's right or not.

MR. BROCK: No. There's no issue about timeliness. These are disclosed on September the 27th, so that's not the issue.

$$
\begin{aligned}
& \text { I'll get right to it. } \\
& \text { The only thing I wanted to tell you is when we say }
\end{aligned}
$$

| $08: 10 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $08: 10 \mathrm{AM}$ | 2 |
| $08: 10 \mathrm{AM}$ | 3 |

08:10AM 4
08:10AM 5
08:10AM 6
08:11AM 7
08:11AM 8
08:11AM 9
08:11AM 10
08:11AM 11
08:11AM 12
08:11AM 13
08:11AM 14
08:11AM 15
08:11AM 16
08:11AM 17
08:11AM 18
08:11AM 19
08:11AM 20
08:11AM 21
08:11AM 22
08:11AM 23
08:11AM 24
08:11AM 25
there's not an objection to the exhibit, what we mean is this is something we worked out at the beginning of the trial. That's why we're saying that there is a no objection, because we withdrew our timeliness objection, they withdrew their other objections.

I'm now going to offer 24222.1 and 236603.1, and my understanding is that the government does not object to these demonstratives beings admitted.

THE COURT: These are in connection with whose testimony?

MR. BROCK: Dr. Gringarten yesterday.
THE COURT: Is that correct, Ms. Himmelhoch?
MS. HIMMELHOCH: Your Honor, it is correct that the United States does not object to the demonstratives. My objections yesterday were directed to the testimony based upon the demonstratives.

THE COURT: So you don't object to what Mr. Brock just offered?

MS. HIMMELHOCH: No, we do not, and we --
THE COURT: Okay. That's it. That's all. That's admitted.

MR. BROCK: That's all I wanted.
THE COURT: Okay. No problem. That was a long way around to get to that point. You could have just said you had two exhibits that nobody objected to them.

| $08: 11 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $08: 11 \mathrm{AM}$ | 2 |

08:11AM 3

08:11AM 4
$08: 11 \mathrm{AM} 5$
$08: 11$ AM 6

08:11AM 7

08:12AM 8
08:12AM 9

08:12AM 10

08:12AM 11

08:12AM 12

08:12AM 13

08:12AM 14

08:12AM 15

08:12AM 16

08:12AM 17

08:12AM 18

08:12AM 19

08:12AM 20

08:12AM 21

08:12AM 22

08:12AM 23

08:12AM 24

08:12AM 25

MR. BROCK: Well, I could have. You're right.
I just wanted you to know that when we're saying that, it's not something we're just pulling out of the blue. We have a reason for saying it.

THE COURT: I understand.
MR. BROCK: These are things we think we've worked out, and that's why we've done it. For the benefit of our examiners, I wanted you to know that.

THE COURT: Well, I'm happy you all were able to work it out again.

MR. BROCK: Thank you, Your Honor.
With that, we call Mr. Bob Merrill.
MS. KING: Rachel King for the United States, Your Honor.

I have here the list of exhibits that the United States used with Dr. Whitson. Exhibits, call-outs, and demonstratives. This list has been circulated, and there are no objections.

THE COURT: All right. Without objection, those are admitted.
(Exhibit admitted.)
MS. KING: Thank you, Your Honor.
THE COURT: Any other preliminary matters?
Remember, we're going to recess right at noon
today. No later than noon, let me put it that way.

| $08: 12 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $08: 12 \mathrm{AM}$ | 2 |

08:12AM 3

08:13AM 4
08:13AM 5
08:13AM 6

08:13AM 7
08:13AM 8
08:14AM 9

08:14AM 10

08:14AM 11

08:14AM 12
08:14AM 13

08:14AM 14

08:14AM 15
08:14AM 16

08:14AM 17

08:14AM 18

08:14AM 19
08:14AM 20

08:14AM 21

08:14AM 22

08:14AM 23
08:14AM 24

08:14AM 25

Okay.
By the way, let me announce our times. According to our timekeepers, these are our times according to Ben. I think it will be a moot issue, because the way we're going I don't think we're not going to exhaust all the time anyway.

But the United States has used 16 hours and 13 minutes; has 28:47 remaining.

BP has used 18 hours 45 minutes; has 26:15
remaining.
ROBERT CLIFFORD MERRILL, JR., being first duly sworn, testified as follows:

THE CLERK: State and spell your name for the record. THE WITNESS: My name is Robert Clifford Merrill, Junior, $M-E-R-R-I-L-L$.

MR. BOLES: Your Honor, Mr. Boles for BP and Anadarko. If may proceed?

THE COURT: Yes.
DIRECT EXAMINATION
BY MR. BOLES:
Q Good morning, Dr. Merrill.
A Good morning.
Q Maybe speak up a little bit.
A Okay.
Q Tell us where you work, Dr. Merrill.
A I work for BP Exploration in Houston.

| 08:14AM | 1 | Q What's your job? |
| :---: | :---: | :---: |
| 08:14AM | 2 | A I'm currently director of reservoir engineering for the |
| 08:14AM | 3 | corporation. I oversee the health of the engineering community, |
| 08:14AM | 4 | the reservoir engineering community. |
| 08:14AM | 5 | Q By health, what do you mean? |
| 08:15AM | 6 | A Organizational capability; make sure we have the right |
| 08:15AM | 7 | people in the right locations and that they're properly trained. |
| 08:15AM | 8 | Q So is part of what your work involves is teaching other |
| 08:15AM | 9 | reservoir engineers? |
| 08:15AM | 10 | A I do teach on occasion internal and some courses for |
| 08:15AM | 11 | partners. |
| 08:15AM | 12 | Q When you say courses for partners, what does that industry |
| 08:15AM | 13 | term mean, partners specifically? |
| 08:15AM | 14 | A We have partnerships with other firms, such as the Gulf of |
| 08:15AM | 15 | Suez Petroleum Company, or with Reliance Industries. I go and I |
| 08:15AM | 16 | sometimes teach our methods to them. |
| 08:15AM | 17 | Q Dr. Merrill, how long have you been a reservoir engineer? |
| 08:15AM | 18 | A I've been a reservoir engineer in one form -- a reservoir |
| 08:15AM | 19 | engineer in one form or another for about 30 years. |
| 08:15AM | 20 | Q Are you a member of any professional societies? |
| 08:15AM | 21 | A Yes. I'm a member of the Society of Petroleum Engineers, |
| 08:16AM | 22 | and I'm a licensed professional engineer in the state of Texas. |
| 08:16AM | 23 | Q In addition to the leadership position you described at BP, |
| 08:16AM | 24 | do you have leadership positions outside of BP? |
| 08:16AM | 25 | A Yes. I am an Episcopal priest, and I am rector and pastor |


| 08:16AM | 1 | of Saint Bartholomew Episcopal Church in Hempstead, Texas. |
| :---: | :---: | :---: |
| 08:16AM | 2 | Q I want to focus in on the work you did at BP related to the |
| 08:16AM | 3 | Macondo incident. When did you first start doing any work |
| 08:16AM | 4 | relating to the Macondo incident? |
| 08:16AM | 5 | A With the exception of a few stray questions, I started |
| 08:16AM | 6 | working on the Macondo incident in about mid-May of 2010. |
| 08:16AM | 7 | Q Now, Dr. Merrill, I want you to listen very carefully to my |
| 08:16AM | 8 | questions. At some point in the summer of 2010, did you start |
| 08:16AM | 9 | doing a separate work stream to provide scientific analysis to |
| 08:16AM | 10 | the lawyers defending BP in this case? |
| 08:16AM | 11 | A Yes. I started what I was told was called privileged work |
| 08:17AM | 12 | in August of 2010. |
| 08:17AM | 13 | Q Dr. Merrill, I'm going to now go back and be asking you |
| 08:17AM | 14 | about the nonprivileged work you did in analyzing the Macondo |
| 08:17AM | 15 | well. And I just want to ask you, in my questions for the rest |
| 08:17AM | 16 | of the morning or as long as I ask you questions, will you |
| 08:17AM | 17 | understand that I am not asking you to describe the privileged |
| 08:17AM | 18 | work you did with the lawyers? |
| 08:17AM | 19 | A Yes, I understand that. |
| 08:17AM | 20 | Q What were you doing when you started in May? What were you |
| 08:17AM | 21 | doing to assist in the response to the incident? |
| 08:17AM | 22 | A Most of my work for the Macondo incident involved the |
| 08:17AM | 23 | estimation of pressures in the face of the large uncertainties |
| 08:17AM | 24 | we had about the flow rate. You know, what sort of pressures |
| 08:17AM | 25 | might be encountered at various horizons in the reservoir in the |


| 08:18AM | 1 | stratographic section; what pressures might be encountered at |
| :---: | :---: | :---: |
| 08:18AM | 2 | the wellhead were we to shut it in. |
| 08:18AM | 3 | This started in mid-May for the Top Kill. It then |
| 08:18AM | 4 | continued in June for the planning of the relief wells. And |
| 08:18AM | 5 | towards the end of June, early July, we turned our attentions to |
| 08:18AM | 6 | the wellbore integrity test, which was the capping stack for the |
| 08:18AM | 7 | -- which ultimately closed the well. |
| 08:18AM | 8 | Q Now, in this modeling you were doing to predict pressure, |
| 08:18AM | 9 | did you work with a team of other scientists or engineers? |
| 08:18AM | 10 | A Well, I was working for the engineering team that was led by |
| 08:18AM | 11 | Paul Tooms. And I was working very closely with Kate Baker from |
| 08:18AM | 12 | whom I was taking most of my instructions. |
| 08:18AM | 13 | I had a team of people who were working for me on |
| 08:18AM | 14 | a number of different issues. I had a few people help me with |
| 08:19AM | 15 | reservoir simulation and a few people working on pressure |
| 08:19AM | 16 | transient analysis, including Michael Levitan, who was our |
| 08:19AM | 17 | technical advisor for pressure transient analysis. |
| 08:19AM | 18 | Q Now, when you and your team were doing analysis to try to |
| 08:19AM | 19 | predict pressure related to the Macondo incident, did you have |
| 08:19AM | 20 | inputs into that modeling or analytical work for rock |
| 08:19AM | 21 | compressibility? |
| 08:19AM | 22 | A I did. |
| 08:19AM | 23 | Q Why? |
| 08:19AM | 24 | A Well, rock compressibility is one of those fundamental |
| 08:19AM | 25 | properties you need to perform reservoir simulation. It's like |


| 08:19AM | 1 | permeability -- it's not like permeability, but it's of the |
| :---: | :---: | :---: |
| 08:19AM | 2 | nature of the permeability porosity or net to gross. It's one |
| 08:19AM | 3 | of the rock properties which a simulation package requires in |
| 08:20AM | 4 | order to make predictions about pressure based on flow. |
| 08:20AM | 5 | Q In the modeling work you were doing as a general matter, |
| 08:20AM | 6 | what is the effect of rock compressibility on the pressure that |
| 08:20AM | 7 | you're predicting? |
| 08:20AM | 8 | A Rock compressibility, we're talking depletion, so when |
| 08:20AM | 9 | you're withdrawing something from the reservoir, rock |
| 08:20AM | 10 | compressibility is the measure of how spongy the rock is. |
| 08:20AM | 11 | Now, we might think that rocks are solid like the |
| 08:20AM | 12 | wood around me, but under the pressures of the earth above them |
| 08:20AM | 13 | they actually act much more like sponges. |
| 08:20AM | 14 | And so as you take fluid out of the reservoir, the |
| 08:20AM | 15 | rock around it pushes down. Compressibility is a measure of how |
| 08:20AM | 16 | much the rock actually gives under this pressure. |
| 08:20AM | 17 | So with a high compressibility, relatively high |
| 08:21AM | 18 | compressibility, when you pull a certain amount of fluid out of |
| 08:21AM | 19 | the reservoir, you will see a small pressure change. With a low |
| 08:21AM | 20 | compressibility, you take the same amount of fluid out of |
| 08:21AM | 21 | erwise the same reservoir, you see a larger pressure change. |
| 08:21AM | 22 | Q Now, in terms of -- we'll get to the specific modeling a |
| 08:21AM | 23 | little later. Where was the source of data you used to |
| 08:21AM | 24 | determine the input for rock compressibility when you first |
| 08:21AM | 25 | started using that input in your modeling mode? |


| 08:21AM | 1 | A I have received is from either Kelly McAughan or Steve |
| :---: | :---: | :---: |
| 08:21AM | 2 | Wilson. |
| 08:21AM | 3 | Q Who is Steve Wilson? |
| 08:21AM | 4 | A Steve Wilson was the geomechanical advisor for the Gulf of |
| 08:21AM | 5 | Mexico. |
| 08:21AM | 6 | Q How does geomechanics relate to rock compressibility? |
| 08:21AM | 7 | A Geomechanics is the study of how rocks deform under stress. |
| 08:21AM | 8 | Q So is a geomechanics person a person whose specialty |
| 08:22AM | 9 | includes rock compressibility? |
| 08:22AM | 10 | A It's one the things in the geomechanics specialty, yes, sir. |
| 08:22AM | 11 | Q What about Kelly McAughan, what was her job? |
| 08:22AM | 12 | A Kelly McAughan was the reservoir engineer who was actually |
| 08:22AM | 13 | assigned to the well during its drilling. She worked in the |
| 08:22AM | 14 | exploration function. |
| 08:22AM | 15 | Q Was she a geomechanics specialist? |
| 08:22AM | 16 | A No. She was a general reservoir engineer. |
| 08:22AM | 17 | Q Let's look at TREX-10859.1.1. And this is a call-out of a |
| 08:22AM | 18 | portion of a document dated June 29, 2010. |
| 08:22AM | 19 | At this time, Dr. Merrill, were you doing modeling |
| 08:22AM | 20 | of the Macondo reservoir? |
| 08:22AM | 21 | A I was doing simulation -- modeling is a general term. This |
| 08:23AM | 22 | is a -- refers to a simulation model that I had prepared for |
| 08:23AM | 23 | Macondo. |
| 08:23AM | 24 | Q What were you trying to simulate? |
| 08:23AM | 25 | A We purposely put this -- the reason we put this simulation |


| 08:23AM | 1 | model together was to predict what sort of pressures the relief |
| :---: | :---: | :---: |
| 08:23AM | 2 | well drillers would encounter during the drilling of the relief |
| 08:23AM | 3 | wells. |
| 08:23AM | 4 | We used it for a number of other purposes as well, |
| 08:23AM | 5 | but the purpose it was originally put together for was for |
| 08:23AM | 6 | relief well planning. |
| 08:23AM | 7 | Q What number did you input for rock compressibility in that |
| 08:23AM | 8 | modeling? |
| 08:23AM | 9 | A Six microsips, which would be 6 times 10 to the minus 6 |
| 08:23AM | 10 | inverse psi. |
| 08:23AM | 11 | Q Is that what is symbolized by the last line of the call-out |
| 08:23AM | 12 | by the notation $C$ with a subscript F ? |
| 08:23AM | 13 | A Yes, sir. F for formation. |
| 08:24AM | 14 | Q Where did you get or how did you decide to use 6 microsips |
| 08:24AM | 15 | in this simulation? |
| 08:24AM | 16 | A It was provided to me by Steve Wilson or Kelly. |
| 08:24AM | 17 | Q And do you know what they based it on? |
| 08:24AM | 18 | A It was my understanding at the time that it was based on |
| 08:24AM | 19 | experimental measurements from rotary sidewall cores. |
| 08:24AM | 20 | Q At that time, did they give you any precautions about using |
| 08:24AM | 21 | measured data from rotary sidewall cores to base an estimate of |
| 08:24AM | 22 | rock compressibility? |
| 08:24AM | 23 | A No, sir. |
| 08:24AM | 24 | Q Had you ever or have you ever in your 30 years at the |
| 08:24AM | 25 | Macondo well -- I'm sorry -- in your 30 years of word at BP |


| 08:24AM | 1 | prior to Macondo, had you ever heard of any concerns about using |
| :---: | :---: | :---: |
| 08:24AM | 2 | rotary sidewall cores to measure rock compressibility? |
| 08:24AM | 3 | MR. CHAKERES: Your Honor, I'm going to object. This |
| 08:24AM | 4 | goes beyond the scope of what he was doing in his response and |
| 08:25AM | 5 | is calling for expert testimony. |
| 08:25AM | 6 | MR. BOLES: It's fact testimony. |
| 08:25AM | 7 | THE COURT: It sounds like a fact question. Overrule |
| 08:25AM | 8 | the objection. |
| 08:25AM | 9 | BY MR. BOLES: |
| 08:25AM | 10 | A Until one meeting we had during the Macondo incident, it |
| 08:25AM | 11 | never -- I was unaware of any controversy regarding the |
| 08:25AM | 12 | reliability of rotary sidewall core data. |
| 08:25AM | 13 | Q And, in your prior work at $B P$ as a reservoir engineer for |
| 08:25AM | 14 | decades, had you in the past input into your models rock |
| 08:25AM | 15 | compressibility numbers based on measurements of from rotary |
| 08:25AM | 16 | sidewall cores? |
| 08:25AM | 17 | A Yes, I had. |
| 08:25AM | 18 | Q Now, we've been focusing on this particular document and the |
| 08:25AM | 19 | 6 microsips input for rock compressibility. In predicting |
| 08:25AM | 20 | pressures you were doing here, what would be the effect of |
| 08:25AM | 21 | increasing that number? |
| 08:25AM | 22 | A Well, if you held all other things equal, then if you |
| 08:26AM | 23 | increase the compressibility, you would increase -- well, you |
| 08:26AM | 24 | would decrease the amount of depletion observed in the reservoir |
| 08:26AM | 25 | or from wherever you were withdrawing fluid, and therefore you |


| 08:26AM | 1 | would increase the final pressure in the reservoir. |
| :---: | :---: | :---: |
| 08:26AM | 2 | Q Now, you mentioned this meeting July 6th, and we're going to |
| 08:26AM | 3 | get to that next. |
| 08:26AM | 4 | In your simulations or other modeling of Macondo |
| 08:26AM | 5 | prior to July 6th, did you use 6 microsips as the rock |
| 08:26AM | 6 | compressibility input for all of those models and analyses? |
| 08:26AM | 7 | A Yes, sir. |
| 08:26AM | 8 | Q Let's take a look at D-24698.1 in order to set the |
| 08:26AM | 9 | timeframe. |
| 08:26AM | 10 | So you did a number of analyses and modeling to |
| 08:27AM | 11 | predict pressure from Macondo reservoir prior to July 6th; |
| 08:27AM | 12 | correct? |
| 08:27AM | 13 | A Yes, sir. |
| 08:27AM | 14 | Q You used 6 microsips as an input for all of those? |
| 08:27AM | 15 | A I input -- in those cases where I input compressibility, |
| 08:27AM | 16 | yes, I used 6 microsips. |
| 08:27AM | 17 | Q Did your focus -- did you have a particular focus then |
| 08:27AM | 18 | toward the end of June and early July in terms of the work you |
| 08:27AM | 19 | were doing about the Macondo incident? |
| 08:27AM | 20 | A In June and early July the bulk of my -- well, actually |
| 08:27AM | 21 | mostly in June -- the bulk of my work was involved in relief oil |
| 08:27AM | 22 | planning and the pressures that might be observed as you drill |
| 08:27am | 23 | through the stratographic column because of the possible flow |
| 08:27AM | 24 | between horizons. |
| 08:27am | 25 | Q Now, referring to the timeline, did there come a time when |


| 08:27AM | 1 | the Macondo well was shut in? |
| :---: | :---: | :---: |
| 08:28AM | 2 | A The well itself was shut in on the 15th of July. |
| 08:28AM | 3 | Q And did you at some point -- I think you actually testified |
| 08:28AM | 4 | to this -- start doing modeling to predict the pressure that |
| 08:28AM | 5 | would build up if the well was shut in? |
| 08:28AM | 6 | A Yes. That work actually started towards the end of June. I |
| 08:28AM | 7 | don't remember exactly when. The last part of June. And it |
| 08:28AM | 8 | continued through -- the predicted work continued through to the |
| 08:28AM | 9 | point of shut-in. |
| 08:28AM | 10 | Q Why were you trying to predict pressure buildup that might |
| 08:28AM | 11 | happen from shut-in? |
| 08:28AM | 12 | A One of the concerns that everyone had in the course of this |
| 08:28AM | 13 | incident was that the well's integrity, that is the steel that |
| 08:28AM | 14 | separated the hole in the ground, which was the well, from the |
| 08:28AM | 15 | formations was damaged in some way. It had no integrity. There |
| 08:29AM | 16 | was a hole in it. |
| 08:29AM | 17 | And I don't know if the court has heard anything |
| 08:29AM | 18 | about burst discs, but in particular there was a hypothesis that |
| 08:29AM | 19 | these burst discs in the well had failed and that you could have |
| 08:29AM | 20 | established flow between the inside of the well and the outside |
| 08:29AM | 21 | of the well. |
| 08:29AM | 22 | And, if that were to occur, you could have high |
| 08:29AM | 23 | pressure fluid flowing in the well and then out into a shallower |
| 08:29AM | 24 | formation that could not actually contain it. |
| 08:29AM | 25 | Q Now let's take a look at TREX -- well, you mentioned that |


| 08:29AM | 1 | there was a meeting on July 6th. |
| :---: | :---: | :---: |
| 08:29AM | 2 | A Yes, sir. |
| 08:298M | 3 | Q And what was the purpose of that meeting? |
| 08:29AM | 4 | A The purpose of the meeting on July 6th was to review my |
| 08:29AM | 5 | simulation work up to that point, with the principal focus on |
| 08:30AM | 6 | what it might tell us about pressures. |
| 08:30AM | 7 | Q Let's take a look at TREX-140863.5.1. |
| 08:30AM | 8 | Is this a portion of a presentation you gave at |
| 08:30AM | 9 | that meeting? |
| 08:30AM | 10 | A Yes, sir, it is. |
| 08:30AM | 11 | Q Who attended that meeting? |
| 08:30AM | 12 | A That was an internal BP meeting. It was attend by a number |
| 08:30AM | 13 | of people, including Paul Tooms, Kate Baker, James Dupree, a |
| 08:30AM | 14 | number of reservoir engineers who were working in the producing |
| 08:30AM | 15 | fields in the Gulf of Mexico, some geologists. I believe we |
| 08:30AM | 16 | also had some flow specialists there as well. |
| 08:30AM | 17 | Q And let's look at TREX-14863.5.2. |
| 08:31AM | 18 | What was the value you were using in the modeling |
| 08:31AM | 19 | you presented for rock compressibility? |
| 08:31AM | 20 | A I was using a value of 6 microsips. |
| 08:31AM | 21 | Q Was there discussion about that during the meeting? |
| 08:31AM | 22 | A Yes, there was. |
| 08:31AM | 23 | Q What was the discussion? |
| 08:31AM | 24 | A I had been consistently using either the fluid withdrawal |
| 08:31AM | 25 | rate or the presence or absence of an aquifer to control the |


| 08:31AM | 1 | energy, the final pressures you might encounter in the |
| :---: | :---: | :---: |
| 08:31AM | 2 | reservoir. |
| 08:31AM | 3 | And during the discussion of compressibility - |
| 08:31AM | 4 | well, during the discussion of the inputs to the model, one of |
| 08:31AM | 5 | the reservoir engineers in the meeting raised the possibility |
| 08:31AM | 6 | that rotary sidewall cores could provide data that was biased |
| 08:31AM | 7 | low compared to data collected from other methods. |
| 08:31AM | 8 | Q Who was that reservoir engineer? |
| 08:31AM | 9 | A I believe it was Dave Schott. |
| 08:32AM | 10 | Q And do you know what he based that concern on? |
| 08:32AM | 11 | A During the meeting, I did not. He raised it as anecdotal |
| 08:32AM | 12 | evidence that in his experience he had observed this at a nearby |
| 08:32AM | 13 | field in Galápagos. |
| 08:32AM | 14 | Q And were there other reservoir engineers at that meeting |
| 08:32AM | 15 | from other nearby BP Gulf of Mexico fields? |
| 08:32AM | 16 | A I don't remember exactly who was there. I'm fairly sure |
| 08:32AM | 17 | Kelly was there. And I think Jessica was there, but I honestly |
| 08:32AM | 18 | don't remember. |
| 08:32AM | 19 | Q Were there other reservoir engineers there? |
| 08:32AM | 20 | A Yes. |
| 08:32AM | 21 | Q Who had worked on other fields? |
| 08:32AM | 22 | A Yes. |
| 08:32AM | 23 | Q And did any of them other than Dave Schott raise this |
| 08:32AM | 24 | concern about rotary sidewall cores? |
| 08:32AM | 25 | A Not to my recollection. |


| 08:32AM | 1 | Q What was the decision that was made at that meeting about |
| :---: | :---: | :---: |
| 08:32AM | 2 | what to do with rock compressibility in modeling the risk from |
| 08:32AM | 3 | pressure buildup from the shut-in of the Macondo well? |
| 08:33AM | 4 | A The purpose of the meeting was to look at the risks around |
| 08:33AM | 5 | pressure. And the decision that came out of the meeting was |
| 08:33AM | 6 | that we would increase the compressibilities that we were using |
| 08:33AM | 7 | to look at the high side of the pressures that might be |
| 08:33AM | 8 | encountered. |
| 08:33AM | 9 | We also made the decision in that meeting to |
| 08:33AM | 10 | increase the aquifer size, the largest aquifer we were looking |
| 08:33AM | 11 | at to accomplish the same purpose. |
| 08:33AM | 12 | Q Now, how does increasing the aquifer size in the modeling to |
| 08:33AM | 13 | assess risk of shut-in, how is that analysis or why was that |
| 08:33AM | 14 | part of the same decision to increase rock compressibility |
| 08:33AM | 15 | numbers or look at alternative higher cases of rock |
| 08:33AM | 16 | compressibility? |
| 08:33AM | 17 | A Final reservoir pressure or the reservoir pressure for a |
| 08:33AM | 18 | given withdrawal rate is dependent on the reservoir energy. |
| 08:34AM | 19 | Now, you take reservoir energy out when you |
| 08:34AM | 20 | produce fluids from the reservoir, and you put reservoir energy |
| 08:34AM | 21 | in either by water that surrounds the reservoir flowing in |
| 08:34AM | 22 | behind the fluid, which is the aquifer, or by changing the |
| 08:34AM | 23 | properties of the rock, the compressibility. |
| 08:34AM | 24 | Q Now, did anybody at this July 6th meeting, yourself or the |
| 08:34AM | 25 | managers there or the reservoir engineers there, say that they |


| 08:34AM | 1 | had made a scientific conclusion that the rock compressibility |
| :---: | :---: | :---: |
| 08:34AM | 2 | of 6 that you had been using for Macondo was incorrect? |
| 08:34AM | 3 | A No. It was a possibility that because it was measured on |
| 08:34AM | 4 | rotary sidewall cores it might be biased low. |
| 08:34AM | 5 | Q So then why would you then going forward use higher numbers? |
| 08:34AM | 6 | A For the purposes of the wellbore integrity test, we wanted |
| 08:35AM | 7 | to understand how high the pressures were that we might |
| 08:35AM | 8 | encounter in the well. |
| 08:35AM | 9 | Because it was the magnitude of the pressure that |
| 08:35AM | 10 | would either drive the pressure that was seen at the wellhead, |
| 08:35AM | 11 | which to my understanding was also an issue because of the |
| 08:35AM | 12 | possibilities of causing burst disc failure. |
| 08:35AM | 13 | Or if the other burst discs or other integrity has |
| 08:35AM | 14 | failed in the well, the magnitude of the pressure would actually |
| 08:35AM | 15 | drive the flow rate into the shallower formations, which would |
| 08:35AM | 16 | increase the risk of a surface breach. |
| 08:35AM | 17 | We were very concerned about how much time we |
| 08:35AM | 18 | would have to actually recognize a failure of integrity and the |
| 08:35AM | 19 | bad things that would happen if we had a surface breach. |
| 08:36AM | 20 | Q And would a surface breach or causing of a surface breach be |
| 08:36AM | 21 | more likely if the rock compressibility was higher other lower? |
| 08:36AM | 22 | A It has nothing to do with rock compressibility. |
| 08:36AM | 23 | Q In terms of the pressure buildup? |
| 08:36AM | 24 | A Well, with a higher compressibility you end up with a higher |
| 08:36AM | 25 | final reservoir pressure, and it's the pressure that actually |



| 08:38AM | 1 | Q And focusing your attention on the sentence: I don't think |
| :---: | :---: | :---: |
| 08:38AM | 2 | you can go much above 6 microsips and still honor the data. |
| 08:38AM | 3 | Do you see that? |
| 08:38AM | 4 | A Yes, sir. |
| 08:38AM | 5 | Q Do you remember hearing that from Steve Wilson? |
| 08:38AM | 6 | A Yes. |
| 08:38AM | 7 | Q And did you talk to him after this email in response to it? |
| 08:38AM | 8 | A Yes, I did. |
| 08:38AM | 9 | Q What did you talk about with him? |
| 08:38AM | 10 | A I went and I -- |
| 08:38AM | 11 | MR. CHAKERES: I object to this on hearsay grounds. |
| 08:38AM | 12 | THE COURT: Sustained. |
| 08:38AM | 13 | BY MR. BOLES: |
| 08:38AM | 14 | Q Let's take a look at TREX-1157.1.1. |
| 08:38AM | 15 | Is this an email that you received from Mr. |
| 08:38AM | 16 | Wilson, Dr. Merrill? |
| 08:38AM | 17 | A Yes, I did. |
| 08:38AM | 18 | Q And it says in the first sentence: I have spoken with Bob |
| 08:38AM | 19 | Merrill and have more context now around the question being |
| 08:39AM | 20 | asked. |
| 08:39AM | 21 | A Yes, sir. |
| 08:39AM | 22 | Q Had you had a conversation with Steve Wilson to explain the |
| 08:39AM | 23 | reason for looking at alternative higher rock compressibility |
| 08:39AM | 24 | values coming out of that July 6th meeting? |
| 08:39AM | 25 | A Yes, I had. |


| $08: 39 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $08: 39 \mathrm{AM}$ | 2 |

08:39AM 3
08:39AM 4
08:39AM 5
08:39AM 6
08:39AM 7
08:39AM 8
08:39AM 9
08:39AM 10
08:39AM 11
08:39AM 12
08:39AM 13
08:39AM 14
08:39AM 15
08:40AM 16
08:40AM 17
08:40AM 18
08:40AM 19
08:40AM 20
08:40AM 21
08:40AM 22
08:40АМ 23
08:40AM 24
08:40AM 25

MR. CHAKERES: Same objection, Your Honor, as to the content of that communication.

MR. BOLES: Your Honor, the government has put into issue why $B P$ was looking at or the significance of $B P$ looking at alternative rock compressibility.

So these are facts and offered for the fact of the discussions going on. Let the decision...

THE COURT: You can't. You can't use -- I mean, this is clearly hearsay if he's going to say what someone else at BP told him. I don't know how you get around the hearsay rule.

MR. BOLES: I don't think that was part of my question.
I'll re-ask the question. Maybe it will be a
different question. If not, then I'm sure I will hear an objection and then I'll move on.

THE COURT: Okay.
BY MR. BOLES:
Q Had you had a conversation with Steve Wilson about the July 6th meeting where rock compressibility was discussed?

A Yes, I did.
Q What did you tell him?
MR. CHAKERES: Your Honor, that's still hearsay. It's an out-of-court statement.

THE COURT: No. The fact that he had a meeting, that's not hearsay. Go ahead. Overrule that objection. BY MR. BOLES:

| 08:40AM | 1 | A I told Steve that we were looking for higher values of |
| :---: | :---: | :---: |
| 08:40AM | 2 | compressibility that were still within the realms of possibility |
| 08:40AM | 3 | so that we could calculate a higher final depleted pressure. |
| 08:40AM | 4 | Q And did Steve Wilson eventually provide to your team for |
| 08:40AM | 5 | modeling the risks of shut-in alternative higher rock |
| 08:40AM | 6 | compressibility numbers to use in that modeling? |
| 08:40AM | 7 | A Not exactly. Yes, after some discussion he came out with a |
| 08:40AM | 8 | range of numbers. But the final numbers we used for modeling |
| 08:41AM | 9 | were simple multiples of the measured rock compressibility. |
| 08:41AM | 10 | Q Which was? |
| 08:41AM | 11 | A Two times and three times, so 12 microsips and 18 microsips. |
| 08:41AM | 12 | Q And the measured number was what, Dr. Merrill? |
| 08:41AM | 13 | A 6 microsips. |
| 08:41AM | 14 | Q Did the geomechanics specialist, Mr. Wilson, ever deliver to |
| 08:41AM | 15 | your team for use in your modeling a scientific study showing |
| 08:41AM | 16 | that the rock compressibility of 6 measured in the Macondo |
| 08:41AM | 17 | reservoir was incorrect? |
| 08:41AM | 18 | A He did not present a written study, no, sir. |
| 08:41AM | 19 | Q Did he provide any study to you showing you and convincing |
| 08:41AM | 20 | you that the rotary sidewall core measurements were biased low? |
| 08:41AM | 21 | A No, he did not. |
| 08:42AM | 22 | Q Let's take a look at TREX-20849.1. |
| 08:42AM | 23 | Do you recognize in a document, Dr. Merrill? |
| 08:42AM | 24 | A It's hard to recognize something straight from the title |
| 08:42AM | 25 | page. |


| 08:42AM | 1 | Q All right. Let's take a look at TREX-020841N.3.1. |
| :---: | :---: | :---: |
| 08:42AM | 2 | A Yes, I recognize this slide. |
| 08: 42AM | 3 | Q And what is this, Dr. Merrill? |
| 08: 42AM | 4 | A I prepared this slide for a meeting -- we had lots of |
| 08:42AM | 5 | meetings -- in which I was discussing the depleted pressures |
| 08:42AM | 6 | that one would calculate based on a number of scenarios. |
| 08:42AM | 7 | Q Now, it says on this page of the presentation: Recommends |
| 08:42AM | 8 | new, quote, most likely, end quote, 3.8 times aquifer, 12 |
| 08:42AM | 9 | microsips, and 35. |
| 08:43AM | 10 | What does MDB stand for? |
| 08:43AM | 11 | A Thousands of barrels a day. |
| 08:43AM | 12 | Q What does that refer to, Dr. Merrill? |
| 08:43AM | 13 | A That was the flow rate that we were using in the simulation |
| 08:43AM | 14 | as our mid-case here. |
| 08:43AM | 15 | Q And in the middle does it say 12 microsips? |
| 08:43AM | 16 | A It does. |
| 08:43AM | 17 | Q Now, what did you mean by putting most -- and did you put |
| 08:43AM | 18 | most likely in quotation marks there? |
| 08:43AM | 19 | A I did. |
| 08:43AM | 20 | Q Why did you do that? |
| 08:43AM | 21 | A These parameters were not statistically most likely. They |
| 08: 43AM | 22 | were our mid-case, our reference case. |
| 08:43AM | 23 | Q What did you regard as the most likely number for rock |
| 08:43AM | 24 | compressibility at this time? |
| 08:43AM | 25 | A I was using 6 as the experimentally measured values. |


| 08:43AM | 1 | Q We've heard you say that 12 microsips was an increase from |
| :---: | :---: | :---: |
| 08:43AM | 2 | the measured value of 6; correct? |
| 08:43AM | 3 | A Yes, sir. |
| 08:43AM | 4 | Q And what about the 3.8 times aquifer? How can that relate |
| 08:43AM | 5 | to prior modeling you had done? |
| 08:43AM | 6 | A 3.8 was actually on the high side of the aquifer modeling I |
| 08:44AM | 7 | had done to that point. That was based on a geological |
| 08:44AM | 8 | examination, a map, which mapped a four time, roughly four times |
| 08:44AM | 9 | aquifer size. |
| 08:44AM | 10 | Q Why were you using an aquifer number on the high side in |
| 08:44AM | 11 | this? |
| 08:44AM | 12 | A Well, one of the decisions we made in July 6th, in the July |
| 08:44AM | 13 | 6th meeting, was to increase the aquifer size. And so four |
| 08:44AM | 14 | times aquifer here, 3.8, became a middle case, because we were |
| 08:44AM | 15 | going up to 14 times and 24 times aquifer size in the scenarios |
| 08:44AM | 16 | we were examining for the wellbore integrity test. |
| 08:44AM | 17 | Q Why were you looking at these higher numbers? |
| 08:44AM | 18 | A We wanted to understand just how high the pressure might be |
| 08:44AM | 19 | in those scenarios. |
| 08:44AM | 20 | Q And I see here an alternative aquifer case of 24 times. |
| 08:45AM | 21 | A Yes, sir. |
| 08:45AM | 22 | Q Is that what you believe the aquifer was at Macondo? |
| 08:45AM | 23 | A No. There was a similar conversation with the -- I don't |
| 08:45AM | 24 | know if they were geologists or geophysicists, but the |
| 08:45AM | 25 | exploration team who were mapping the structure. We asked them |


| 08:45AM | 1 | how big might it be. And, well, getting to 4 times was not |
| :---: | :---: | :---: |
| 08:45AM | 2 | difficult. Getting to 14 times, you know, you'd have to expand |
| 08:45AM | 3 | your channel boundaries a little bit. And getting to 24 times |
| 08:45AM | 4 | was their upper estimate. |
| 08:45AM | 5 | Q Had you ever modeled any reservoir on an aquifer of 24 times |
| 08:45AM | 6 | in your career? |
| 08:45AM | 7 | A Oh, yes, sir. |
| 08:45AM | 8 | Q Now, the 35,000 barrels per day, was that a flow rate that |
| 08:45AM | 9 | you had analyzed and had concluded was the rate at Macondo at |
| 08:45AM | 10 | this time? |
| 08:45AM | 11 | A No, sir. I had made no flow rate analyses at these times. |
| 08:46AM | 12 | What I did was I ran the model under flow rate control and I |
| 08:46AM | 13 | specified how much oil would flow from the model. |
| 08:46AM | 14 | Q Let take a look at TREX-9324.3. |
| 08:46AM | 15 | Do you recognize this document, Dr. Merrill? |
| 08:46AM | 16 | A This is the start of a presentation or a number of |
| 08:46AM | 17 | presentations that were held with the government to examine the |
| 08:46AM | 18 | risks of shutting in the well with the Capping Stack. |
| 08:46AM | 19 | Q And did you make a presentation during -- |
| 08:46AM | 20 | A I made at least one presentation during this day-long |
| 08:46AM | 21 | meeting. |
| 08:46AM | 22 | Q Let's look at TREX-9324.17. |
| 08:46AM | 23 | Is this a slide from your presentation? |
| 08:46AM | 24 | A It is. |
| 08:46AM | 25 | Q And were there members of the government science team at |


| 08:46AM | 1 | this meeting? |
| :---: | :---: | :---: |
| 08:46AM | 2 | A There were. |
| 08:47AM | 3 | Q And in red it says next to a assumptions, C, sub script R. |
| 08:47AM | 4 | What does that refer to? |
| 08:47AM | 5 | A That's the rock compressibility. |
| 08:47AM | 6 | Q And it has number of 12 microsips? |
| 08:47AM | 7 | A Yes, sir. |
| 08:47AM | 8 | Q Did you use the words Most Likely on this slide? |
| 08:47AM | 9 | A I did not. |
| 08:47AM | 10 | Q Did you use them in any part of this presentation? |
| 08:47AM | 11 | A I don't believe so. |
| 08:47AM | 12 | Q Did you tell anybody at the government who was at this |
| 08:47AM | 13 | meeting that you thought a rock compressibility number of 12 |
| 08:47AM | 14 | microsips was most likely? |
| 08:47AM | 15 | A I don't recall saying that. If I did, I would have used air |
| 08:47AM | 16 | quotes most likely. |
| 08:47AM | 17 | Q You also have as sensitivities for rock compressibility 6 |
| 08:47AM | 18 | and 18 microsips. |
| 08:47AM | 19 | A Yes, sir. |
| 08:47AM | 20 | Q And, again, 6 was the measured value? |
| 08:47AM | 21 | A Yes, sir. |
| 08:47AM | 22 | Q Why at the time of this presentation were you presenting 12 |
| 08:47AM | 23 | and 18 microsips as well as 6 microsips? |
| 08:47AM | 24 | A This was a presentation where we were describing the risks |
| 08:48AM | 25 | of what would happen if you did not have wellbore integrity. |


| 08:48AM | 1 | It's a magnitude of the pressure that drives the |
| :---: | :---: | :---: |
| 08:48AM | 2 | rate of speed at which you would have seen a subsea broach if |
| 08:48AM | 3 | you did not have well integrity. |
| 08:48AM | 4 | And that's what we were discussing. |
| 08:48AM | 5 | Q And the higher rock compressibility assumptions would have |
| 08:48AM | 6 | done what to the expected pressure? |
| 08:48AM | 7 | A It would have increased the pressure and made the |
| 08:48AM | 8 | conclusions drawn from the exercise more conservative. |
| 08:48AM | 9 | Q Why at this time before shut-in were you trying to look at |
| 08:48AM | 10 | higher compressibilities to look at higher possible pressures? |
| 08:48AM | 11 | A Because we really did not understand what was happening in |
| 08:48AM | 12 | the reservoir. And it was a -- the right thing to do. It was |
| 08:48AM | 13 | just the right thing to do to seeing how high the pressure could |
| 08:49AM | 14 | be, since that would determine how quickly the shallower |
| 08:49AM | 15 | formations actually filled with oil and exceeded their fracture |
| 08:49AM | 16 | gradient and fracture to surface and caused a subsea blowout. |
| 08:49AM | 17 | That would have been a very bad thing to occur. |
| 08:49AM | 18 | Q In the same section where there's 12 microsips, the |
| 08:49AM | 19 | assumptions section, there's also the number aquifer 3.8 times. |
| 08:49AM | 20 | A Yes. |
| 08:49AM | 21 | Q Was that an increase from what you had previously modeled |
| 08:49am | 22 | and considered most likely? |
| 08:49AM | 23 | A Well, as I said, in my previous modeling efforts I had used |
| 08:49AM | 24 | a variety of aquifer sizes from 0 to . 5 to 3.8. |
| 08:49AM | 25 | Q Let's take a look now, go back to TREX -- not TREX -- |

08:49AM 1
08:49AM 2 D-24698-2. So we looked at the early modeling you did with 6

| 08:51AM | 1 | prior to the shut in that we just looked at? |
| :---: | :---: | :---: |
| 08:51AM | 2 | A The purposes of the two modeling efforts were completely |
| 08:51AM | 3 | distinct. Before we shut in the well, we didn't actually know |
| 08:51AM | 4 | what the data would demonstrate. We didn't know what we would |
| 08:51AM | 5 | see, and so we were actually considering a range of |
| 08:52AM | 6 | possibilities with particular worry to the high side pressures. |
| 08:52AM | 7 | After we started collecting data, then we were |
| 08:52AM | 8 | much more concerned about understanding the character of the |
| 08:52AM | 9 | pressure buildup to see if it was actually illustrating or |
| 08:52AM | 10 | demonstrating or providing information about whether we had |
| 08:52AM | 11 | wellbore integrity or not. |
| 08:52AM | 12 | So going from having no data and making |
| 08:52AM | 13 | predictions to actually trying to understand the data that |
| 08:52AM | 14 | you're collecting. |
| 08:52AM | 15 | Q Now, let's take look at some of your analysis of that |
| 08:52AM | 16 | pressure data that started coming in after the shut-in. |
| 08:52AM | 17 | TREX-10845.10. |
| 08:52AM | 18 | A Yes, sir. |
| 08:52AM | 19 | Q What is this, Dr. Merrill? |
| 08:52AM | 20 | A This is just 24 hours after the shut-in of the well. And |
| 08:52AM | 21 | you can see in the lower right-hand corner is this Horner plot |
| 08:52AM | 22 | which I mentioned. The Horner plot can be constructed |
| 08:53AM | 23 | completely from the data. There's no interpretation in a Horner |
| 08:53AM | 24 | plot. You do not need to use compressibility. You do not need |
| 08:53AM | 25 | to use flow rate. |


| $08: 53 A M$ | 1 |
| :---: | :---: |
| $08: 53 A M$ | 2 |
| $08: 53 A M$ | 3 |

08:53AM 4
08:53AM 5
08:53AM 6
08:53AM 7
08:53AM 8
08:53AM 9
08:53AM 10
08:53AM 11
08:53AM 12
08:54AM 13
08:54AM 14
08:54AM 15
08:54AM 16
08:54AM 17
08:54AM 18
08:54AM 19
08:54AM 20
08:54AM 21
08:54AM 22
08:54AM 23
08:54AM 24
08:54AM 25

You do not need to use permeability or any rock properties. You simply do a small manipulation on the time available and you plot the pressure. So each one of those crosses is an actual data point, a collected data point from the well shut-in and the period after the well shut-in.

However, to do anything quantitative with pressure transient analysis, you have to make a rate assumption and you have to provide physical properties for the analysis. And that's illustrated by the black line, which is a model fit to this early time dates.

You can see we assumed that it was a radio
composite model. We used the measured rock compressibility of 6 microsips. We used the oil in place number that the geologists had provided. It says mid-case rate, but I don't remember what the mid-case rate was.

And it says limited or no aquifer. Because at this time, it was really clear, even 24 hours after the shut-in of the well, that our high side fears were not justified. There was nothing to suggest that we either had an aquifer that was providing pressure support, nor was there any evidence that the rock compressibility was other than what was measured.

Q Now, where is the rock compressibility shown on this slide? A Well, explicitly stated right there, CR. It's implicit in the black lines.

Q And that's the second bullet point on the right-hand side?

| 08:54AM | 1 | A Yes, sir. |
| :---: | :---: | :---: |
| 08:54AM | 2 | Q Now, the pressure data that you were actually getting at |
| 08:55AM | 3 | this time after the well was shut in and the Capping Stack gauge |
| 08:55AM | 4 | was measuring pressure, is that shown on this slide by those |
| 08:55AM | 5 | little crosses on the left-hand side? |
| 08:55AM | 6 | A Yes, sir. |
| 08:55AM | 7 | Q And by the dots on the Horner plot? |
| 08:55AM | 8 | A Well, those are courses too, yes. |
| 08:55AM | 9 | Q Are there any actual pressure data points in any of the |
| 08:55AM | 10 | earlier presentations we saw where you used alternative cases of |
| 08:55AM | 11 | rock compressibility of 12 and 18 microsips? |
| 08:55AM | 12 | A No, sir. |
| 08:55AM | 13 | Q Now, let's take a look at TREX-10845.11. Is this from the |
| 08:55AM | 14 | same presentation? |
| 08:55AM | 15 | A Yes, sir. |
| 08:55AM | 16 | Q And in this slide you've got in the lower right-hand side |
| 08:55AM | 17 | both 6 and 12 microsips; is that correct? |
| 08:56AM | 18 | A Yes, sir. |
| 08:56AM | 19 | Q And you also have the higher aquifer assumption that we saw |
| 08:56AM | 20 | pre-shut-in of 3.8. |
| 08:56AM | 21 | A Yes, sir. |
| 08:56AM | 22 | Q Why is that, Dr. Merrill? |
| 08:56AM | 23 | A The presentation here, we were trying to demonstrate |
| 08:56AM | 24 | confidence that the pressure data we were actually observing at |
| 08:56AM | 25 | the wellhead was not inconsistent with the range of scenarios we |


| 08:56AM | 1 | had performed prior to shut-in. |
| :---: | :---: | :---: |
| 08:56AM | 2 | Q When you say the range of scenarios prior to shut-in, are |
| 08:56AM | 3 | you referring to the scenarios we saw in your July 8 and 9 |
| 08:56AM | 4 | presentations that included alternative cases such as 12 |
| 08:56AM | 5 | microsips? |
| 08:56AM | 6 | A That is correct. Now, in this particular graph -- it's been |
| 08:56AM | 7 | a long time. I don't know if I re-ran some of these simulations |
| 08:56AM | 8 | after the actual shut in of the well. |
| 08:56AM | 9 | But certainly simulation takes a long time to run |
| 08:57AM | 10 | relative to other things, and so we did not update any of our |
| 08:57AM | 11 | assumptions at this point. |
| 08:57AM | 12 | Q In other words, Dr. Merrill, when do you think this slide |
| 08:57AM | 13 | and this modeling using 12 microsips was done? |
| 08:57AM | 14 | A The slide was certainly prepared for this $2 \mathrm{p} . \mathrm{m}$. meeting on |
| 08:57AM | 15 | the 16th. The simulations may have been done overnight on the |
| 08:57AM | 16 | 15th. And the reason $I$ say that is there's a slow shut-in here, |
| 08:57AM | 17 | and our early simulations all assumed an instantaneous shut-in. |
| 08:57am | 18 | But we didn't change any of the other assumptions |
| 08:57AM | 19 | in the model. |
| 08:57AM | 20 | Q Now, does this slide, and it has Xs and dots on it, is there |
| 08:57AM | 21 | anywhere on there a display or presentation of actual pressure |
| 08:57AM | 22 | data from the pressure gauge on a Capping Stack after shut-in? |
| 08:58AM | 23 | A No, sir. |
| 08:58AM | 24 | Q And what did that data end up telling you about your |
| 08:58AM | 25 | alternative cases that you had built in pre-shut-in of 12 and 18 |


| 08:58AM | 1 | microsips? |
| :---: | :---: | :---: |
| 08:58AM | 2 | A There was no reason to invoke a higher compressibility or an |
| 08:58AM | 3 | aquifer in order to explain the data we observed in the well |
| 08:58AM | 4 | test. |
| 08:58AM | 5 | Q What was it you were observing in the data that told you you |
| 08:58AM | 6 | no longer needed to look at 12 and 18? |
| 08:58AM | 7 | A The pressure was coming in at a level -- 6600 pounds or |
| 08:58AM | 8 | thereabouts, I believe -- that was consistent with a combination |
| 08:58AM | 9 | of compressibilities, and no aquifer and flow rates that we had |
| 08:58AM | 10 | previously modeled and were using as our base case. |
| 08:58AM | 11 | It's hard to be definitive. There's uncertainty. |
| 08:58AM | 12 | We did not know the flow rate. You can't use pressure transient |
| 08:59AM | 13 | analysis data quantitative without a flow rate. |
| 08:59AM | 14 | But there was no evidence that there was anything |
| 08:59AM | 15 | incorrect with the input parameters that we had been using prior |
| 08:59AM | 16 | to July the 6th. |
| 08:59AM | 17 | Q Henceforth, Dr. Merrill, after this immediate shut in time |
| 08:59AM | 18 | period, after July 16th, did you continue to do modeling or |
| 08:59AM | 19 | analyses of the Macondo reservoir? |
| 08:59AM | 20 | A I did. |
| 08:59AM | 21 | Q What number -- and, again, I don't want you to talk about |
| 08:59AM | 22 | privileged work you did for the lawyers -- but what number did |
| 08:59AM | 23 | you use for rock compressibility? |
| 08:59AM | 24 | A I almost always used a value of 6 microsips. |
| 08:59AM | 25 | Q Why? |


| 08:59AM | 1 | A Because that was the measured value. |
| :---: | :---: | :---: |
| 08:59AM | 2 | Q Did you believe that was the most likely value? |
| 08:59AM | 3 | A It was the measured value, and there was no evidence to the |
| 08:59AM | 4 | contrary to the use the measured value. Most likely yes, |
| 08:59AM | 5 | because it was measured. |
| 08:59AM | 6 | Q Do you know someone named Dr. Paul Hseih of the United |
| 09:00AM | 7 | States Geological Survey? |
| 09:00AM | 8 | A I do. I worked closely with Paul throughout the incident, |
| 09:00AM | 9 | particularly during the wellbore integrity test. |
| 09:00AM | 10 | Q After the shut in, did you have occasion to talk with him |
| 09:00AM | 11 | about rock compressibility? |
| 09:00AM | 12 | A Yes, sir. |
| 09:00AM | 13 | Q What did you tell him? |
| 09:00AM | 14 | A I told him we were using 6 microsips. |
| 09:00AM | 15 | Q Let's take a look at TREX-142325.1.1. |
| 09:00AM | 16 | Do you recognize this email as we've called it out |
| 09:00AM | 17 | here, Dr. Merrill? |
| 09:00AM | 18 | A Yes, sir. |
| 09:00AM | 19 | Q And what is this? |
| 09:00AM | 20 | A Paul wasn't actually in Houston during the actual shut in of |
| 09:00AM | 21 | the well. He went somewhere. |
| 09:00AM | 22 | But we talked with him by phone. And, in the |
| 09:00AM | 23 | course of that phone call, we were discussing a number of |
| 09:00AM | 24 | things. This email confirmed the numbers we had used in that |
| 09:00AM | 25 | phone call. |


| 09:00AM | 1 | And, in particular, what's called out here, we |
| :---: | :---: | :---: |
| 09:01AM | 2 | confirmed that the measured compressibility was 6 microsips and |
| 09:01AM | 3 | it was based on sidewall cores. |
| 09:01AM | 4 | Q Did you express any doubt to Dr. Hseih about the reliability |
| 09:01AM | 5 | of this number? |
| 09:01AM | 6 | A No. |
| 09:01AM | 7 | Q Let's go to TREX-11551.1.1. |
| 09:01AM | 8 | After the shut-in, did you resume your work on |
| 09:01AM | 9 | modeling and predicting the pressure that the drillers working |
| 09:01AM | 10 | on the relief well would encounter? |
| 09:01AM | 11 | A Yes, sir. |
| 09:01AM | 12 | Q And is this TREX-11551.1.1 a call-out from modeling work you |
| 09:01AM | 13 | did to predict pressure in the relief well? |
| 09:01AM | 14 | A Yes, sir. |
| 09:01AM | 15 | Q Let's look at TREX-11551.3.1. |
| 09:02AM | 16 | What number were you using for rock |
| 09:02AM | 17 | compressibility in trying to predict the pressure that the |
| 09:02AM | 18 | drillers would encounter in drilling the relief well? |
| 09:02AM | 19 | A 6 microsips. |
| 09:02AM | 20 | Q Was it important to get that input correct? |
| 09:02AM | 21 | A Yes, it was. |
| 09:02AM | 22 | Q Why? |
| 09:02AM | 23 | A Because the drillers were depending upon these pressure |
| 09:02AM | 24 | predictions to prepare their mud weight. You have to be careful |
| 09:02AM | 25 | when you are drilling a well, because you want to balance your |


| 09:02AM | 1 | mud weight to the pressures you're likely to encounter. |
| :---: | :---: | :---: |
| 09:02AM | 2 | Q Let's look at TREX-10924.1.1. |
| 09:02AM | 3 | This is an email from you to Michael Levitan. Do |
| 09:02AM | 4 | you recognize this, Dr. Merrill? |
| 09:02AM | 5 | A Yes, sir. |
| 09:02AM | 6 | Q And in the highlighted portion it says: Here is a new |
| 09:02AM | 7 | request from the science team (Tom Hunter/Secretary Chu) and |
| 09:02AM | 8 | makes a reference to a request for a plot of pressure data. |
| 09:03AM | 9 | Do you remember this? |
| 09:03AM | 10 | A Yes, sir. |
| 09:03AM | 11 | Q And what were you doing? |
| 09:03AM | 12 | A Well, the science -- the government wanted us to actually |
| 09:03AM | 13 | generate some of these derivative plots because I believe their |
| 09:03AM | 14 | software they were using at the time didn't do derivative |
| 09:03AM | 15 | analyses. |
| 09:03AM | 16 | And, although Cindy bobbled the nomenclature here, |
| 09:03AM | 17 | there are not revisions of a Horner plot. But we were asked to |
| 09:03AM | 18 | actually present not only a Horner analysis, but also a |
| 09:03AM | 19 | derivative analysis for certain flow rate assumptions. |
| 09:03AM | 20 | Because, again, you have to assume a flow rate to |
| 09:03AM | 21 | construct one of these derivative plots. |
| 09:03AM | 22 | Q And let's take a look at TREX-10924.21.1. |
| 09:03AM | 23 | And these plots that you prepared for Secretary |
| 09:03AM | 24 | Chu and Tom Hunter, what input value were you using for rock |
| 09:04AM | 25 | compressibility? |


| 09:04AM | 1 | A Well, these weren't actually presented. These were the |
| :---: | :---: | :---: |
| 09:04AM | 2 | slides that I sent to Mike Levitan to review prior to the |
| 09:04AM | 3 | presentation to the government. |
| 09:04AM | 4 | Q And did you use 6 microsips in your analysis that you |
| 09:04AM | 5 | presented to the government? |
| 09:04AM | 6 | A Yes, we did. |
| 09:04AM | 7 | Q Let's look at TREX-9318.1.1. |
| 09:04AM | 8 | Another email from you with copies to Tooms and |
| 09:04AM | 9 | Yeilding and Baker. |
| 09:04AM | 10 | Do you know what this is, Dr. Merrill? |
| 09:04AM | 11 | A Yes. This appears to be the email that I sent following the |
| 09:04AM | 12 | previous email once we had finalized our presentation to the |
| 09:04AM | 13 | government. The attachments, for example, say: Bob match 25 th |
| 09:05AM | 14 | of July; ML for Mike Levitan review, final. |
| 09:05AM | 15 | Q And, again, let's go look at portions from what was |
| 09:05AM | 16 | transmitted TREX-9318.4.1. |
| 09:05AM | 17 | What was the rock compressibility input you were |
| 09:05AM | 18 | using in this work? |
| 09:05AM | 19 | A 6 microsips. |
| 09:05AM | 20 | Q Let's go back to our timeline, D-24698-3. |
| 09:05AM | 21 | Dr. Merrill, you briefly used the alternative |
| 09:05AM | 22 | cases of 12 and 18 in evaluating the risks of shut-in. |
| 09:05AM | 23 | After the shut-in, what number were you using for |
| 09:05AM | 24 | rock compressibility in the analyses you did of Macondo? |
| 09:05AM | 25 | A 6 microsips. |


| 09:05AM | 1 | Q Did you ever use something other than 6 microsips? |
| :---: | :---: | :---: |
| 09:05AM | 2 | A At the time of the wellbore integrity test, because we were |
| 09:05AM | 3 | very concerned with wellbore integrity and we wanted to be |
| 09:05AM | 4 | aligned with the government, we also used the values that the |
| 09:05AM | 5 | government were using for their interpretation. |
| 09:06AM | 6 | And so, when we ran those internally, we used |
| 09:06AM | 7 | other values. |
| 09:06AM | 8 | Q In terms of your own modeling using your own engineering |
| 09:06AM | 9 | judgment and that of other BP scientists and engineers provided |
| 09:06AM | 10 | to you, what number did you use following the shut-in? |
| 09:06AM | 11 | A 6 microsips. |
| 09:06AM | 12 | Q Let's go over one more document, TREX-10923.1. Do you |
| 09:06AM | 13 | recognize this, Dr. Merrill? |
| 09:06AM | 14 | A This is a note to Mike Levitan. |
| 09:06AM | 15 | Q And what are you writing to Mike Levitan about? |
| 09:06AM | 16 | A This is related to the derivative plots in the modeling that |
| 09:06AM | 17 | we were just discussing. |
| 09:06AM | 18 | Q Let's go to TREX-10933.3.1. |
| 09:07AM | 19 | What rock compressibility number were you using in |
| 09:07AM | 20 | this modeling? |
| 09:07AM | 21 | A 6 microsips. |
| 09:07AM | 22 | Q Dr. Merrill, let me just wrap up the discussion about rock |
| 09:07AM | 23 | compressibility by asking you based on your engineering career, |
| 09:07AM | 24 | your reservoir engineering career at BP, what was, in your |
| 09:07AM | 25 | decisions with respect to modeling pressure buildup or analyzing |


| $09: 07 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $09: 07 \mathrm{AM}$ | 2 |
| $09: 07 \mathrm{AM}$ | 3 |

09:07AM 4
09:07AM 5
09:07AM 6

09:07AM $\quad 7$

09:07AM 8

09:08AM 9

09:08AM 10

09:08AM 11

09:08AM 12

09:08AM 13

09:08AM 14

09:08AM 15

09:08AM 16

09:08AM 17

09:08AM 18

09:08AM 19

09:08AM 20

09:08AM 21

09:08AM 22

09:08AM 23

09:08AM 24

09:08AM 25
the Macondo reservoir, what was your reasoning behind using 6 microsips for rock compressibility other than the period just before shut-in? What's your --

MR. CHAKERES: Your Honor, I think this is -THE WITNESS: I'm not sure.

THE COURT: Wait one second.
MR. CHAKERES: This is trying to dress up expert
testimony as fact testimony. We'd object.
MR. BOLES: If they are not going to enquire into the engineering, judgment, or thought process of BP engineers and scientists, then I'll withdraw the question.

Otherwise, I think that's relevant to what their raising and what their experts are apparently basing their decisions on rock compressibility on.

THE COURT: I don't know what they're going to ask. We'll deal with that when we get to it.

But I agree with the objection, so sustained. BY MR. BOLES:

Q Let me switch to a different parameter, Dr. Merrill, which is permeability.

Did you, in some of your modeling, need an input
for permeability?
A Yes, sir.
Q Briefly, what is permeability?
A Permeability is a measure of however easily fluid, either

| 09:08AM | 1 | gas, water, or oil, flows through a rock. |
| :---: | :---: | :---: |
| 09:08AM | 2 | Again, it's hard to conceive of fluid flowing |
| 09:08AM | 3 | through a rock because it's not our experience. But it's a |
| 09:09AM | 4 | measure of just how easily fluid flows through a rock when a |
| 09:09AM | 5 | pressure drop is applied across it. |
| 09:09AM | 6 | Q And where did you get the data or where did you get the |
| 09:09AM | 7 | number that you used in your modeling for permeability? |
| 09:09AM | 8 | A I received it in a spreadsheet that was provided to me by |
| 09:09AM | 9 | Kelly McAughan. |
| 09:09AM | 10 | Q Let's take a look at D-24727, which is a more legible |
| 09:09AM | 11 | call-out of what I believe was TREX 130138. |
| 09:09AM | 12 | Do you recognize this, Dr. Merrill? |
| 09:09AM | 13 | A Well, I recognize the Excel spreadsheet behind the -- |
| 09:09AM | 14 | whatever this is. |
| 09:09AM | 15 | Q Right. And let's take a look at the numbers in this more |
| 09:09AM | 16 | legible call-out from that spreadsheet. |
| 09:09AM | 17 | Do you recall looking at reported numbers for |
| 09:09AM | 18 | Macondo permeability under the categories such as arithmetic air |
| 09:10AM | 19 | permeability, referring to the first column there, geometric air |
| 09:10AM | 20 | permeability, perm converted to oil and perm used in model? |
| 09:10AM | 21 | A Yes, sir. |
| 09:10AM | 22 | Q And can you explain to Judge Barbier what you did -- by the |
| 09:10AM | 23 | way, the yellow highlighting on the bottom if we look at the |
| 09:10AM | 24 | left-hand column, it says M56D, M56E, and M56F. |
| 09:10AM | 25 | Do you see that? |


| $09: 10 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $09: 10 \mathrm{AM}$ | 2 |
| $09: 10 \mathrm{AM}$ | 3 |
| $09: 10 \mathrm{AM}$ | 4 |
| $09: 10 \mathrm{AM}$ | 5 |
| $09: 10 \mathrm{AM}$ | 6 |

09:10AM 7

09:10AM 8 09:10AM 9

09:11AM 10
09:11AM 11
09:11AM 12
09:11AM 13
09:11AM 14
09:11AM 15
09:11AM 16
09:11AM 17
09:11AM 18
09:11AM 19
09:11AM 20
09:11AM 21
09:11AM 22
09:12AM 23
09:12AM 24
09:12AM 25

A Yes, sir.
Q What's that referring to, Dr. Merrill?
A Those were the three reservoir layers that we believed were contributing to flow in this incident.

Q Can you explain to Judge Barbier how you used these four columns of data, if you used them, in coming up with permeability numbers you used as a senior reservoir engineer in your modeling and analytical work for BP during the incident? A Well, the first two -- the first two columns where it says arithmetic air permeability show the values that are log derived from a correlation between porosity and permeability that's based on core data.

Then you look at the squiggles on the log and you actually build up a more detailed distribution of permeability versus depth.

And then you average them across those intervals, and there's an arithmetic average there and a geometric average there, and that's a measure of how variable the permeability is within the layer.

So, for example, M56E, you see the arithmetic air perm average is about 500 and the geometric air perm average is about 300. That's actually fairly close for those two averages. And so you would conclude that the M56E was fairly homogenous. But the M56F, the arithmetic perm average is over 1400 and the geometric air permeability average is about 130.

| 09:12AM | 1 | So you would conclude on that basis that the M56F was less |
| :---: | :---: | :---: |
| 09:12AM | 2 | homogenous. |
| 09:12AM | 3 | But you would never use the air permeability. You |
| 09:12AM | 4 | then need to convert the measured air permeability to what the |
| 09:12AM | 5 | effective permeability is in the presence of oil. |
| 09:12AM | 6 | And so, in the model, you can see that I used the |
| 09:12AM | 7 | permeability converted to oil values of -- we use a conversion |
| 09:12AM | 8 | factor of .85 for all of the layers except for those which had |
| 09:12AM | 9 | very, very low permeabilities to start with. |
| 09:12AM | 10 | I was deliberate to actually -- in fact, you can |
| 09:13AM | 11 | actually see I added some permeability to a layer which didn't |
| 09:13AM | 12 | have any reported permeability. And the sole reason I did that |
| 09:13AM | 13 | as because this model, as I mentioned, was originally created |
| 09:13AM | 14 | for relief well planning, and we wanted to actually understand |
| 09:13AM | 15 | the maximum depletion in these other layers. |
| 09:13AM | 16 | And, frankly, not a lot's going to flow out of the |
| 09:13AM | 17 | layer with three millidarcy permeability. |
| 09:13AM | 18 | Q That 85 percent conversion factor that you used to go from |
| 09:13AM | 19 | air permeability to oil permeability, where did you get that, |
| 09:13AM | 20 | Dr. Merrill? |
| 09:13AM | 21 | A During the time of the incident I -- I was not aware where |
| 09:13AM | 22 | this value came from. I understood that it was based on an |
| 09:13AM | 23 | analog, but I don't know. I did not know the basis of it. |
| 09:13AM | 24 | Q And had you ever done conversions of air permeability to oil |
| 09:13AM | 25 | permeability from other reservoirs? |


| 09:13AM | 1 | A Yes, sir. |
| :---: | :---: | :---: |
| 09:13AM | 2 | Q Did you consider using a different number or than 85 percent |
| 09:14AM | 3 | for Macondo? |
| 09:14AM | 4 | A No, sir. |
| 09:14AM | 5 | Q Were there other lower numbers that you had available that |
| 09:14AM | 6 | you didn't use because you wanted to be estimating on the high |
| 09:14AM | 7 | side of permeability? |
| 09:14AM | 8 | A No, sir. It was actually not my call to use that factor. |
| 09:14AM | 9 | Q Now, you mentioned that you wouldn't ever use air |
| 09:14AM | 10 | permeability in your work. I want to go back though to the air |
| 09:14AM | 11 | permeability number. |
| 09:14AM | 12 | MR. BOLES: Yes, counsel? |
| 09:14AM | 13 | MR. CHAKERES: There's no question, but I was objecting |
| 09:14AM | 14 | in case there was expert testimony elicited. So the objection |
| 09:14AM | 15 | stands. |
| 09:14AM | 16 | THE COURT: All right. I guess there's no objection. |
| 09:14AM | 17 | BY MR. BOLES : |
| 09:14AM | 18 | Q All right. Let's go to the first column, arithmetic air |
| 09:14AM | 19 | permeability. You see in that first column of numbers there, |
| 09:14AM | 20 | Dr. Merrill, going down to the highlighted part, and I want to |
| 09:14AM | 21 | focus only M56D and E, the first two of those three highlighted |
| 09:15AM | 22 | rows. |
| 09:15AM | 23 | A Yes, sir. |
| 09:15AM | 24 | Q Those were the two thicker layers? |
| 09:15AM | 25 | A I think so, But the numbers are on that little bit that |


| 09:15AM | 1 | nobody can read, so. |
| :---: | :---: | :---: |
| 09:15AM | 2 | Q Now, can you read that for the M56D arithmetic air |
| 09:15AM | 3 | permeability that it's 257.67? |
| 09:15AM | 4 | A Yes, sir. |
| 09:15AM | 5 | Q And that for M56E arithmetic air permeability it's 514.04? |
| 09:15AM | 6 | A Yes, sir. |
| 09:15AM | 7 | Q Have you ever seen those reported or heard those discussed |
| 09:15AM | 8 | in BP as sort of a rounded off way as permeabilities between 250 |
| 09:15AM | 9 | and 500 millidarcies? |
| 09:15AM | 10 | MR. CHAKERES: Excuse me, Your Honor, that calls for |
| 09:15AM | 11 | hearsay. |
| 09:15AM | 12 | THE WITNESS: I don't actually understand the question. |
| 09:15AM | 13 | BY MR. BOLES: |
| 09:15AM | 14 | Q Sure. Did you ever use a range of permeabilities in your |
| 09:16AM | 15 | modeling as suggested by the numbers for arithmetic air |
| 09:16AM | 16 | permeability, which I'm going to round off of 250 to 500 |
| 09:16AM | 17 | millidarcies? |
| 09:16AM | 18 | A I don't recall using any numbers in my simulation work |
| 09:16AM | 19 | except for the last column here. |
| 09:16AM | 20 | Q Which is labeled permeability used in model? |
| 09:16AM | 21 | A Yes, sir. |
| 09:16AM | 22 | Q Which had that discount factor or conversion factor of 85 |
| 09:16AM | 23 | percent from air permeability to oil permeability? |
| 09:16AM | 24 | A Yes, sir. |
| 09:16AM | 25 | Q Did any reservoir engineer on your team use a range of |


| 09:16AM | 1 | permeability of 250 to 500 millidarcies based on air |
| :---: | :---: | :---: |
| 09:16AM | 2 | permeability? |
| 09:16AM | 3 | A I don't think so. Not under my direction. |
| 09:16AM | 4 | MR. BOLES: Thanks, Dr. Merrill. |
| 09:17AM | 5 | MR. CHAKERES: Good morning, Your Honor. My name is |
| 09:17AM | 6 | Nat Chakeres on behalf of the United States. |
| 09:17AM | 7 | THE COURT: Go ahead. |
| 09:17AM | 8 | CROSS EXAMINATION |
| 09:17AM | 9 | BY MR. CHAKERES: |
| 09:17AM | 10 | Q Good morning, Dr. Merrill. My name is Nat Chakeres, and I |
| 09:17AM | 11 | have you on cross examination. |
| 09:17AM | 12 | A Good morning. |
| 09:17AM | 13 | Q I would like to go back to what you talked about this |
| 09:17AM | 14 | morning about the period in early July 2010. |
| 09:17AM | 15 | A Yes, sir. |
| 09:17AM | 16 | Q You understood at that time that a Capping Stack was going |
| 09:17AM | 17 | to be installed; correct? |
| 09:17AM | 18 | A Yes, sir. |
| 09:17AM | 19 | Q And there's going to be attempts to shut the Capping Stack; |
| 09:18AM | 20 | correct? |
| 09:18AM | 21 | A Yes, sir. |
| 09:18AM | 22 | Q And there's concern about what you call well integrity; |
| 09:18AM | 23 | correct? |
| 09:18AM | 24 | A Yes, sir. |
| 09:18AM | 25 | Q Now, you discussed a presentation you gave regarding |


| 09:18AM | 1 | reservoir depletion modeling around July 6th; correct? |
| :---: | :---: | :---: |
| 09:18AM | 2 | A Yes, sir. |
| 09:18AM | 3 | Q In that meeting you described there was Paul Tooms, Kate |
| 09:18AM | 4 | Baker, James Dupree, yourself, a number of individuals from the |
| 09:18AM | 5 | Gulf of Mexico and elsewhere in BP; correct? |
| 09:18AM | 6 | A Yes, sir. |
| 09:18AM | 7 | Q And one reservoir engineer, Dave Schott, raised an issue |
| 09:18AM | 8 | about the values of core quality and compressibility from rotary |
| 09:18AM | 9 | sidewall cores; correct? |
| 09:18AM | 10 | A Yes, sir. |
| 09:18AM | 11 | Q Did Dave Schott steamroll everybody else in that meeting, |
| 09:18AM | 12 | all those executives and senior individuals from BP into |
| 09:18AM | 13 | accepting his view of things? |
| 09:18AM | 14 | A No, sir. But there was a lively discussion, and so |
| 09:18AM | 15 | steamroll would be the wrong term. Dave can be quite passionate |
| 09:19AM | 16 | when he has a subject that is of interest to him. |
| 09:19AM | 17 | Dave made the case that we should consider higher |
| 09:19AM | 18 | values for the purposes of examining what the highest pressure |
| 09:19AM | 19 | would be when we shut-in the well. |
| 09:19AM | 20 | Q Dave made the case, and after he made the case, a number of |
| 09:19AM | 21 | individuals, including yourself and Steve Wilson, decided to use |
| 09:19AM | 22 | the higher values; correct? |
| 09:19AM | 23 | A For the purposes of planning the well integrity test and the |
| 09:19AM | 24 | highest pressures we could see, that is correct. |
| 09:19AM | 25 | Q Now, let's look at your presentation that you gave in that |



| $09: 22 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $09: 22 \mathrm{AM}$ | 2 |
| $09: 22 \mathrm{AM}$ | 3 |

09:22AM 4

$$
09: 22 \mathrm{AM} \quad 5
$$

$$
09: 22 \mathrm{AM} \quad 6
$$

$$
09: 22 \mathrm{AM} \quad 7
$$

$$
09: 22 \mathrm{AM} \quad 8
$$

$$
09: 22 \mathrm{AM} \quad 9
$$

$$
09: 22 \mathrm{AM} 10
$$

$$
\text { 09:22AM } 11
$$

09:22AM 12

09:22AM 13

09:22AM 14

09:22AM 15
09:22AM 16

09:22AM 17
09:22AM 18
09:22AM 19
09:22AM 20

09:23AM 21

09:23AM 22
09:23AM 23
09:23AM 24

09:23AM 25
that.
BY MR. CHAKERES:

Q So here we are two years later after we have your about using the higher compressibility values, you are still concerned about the shut-in wellhead pressures. You have the exact same calculation here about the speed at which the M110 sands are going to fill up, don't you?

A Yes, sir.
Q You did not, at any point between July 6th and July 8th, perform an additional calculation about how fast the 110 sands are going to fill up, did you?

A I do not recall, but we didn't -- I don't think this slide has changed between the two dates.

Q That's correct. This slide hasn't changed, has it? You are still presenting the same rate at which the M110 sands are going to fill up, aren't you?

A The number is the same here.
Q Okay.
Now, you did change the reservoir depletion
calculations between July 6th and July 8th; correct?
A I'm not actually sure we did anything more than add a few more simulation cases. The ones we discussed. I had already run the cases -- no, no.

Between the 6 th and the 8 th $--I$ don't want to get

| 09:23AM | 1 | confused. Between the 6th and the 8th we added the cases we've |
| :---: | :---: | :---: |
| 09:23AM | 2 | already discussed about increased aquifer size and increased |
| 09:23AM | 3 | compressibility. |
| 09:23AM | 4 | Q And those cases showed that when you shut in the well, for |
| 09:23AM | 5 | keeping all else equal, the reservoir is going to recover to a |
| 09:23AM | 6 | higher pressure; correct? |
| 09:23AM | 7 | A That is correct. |
| 09:23AM | 8 | Q Now, if we could look at back to your presentation on July |
| 09:23AM | 9 | 6th, that's Exhibit 10839. |
| 09:24AM | 10 | Now, in this exhibit, you had been -- you |
| 09:24AM | 11 | presented on page 19. |
| 09:24AM | 12 | A Can we make it bigger? |
| 09:24AM | 13 | Q Yeah. Let's just pull this out. This is your July 6th |
| 09:24AM | 14 | presentation. |
| 09:24AM | 15 | A I can read that. I couldn't read the other. |
| 09:24AM | 16 | Q Okay, yeah. |
| 09:24AM | 17 | So you testified earlier that you didn't know what |
| 09:24AM | 18 | the flow rate was at this time; correct? |
| 09:24AM | 19 | A That is correct. |
| 09:24AM | 20 | Q And if we could call out the third bullet. |
| 09:24AM | 21 | You had actually been requested by Kate Baker to |
| 09:24AM | 22 | avoid making any conclusions about likely flow rates; hadn't |
| 09:24AM | 23 | you? |
| 09:24AM | 24 | A That is correct. |
| 09:24AM | 25 | Q And after the well was shut in, you were never told of any |


| 09:24AM | 1 | of the flow rate calculations that were performed through the |
| :---: | :---: | :---: |
| 09:24AM | 2 | Capping Stack; were you? During the July timeframe. |
| 09:24AM | 3 | A I was aware that the government had a team that was actually |
| 09:25AM | 4 | calculating some number because we talked to them every day. |
| 09:25AM | 5 | So I was aware in July during the incident that |
| 09:25AM | 6 | the government was doing some calculations. |
| 09:25AM | 7 | Q Were you aware that anybody at BP was doing some |
| 09:25AM | 8 | calculations? |
| 09:25AM | 9 | A I was not. |
| 09:25AM | 10 | Q Were you ever informed of the numbers that either the |
| 09:25AM | 11 | government or $B P$ was coming up with at that time? |
| 09:25AM | 12 | A I may -- I do not remember the numbers. I may have |
| 09:25AM | 13 | overheard the government's numbers, but I don't recall what they |
| 09:25AM | 14 | were at the time. |
| 09:25AM | 15 | Q Now, I'd like to move to the period after the well was shut |
| 09:25AM | 16 | in. You testified that at that point you were no longer worried |
| 09:25AM | 17 | about high pressures. |
| 09:25AM | 18 | A That is correct. |
| 09:25AM | 19 | Q Now, if we could go to Exhibit 10931.2.1.US. |
| 09:26AM | 20 | MR. CHAKERES: My apologies, Your Honor. I'll keep |
| 09:26AM | 21 | this moving along. While that's coming up -- here we go. |
| 09:26AM | 22 | If we could actually go back and call out the |
| 09:26AM | 23 | entire email from which this call-out is taken to provide |
| 09:26AM | 24 | context. |
| 09:26AM | 25 | You asked a person named David Hutchison to help |


| 09:26AM | 1 | with some of your modeling, didn't you? |
| :---: | :---: | :---: |
| 09:26AM | 2 | A He was one of the people who was helping me do the pressure |
| 09:26AM | 3 | transient analysis. |
| 09:26AM | 4 | Q Do you recall asking him to perform some of this work on |
| 09:26AM | 5 | July 19, 2010? |
| 09:26AM | 6 | A No, I don't specifically. But I don't deny it either. |
| 09:26AM | 7 | Q Okay. And if we look at -- so that's 10931.2.1.US. |
| 09:27AM | 8 | Did you ask David Hutchison on July 19, 2010, to |
| 09:27AM | 9 | run pressure transient analysis using both compressibility |
| 09:27AM | 10 | values of 6 microsips and 12 microsips? |
| 09:27AM | 11 | A I don't recall. I'd have to see the context. |
| 09:27AM | 12 | Q Okay. Hopefully we can get that up. |
| 09:27AM | 13 | A What were the two values you said? |
| 09:27AM | 14 | Q 6 microsips and 12 microsips. |
| 09:27AM | 15 | A I don't know. I'd have to see the context. |
| 09:27AM | 16 | Q But the context on July 19, 2010, was that you were no |
| 09:27AM | 17 | longer worried about the high of the pressures, were you? You |
| 09:27AM | 18 | were just trying to get it right; right? |
| 09:27AM | 19 | A We were trying to understand the data we were collecting to |
| 09:27AM | 20 | make sure that we could -- that it wasn't -- it didn't have any |
| 09:28AM | 21 | of the anomalies. |
| 09:28AM | 22 | Q All right. Here's the email from yourself to David |
| 09:28AM | 23 | Hutchison on July 19th. |
| 09:28AM | 24 | Do you see that? |
| 09:28AM | 25 | A Yes, sir. |


| 09:28AM | 1 | Q And you state in the first line, David, as we discussed, I'd |
| :---: | :---: | :---: |
| 09:28AM | 2 | like it second set of eyes on this data; right? |
| 09:28AM | 3 | A Yes, sir. |
| 09:28AM | 4 | Q And then down at the bottom you have the list of other |
| 09:28AM | 5 | important items. |
| 09:28AM | 6 | Do you see that? |
| 09:28AM | 7 | A Yes, sir. |
| 09:28AM | 8 | Q And you provide parameters? |
| 09:28AM | 9 | A Um-hum. |
| 09:28AM | 10 | Q At the parameters are on the far side of that line. You |
| 09:28AM | 11 | have CF, and that would be rock compressibility in this case; |
| 09:28AM | 12 | right? |
| 09:28AM | 13 | A Yes, it would. |
| 09:28AM | 14 | Q And it says either 6 microsips or 12 microsips; right? |
| 09:28AM | 15 | A Yes, sir. |
| 09:28AM | 16 | Q Now, you were asked some questions about Exhibit 9318, And |
| 09:28AM | 17 | I'd like to ask you about some of those. |
| 09:28AM | 18 | Before I go into the specifics, if we could pull |
| 09:28AM | 19 | up Exhibit 938.4.1.US. I'd like to ask some questions to |
| 09:29AM 20 | 20 | confirm what you were doing at this time. |
| 09:29AM | 21 | At this time, you were looking at the pressure |
| 09:29AM | 22 | buildups; correct? At the time of July 26, 2010. |
| 09:29AM | 23 | A Yes, sir. |
| 09:29AM 2 | 24 | Q And you were presented some cases that you ran in the July |
| 09:29AM | 25 | 25 th-July 26 th timeframe during your direct exam; correct? |


| 09:29AM | 1 | A Yes, sir. |
| :---: | :---: | :---: |
| 09:29AM | 2 | Q And in those -- at that timeframe, is it correct that what |
| 09:29AM | 3 | you were trying to do was capture reasonable matches to the |
| 09:29AM | 4 | pressure transient data that showed these could be reasonable |
| 09:29AM | 5 | reservoirs consistent with that data? |
| 09:29AM | 6 | A Would you repeat the question? |
| 09:29AM | 7 | Q Yes. At the time you were running pressure transient |
| 09:29AM | 8 | analysis in late July, you were trying to find reasonable |
| 09:29AM | 9 | matches to the pressure transient analysis data, to the pressure |
| 09:29AM | 10 | data; correct? |
| 09:30AM | 11 | A Yes. |
| 09:30AM | 12 | Q Now, this is one of the cases that was an, Exhibit 9318, |
| 09:30AM | 13 | that you were shown on direct. |
| 09:30AM | 14 | Do you see that? |
| 09:30AM | 15 | A Yes, sir. |
| 09:30AM | 16 | Q And the flow rate that you assumed here was 45,000 barrels |
| 09:30AM | 17 | per day; right? |
| 09:30AM | 18 | A Yes, sir. |
| 09:30AM | 19 | Q That's at the top. |
| 09:30AM | 20 | And, again, you assumed that flow rate because you |
| 09:30AM | 21 | had been given no flow rate information; correct? You assumed |
| 09:30AM | 22 | the flow rate because it was an unknown. |
| 09:30AM | 23 | A It was an unknown. We actually did a number of flow rates. |
| 09:30AM | 24 | Q Right. You were varying the flow rates because it was |
| 09:30AM | 25 | considered an unknown; correct? |


| 09:30AM | 1 | A Yes. |
| :---: | :---: | :---: |
| 09:30AM | 2 | Q And to match the data at 45,000 barrels per day, you also |
| 09:30AM | 3 | used a rock compressibility of 6 microsips; correct? |
| 09:30AM | 4 | A Yes, sir. |
| 09:30AM | 5 | Q And then if we scroll down a little bit you have a |
| 09:30AM | 6 | permeability there of 450 millidarcies; don't you? |
| 09:30AM | 7 | A That's the number on the screen, yes. |
| 09:30AM | 8 | Q And that was the number that corresponded to a match of the |
| 09:31AM | 9 | data with 6 microsips and 45,000 barrels per day; correct? |
| 09:31AM | 10 | A I believe it was because it was prepared on that day, yes. |
| 09:31AM | 11 | Q And the original oil in place corresponding to that match |
| 09:31AM | 12 | was 137 million stock tank barrels; correct? |
| 09:31AM | 13 | A Yes, sir. And that's because when you're doing the pressure |
| 09:31AM | 14 | transient analysis, what you're actually trying to do is match |
| 09:31AM | 15 | the boundaries that you're observing during the test with the |
| 09:31AM | 16 | pressure signature. |
| 09:31AM | 17 | As a consequence, as you move these things around, |
| 09:31AM | 18 | the oil changes. |
| 09:31AM | 19 | Q So let me ask a follow-up question to that. So you can't |
| 09:31AM | 20 | get a unique solution to what the reservoir looks like from the |
| 09:31AM | 21 | pressure transient analysis if you didn't have a flow rate; |
| 09:31AM | 22 | could you? |
| 09:31AM | 23 | A No, sir. Pressure transient balances and modern pressure |
| 09:31AM | 24 | transient analysis requires a flow rate as an input. |
| 09:31AM | 25 | Q Let's go to page 6 of this exhibit. |

```
And this is call-out 9318.6.1.US. Then just call
it out, these parameters you were you just discussing.
You also were able to match the reservoir assuming
a flow rate of 30,000 barrels per day; correct?
A Yes, sir.
Q With a compressibility again of 6 microsips; correct?
A Yes, sir.
Q And a permeability of 280 millidarcies; correct?
A If that's there, yes, sir.
Q And the corresponding matching original oil in place that allowed you to match the pressure signature with these other parameters was 84 million stock tank barrels; correct?
A Yes, sir.
Q Let's go on to page 8 of this exhibit. And this is a match using parameters that you understood Paul Hseih for the United States to be using in his pressure transient analysis; correct? A Yes, sir.
Q And that's why it says at the top USGS parameters; correct?
A Yes, sir.
Q And as you note at the top, Paul Hseih was using, at that time, a higher rock compressibility value than you had been; correct?
A Yes, sir.
Q He was using compressibility -- well, you have here that he's using a rock compressibility value of 14 microsips;
```

| 09:33AM | 1 | correct? |
| :---: | :---: | :---: |
| 09:33AM | 2 | A Then I assumed that's what he was using at this time. |
| 09:33AM | 3 | Q And he had a flow rate of 50,000 barrels per day; correct? |
| 09:33AM | 4 | A That was constant throughout the period. All of these are |
| 09:33AM | 5 | constant rates. |
| 09:33AM | 6 | Q And the original oil in place corresponding to that pressure |
| 09:33AM | 7 | signature was 110 million stock tank barrels; correct? |
| 09:33AM | 8 | A That is what was input into Paul's model. Paul's model was |
| 09:33AM | 9 | not a pressure transient analysis program. It was a |
| 09:33AM | 10 | hydrological simulator, and so Paul had to input parameters into |
| 09:33AM | 11 | his model that we did not use in pressure transient analysis. |
| 09:33AM | 12 | For example, in classical pressure transient |
| 09:34AM | 13 | analysis, you are changing the boundary sizes dynamically with |
| 09:34AM | 14 | the -- to adjust the shape of your model to the buildup curve. |
| 09:34AM | 15 | What Paul did, as I understand it, because we |
| 09:34AM | 16 | scussed it a little bit, was he added a Lee Squares program to |
| 09:34AM | 17 | his program to actually change various parameters, including the |
| 09:34AM | 18 | permeability and I think the compressibility as well, to match |
| 09:34AM | 19 | the curve. |
| 09:34am | 20 | So it's not quite the same thing. And so these |
| 09:34AM | 21 | ere what his parameters were given to us, and we then input |
| 09:34AM | 22 | them into our pressure transient analysis program. So this is |
| 09:34AM | 23 | probably not pressure transient analysis, but this is a |
| 09:34AM | 24 | reflection of what his model showed in a pressure transient |
| 09:34AM | 25 | analysis program. |


| 09:34AM | 1 | Q In your pressure transient analysis program, you were able |
| :---: | :---: | :---: |
| 09:35AM | 2 | to use these inputs that you understood he was using and get a |
| 09:35AM | 3 | match to the pressure data; correct? |
| 09:35AM | 4 | A We were able to reproduce his pressure signature in our |
| 09:35AM | 5 | pressure transient analysis program. |
| 09:35AM | 6 | Q If we could go to page 10 of this exhibit. |
| 09:35AM | 7 | And these are the conclusions that you present on |
| 09:35AM | 8 | July 26th; aren't they? |
| 09:35AM | 9 | A Yes, sir. |
| 09:35AM | 10 | Q And I'd like to focus on the second bullet. You have stated |
| 09:35AM | 11 | at that time that there were numerous subsurface realizations |
| 09:35AM | 12 | that could match the data reasonably well; correct? |
| 09:35AM | 13 | A Yes, sir. |
| 09:35AM | 14 | Q And then you said considering there is uncertainty in flow |
| 09:35AM | 15 | rate, because you did not believe you knew the flow rate at that |
| 09:35AM | 16 | time; correct? |
| 09:35AM | 17 | A Yes, sir. |
| 09:35AM | 18 | Q There's uncertainty in connected volume, correct? |
| 09:35AM | 19 | A Yes, sir. |
| 09:35AM | 20 | Q There are uncertainty in static parameters, including |
| 09:35AM | 21 | compressibility and channel size; correct? |
| 09:35AM | 22 | A That's what's written here. |
| 09:35AM | 23 | Q There's uncertainty in flowing bottom hole pressure; |
| 09:36AM | 24 | correct? |
| 09:36AM | 25 | A Yes, sir. |


| 09:36AM | 1 | Q And there's uncertainty in final static bottom hole |
| :---: | :---: | :---: |
| 09:36AM | 2 | pressure; correct? |
| 09:36AM | 3 | A Yes, sir. |
| 09:36AM | 4 | Q So even with that pressure buildup data that you had, and |
| 09:36AM | 5 | even with the Weatherford lab data that you had, you were still |
| 09:36AM | 6 | stating that there was uncertainty in things like flow rate, |
| 09:36AM | 7 | connected volume and static parameters like compressibility? |
| 09:36AM | 8 | A At this point, the government was using 12 microsips or 14, |
| 09:36AM | 9 | or whatever the number was. It bounced around. And it was |
| 09:36AM | 10 | uncertain, because they were running models that required a |
| 09:36AM | 11 | higher compressibility to get the match that they did. |
| 09:36AM | 12 | We weren't going to disagree with the match. Our |
| 09:36AM | 13 | principal concern here all along was wellbore integrity. We |
| 09:36AM | 14 | wanted to ensure when we matched their models and shadowed their |
| 09:36AM | 15 | work that they wouldn't come up with an interpretation that |
| 09:37AM | 16 | would catch us by surprise, and, you know, that would indicate |
| 09:37AM | 17 | that there was a loss of integrity. |
| 09:37AM | 18 | We were not doing any of this work for flow rate |
| 09:37AM | 19 | purposes. |
| 09:37AM | 20 | Q Wasn't my question. My question was just that even with the |
| 09:37AM | 21 | pressure data you had and the other data you had regarding the |
| 09:37AM | 22 | reservoir, what you were doing here was not uniquely defining |
| 09:37AM | 23 | the reservoir. What you were doing here was showing that there |
| 09:37AM | 24 | were multiple cases with well integrity that matched the data; |
| 09:37AM | 25 | correct? |


| $09: 37 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $09: 37 \mathrm{AM}$ | 2 |

09:37AM 3

09:37AM 4
09:37AM 5
09:37AM $\quad 6$

09:38AM 7

09:38AM 8
09:38AM 9
09:38AM 10

09:38AM 11
09:38AM 12
09:38AM 13

09:39AM 14

09:39дм 15
09:39дм 16
09:39дм 17

09:39дм 18
09:39AM 19
09:39дM 20

09:39AM 21

09:39AM 22
09:39AM 23
09:39дм 24

09:39Ам 25

A Yes, sir.
MR. CHAKERES: No further questions. Thank you.
THE COURT: All right. Redirect, Mr. Boles?
MR. BOLES: Yes, a few questions, Your Honor.
REDIRECT EXAMINATION
BY MR. BOLES:

Q Dr. Merrill, I think the phrase you used was you were shadowing the work of Dr. Hseih and other government scientists and engineers.

A Yes, sir.
Q So for example, let's look at TREX-9318.8.1.
In the course of shadowing them, did you sometimes run models with their input numbers such as rock compressibility?

A I think I just said that, yes.
Q So for example, in this TREX-9318 where it says 14
microsips, it says in the caption on the top the second row, blowout, USGS parameters, correct?

A Yes, sir.
Q And that references the United States geological survey?
A Yes, sir.
Q And you also were shown TREX-10931.2. If we can look at that.

I don't have a blowup of that, but let's just look at it. This is the email from Hutchinson to you, or from --

| 09:39AM | 1 | emails between you and Hutchison? |
| :---: | :---: | :---: |
| 09:39AM | 2 | A Yes, sir. |
| 09:398M | 3 | Q And you were shown this because of the reference to 12 |
| 09:398M | 4 | microsips? |
| 09:39AM | 5 | A Excuse me? |
| 09:39AM | 6 | Q Were you shown this document because there was a reference |
| 09:39AM | 7 | there to 12 microsips? |
| 09:40AM | 8 | A Yes, there is. |
| 09:40AM | 9 | Q And, sir, do you know whether that number involved this |
| 09:40AM | 10 | parallel effort you were making to shadow the government |
| 09:40AM | 11 | analysis? |
| 09:40AM | 12 | A As I previously testified, I don't actually remember this |
| 09:40AM | 13 | correspondence, but it might have been. I don't know. |
| 09:40AM | 14 | Q Did you ever run models that you're aware of or do any |
| 09:40AM | 15 | analysis on the Macondo well after the shut-in decision using a |
| 09:40AM | 16 | compressibility number other than 6 microsips? |
| 09:40AM | 17 | A Well, yes, because I was using sometimes the USGS geological |
| 09:40AM | 18 | survey's values. |
| 09:40AM | 19 | Q Well taken. |
| 09:40AM | 20 | Other than the shadowing of the government |
| 09:40AM | 21 | modeling using their inputs, in terms of your own judgment that |
| 09:40AM | 22 | you applied in deciding what to input for rock compressibility |
| 09:40AM | 23 | to model the behavior of the Macondo reservoir, did you |
| 09:41AM | 24 | consistently use 6 microsips after shut-in? |
| 09:41AM | 25 | A I believe so. I don't recall every run I made after the |


| 09:41AM | 1 | shut-in. I just don't remember every run that $I$ made after the |
| :---: | :---: | :---: |
| 09:41AM | 2 | shut-in. |
| 09:41AM | 3 | But I tended to use 6 for the flow rates that we |
| 09:41AM | 4 | were assuming. It was not an issue. |
| 09:41AM | 5 | Q When it came to modeling the pressures to be predicted in |
| 09:41AM | 6 | drilling of the relief well, what number did you use? |
| 09:41AM | 7 | A I have always used 6. |
| 09:41AM | 8 | Q And did you, in your decision making as a reservoir engineer |
| 09:41AM | 9 | deciding what input to put in, what did you regard as the most |
| 09:41AM | 10 | likely value for rock compressibility? |
| 09:41AM | 11 | A For all of my simulation work related to the relief well, I |
| 09:41AM 1 | 12 | used -- |
| 09:41AM 1 | 13 | MR. CHAKERES: Objection, Your Honor, this is calling |
| 09:41AM 1 | 14 | for expert testimony. |
| 09:41AM 15 | 15 | MR. BOLES: Again, they put in issue his decision |
| 09:41AM | 16 | making and that of other $B P$ engineers and scientists about why |
| 09:41AM 17 | 17 | they used and what they used for rock compressibility. |
| 09:41AM 18 | 18 | MR. CHAKERES: He asked for his opinion. We're just |
| 09:42AM 1 | 19 | bringing out what they used. |
| 09:42AM 20 | 20 | MR. BOLES: If counsel wants to stipulate that the |
| 09:42AM | 21 | beliefs of BP reservoir engineers and scientists are not |
| 09:42AM 2 | 22 | relevant to what the value of rock compressibility is, I'll drop |
| 09:42AM 23 | 23 | the question. |
| 09:42AM 2 | 24 | But otherwise, I think they've put this in issue. |
| 09:42AM 25 | 25 | THE COURT: Re-ask the question. |


| 09:42AM | 1 |
| :---: | :---: |
| $09: 42 A M$ | 2 |
| $09: 42 A M$ | 3 | 09:42AM 4 09:42AM 5 09:42AM 6

09:42AM 7
09:42AM 8
09:42AM 9
09:42AM 10
09:42AM 11
09:42AM 12
09:42AM 13
09:43AM 14
09:43AM 15
09:43AM 16
09:43AM 17
09:43AM 18
09:43AM 19
09:43Ам 20
09:43AM 21
09:43AM 22
09:43AM 23
09:43AM 24
09:43AM 25

BY MR. BOLES:
Q Sure. In the modeling work you did, Dr. Merrill, when you were deciding what number to put in for rock compressibility, what was your judgment as to what the most likely value was of the true rock compressibility of the Macondo reservoir?

THE COURT: I'm going to sustain the objection. I think the question -- I think the witness has already answered that he got that number from the only so-called measured data that was available, the Weatherford sidewall cores; right? THE WITNESS: It's my understanding that the only measured data there was, Your Honor, was the sidewall cores. THE COURT: That's what you used. MR. CHAKERES: Yes, sir. BY MR. BOLES:

Q Dr. Merrill, do reservoir engineers, in deciding what inputs to put into reservoir models, use judgment about how to use the data and come up with inputs?

A Excuse me? I don't understand your question.
Q Sure. What was the basis for your decision to put in a number for rock compressibility?

MR. CHAKERES: Your Honor, I am going to object to that.

THE COURT: Sustained. Sustained. I think he answered that.
MR. BOLES: That's all I have, Your Honor.

| $09: 43 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $09: 43 \mathrm{AM}$ | 2 |

09:43AM 3

10:00AM 4
10:00AM 5

10:00AM 6

10:00AM 7

10:00AM 8

10:00AM 9

10:00AM 10

10:00AM 11

10:00AM 12

10:00AM 13

10:00AM 14

10:00AM 15

10:01AM 16

10:01AM 17

10:01AM 18

10:01AM 19

10:01AM 20

10:01AM 21

10:01AM 22

10:01AM 23

10:01AM 24

10:01AM 25

THE COURT: Okay. Thank you, sir. You're done. All right. Let's take a 15-minute recess. (Proceedings in recess.)

THE COURT: Mr. Fields.

MR. FIELDS: Good morning, Your Honor, Barry Fields. BP and Anadarko call as their next witness Dr. Michael Zaldivar. MICHAEL ZALDIVAR, being first duly sworn, testified as follows:

THE CLERK: Take a seat. If you'll state and spell your name for the record, please.

THE WITNESS: My name's Michael Zaldivar, M-I-C-H-A-E-L Z-A-L-D-I-V-A-R.

DIRECT EXAMINATION

BY MR. FIELDS:

Q Dr. Zaldivar, my name is Barry Fields, and $I$ will be conducting your direct examination on behalf of BP and Anadarko.

THE COURT: There appears to be a pending Daubert
motion or a motion in limine?

MR. CHAKERES: Yes, Your Honor.

THE COURT: I have looked at that, by the government, pertaining to this witness. It appears to me that the government's objection really goes to the weight that I should give to Dr. Zaldivar's testimony, so I'm going to overrule or deny the motion.

MR. CHAKERES: Thank you, Your Honor.

| 10:01AM | 1 | MR. FIELDS: Thank you, Your Honor. |
| :---: | :---: | :---: |
| 10:01AM | 2 | May we proceed? |
| 10:01AM | 3 | THE COURT: Sure. |
| 10:01AM | 4 | BY MR. FIELDS: |
| 10:01AM | 5 | Q Dr. Zaldivar, would you please introduce yourself to the |
| 10:01AM | 6 | Court. |
| 10:01AM | 7 | A My name is Dr. Michael Zaldivar. I'm president and founder |
| 10:01AM | 8 | Evoleap. |
| 10:01AM | 9 | Q We'll get into more details about your qualifications, but |
| 10:01AM | 10 | for right now will you provide the Court with just a thumbnail |
| 10:01AM | 11 | sketch on your expertise. |
| 10:01AM | 12 | A Sure. I have 11 years experience as a multiphase flow |
| 10:01AM | 13 | expert and flow assurance engineer. A flow assurance engineer |
| 10:02AM | 14 | is an engineer that ensures that hydrocarbons that leave the |
| 10:02AM | 15 | reservoir make it to the receiving facilities topside. So they |
| 10:02AM | 16 | focus on wells, flow lines or pipelines, and risers. |
| 10:02AM | 17 | Q BP and Anadarko hired you in this case? |
| 10:02AM | 18 | A That's correct. |
| 10:02AM | 19 | MR. FIELDS: Let's pull up D-24552-1. |
| 10:02AM | 20 | BY MR. FIELDS: |
| 10:02AM | 21 | Q Can you give us an overview of the general issues or |
| 10:02AM | 22 | questions that you were asked to address by BP and Anadarko? |
| 10:02AM | 23 | A Sure. |
| 10:02AM | 24 | First, I was asked to determine whether a flow |
| 10:02AM | 25 | pattern known as slug flow was present during mid-May of 2010. |


| $10: 02 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $10: 02 \mathrm{AM}$ | 2 |
| $10: 02 \mathrm{AM}$ | 3 |
| $10: 02 \mathrm{AM}$ | 4 |
| $10: 02 \mathrm{AM}$ | 5 |
| $10: 02 \mathrm{AM}$ | 6 |
| $10: 03 \mathrm{AM}$ | 7 |
| $10: 03 \mathrm{AM}$ | 8 |
| $10: 03 \mathrm{AM}$ | 9 |

10:03AM 10
10:03AM 11
10:03AM 12
10:03AM 13

10:03AM 14

10:03Am 15
10:03AM 16
10:03AM 17
10:03AM 18
10:03AM 19
10:03AM 20
10:03AM 21
10:03AM 22
10:03AM 23
10:03AM 24

10:03AM 25

5



, discuss your background.

MR. FIELDS: Can you pull up D-24553.
BY MR. FIELDS:
Q Using this particular demonstrative, can you provide the Court with an overview of your educational background.

A Yes. I received my Bachelors of Science in chemical engineering from the University of Houston in 1997.

I then went to the University of Michigan where I received a Masters and Ph.D. in chemical engineering in 2002. Q Let's take a look at your work experience, which is also listed on this particular demonstrative exhibit. Let me ask you the question: Have you been involved in the oil and gas industry since you obtained your Ph.D. in 2002?

A Yes. My first job was directly in the oil and gas industry. Q Was your first job Multiphase Solutions?

A Yes, that's correct.
Q Tell us what you did at Multiphase Solutions while were you

| 10:04AM | 1 | working there it looks like from 2002 to 2008? |
| :---: | :---: | :---: |
| 10:04AM | 2 | A During that period, I served as a flow assurance engineer, |
| 10:04AM | 3 | Which means that I built models to look at systems just like |
| 10:04AM | 4 | we'll be discussing today. |
| 10:04AM | 5 | Q As a flow assurance engineer at Multiphase Solutions, were |
| 10:04AM | 6 | you involved in either modeling or analyzing slug flow and pipes |
| 10:04AM | 7 | or pipelines? |
| 10:04AM | 8 | A Yes. Slug flow is a very common problem that flow assurance |
| 10:04AM | 9 | engineers are faced with daily, and I looked at that problem |
| 10:04am | 10 | numerous times over that period, building models to study that |
| 10:04AM | 11 | problem, analyze that problem. |
| 10:04AM | 12 | Q Where did you go after leaving Multiphase Solutions in 2008? |
| 10:04AM | 13 | A I went to Knowledge Reservoir. |
| 10:04AM | 14 | Q What did you do there? |
| 10:04AM | 15 | A At Knowledge Reservoir I was the director of knowledge |
| 10:04AM | 16 | management. I was responsible for looking at and improving |
| 10:05AM | 17 | subsurface work flows or looking at the business practices |
| 10:05AM | 18 | around all of the things that happen below the surface, |
| 10:05AM | 19 | reservoir engineering, geomechanics, geology, those things. |
| 10:05AM | 20 | Q While were you at Knowledge Reservoir, were you involved in |
| 10:05AM | 21 | developing any models of flow? |
| 10:05AM | 22 | A I wasn't directly responsible for the building of models. |
| 10:05AM | 23 | However, a colleague that I used to work with at MSI came across |
| 10:05AM | 24 | to Knowledge Reservoir with me. He was responsible for flow |
| 10:05AM | 25 | assurance. We often discussed the work that he did during that |


| 10:05AM | 1 | time. |
| :---: | :---: | :---: |
| 10:05AM | 2 | Q After you left Knowledge Reservoir in approximately 2010, |
| 10:05AM | 3 | what did you do next? |
| 10:05AM | 4 | A I went to Kongsberg Oil and Gas Technologies, where I was |
| 10:05AM | 5 | the Americas geomarket manager for LedaFlow. LedaFlow is a |
| 10:05AM | 6 | multi-phase simulator like OLGA. |
| 10:05AM | 7 | In that capacity, I was responsible for the |
| 10:06AM | 8 | management of two different teams: a team of engineers |
| 10:06AM | 9 | responsible for the engineering support and engineering studies |
| 10:06AM | 10 | and training around Ledaflow, as well as a team of developers or |
| 10:06AM | 11 | personnel responsible for developing the software. |
| 10:06AM | 12 | Q And, while you were at Kongsberg, were you involved in |
| 10:06AM | 13 | developing various models to simulate multiphase flow? |
| 10:06AM | 14 | A I was. In my capacity I was responsible for engineering |
| 10:06AM | 15 | support, so quite frequently models were built and lots of |
| 10:06AM | 16 | discussions around that process. |
| 10:06AM | 17 | But that was one of my primary responsibilities. |
| 10:06AM | 18 | Q Finally, tell us about what type of work you do at Evoleaf |
| 10:06AM | 19 | where you've been, looks like since 2012, or last year? |
| 10:06AM | 20 | A So in 2012 I started my own company. It is an engineering |
| 10:06AM | 21 | service company. We provide flow assurance services to |
| 10:07am | 22 | operators around the world, and we also provide software in the |
| 10:07am | 23 | flow assurance community to those same customers. |
| 10:07AM | 24 | Q You referenced, I think, LedaFlow and OLGA. Those are |
| 10:07AM | 25 | multiphase flow simulators? |


| 10:07AM | 1 | A They are. |
| :---: | :---: | :---: |
| 10:07AM | 2 | Q Help the Court understand what a multiphase flow simulator |
| 10:07AM | 3 | is in general. |
| 10:07AM | 4 | A So a multiphase flow simulator is a simulator that looks at |
| 10:07AM | 5 | oil, gas, and potentially water and their behavior in wells, |
| 10:07AM | 6 | pipelines, and risers. |
| 10:07AM | 7 | Typically you have information about -- you have |
| 10:07AM | 8 | measurement on the top side or you'll have a couple measurements |
| 10:07AM | 9 | in the well, but you don't really understand what's happening. |
| 10:07AM | 10 | These models focus on all of the things that |
| 10:07AM | 11 | happen in between the measurement points. |
| 10:05AM | 12 | MR. FIELDS: Let's pull up D-24563, which I believe is |
| 10:08AM | 13 | from appendix $C$ of your report. |
| 10:05AM | 14 | BY MR. FIELDS: |
| 10:08AM | 15 | Q And this particular slide lists various transient multiphase |
| 10:08AM | 16 | simulators? |
| 10:08AM | 17 | A It does. It lists both OLGA and LedaFlow which are used |
| 10:08AM | 18 | specifically in this investigation. It references both the |
| 10:08AM | 19 | history, so both of these simulators have a long history. OLGA |
| 10:08AM | 20 | was the dominant software in this field for 30-plus years. |
| 10:08AM | 21 | Ledaflow has about a ten-year history of studying and producing |
| 10:08AM | 22 | results of multiphase flow and studying that phenomena. |
| 10:08AM | 23 | Q As a flow assurance engineer or expert, do you have |
| 10:08AM | 24 | experience in using OLGA to model or evaluate multiphase flow in |
| 10:09AM | 25 | pipes or pipelines? |


| 10:09AM | 1 | A I do. During my career I've used OLGA repeatedly throughout |
| :---: | :---: | :---: |
| 10:09AM | 2 | that career. |
| 10:09AM | 3 | Q You also referenced this LedaFlow simulator. Do you have |
| 10:09AM | 4 | experience using LedaFlow to analyze or evaluate multiphase flow |
| 10:09AM | 5 | through pipes or pipelines? |
| 10:09AM | 6 | A I do. I am rather unique in my experience with LedaFlow. I |
| 10:09AM | 7 | was hired in quite early in that software process or the taking |
| 10:09AM | 8 | of that process from a research tool to a commercial tool. |
| 10:09AM | 9 | I would say that I have maybe the most experience, |
| 10:09AM | 10 | or certainly arguably one of the most experiences with that |
| 10:09AM | 11 | particular piece of software. |
| 10:09AM | 12 | Q As a flow assurance engineer, why do you need to use |
| 10:09AM | 13 | multiphase flow simulators? |
| 10:09AM | 14 | A Again, multiphase simulators are really about the |
| 10:09AM | 15 | understanding of oil and gas. It's about, you know, if you have |
| 10:10AM | 16 | some measurements at the well and you have some measurements at |
| 10:10AM | 17 | the receiving facilities, there are a host of problems that can |
| 10:10AM | 18 | occur between one measurement and another measurement. |
| 10:10AM | 19 | It's about understanding the evolution of what's |
| 10:10am | 20 | occurring between those two points. |
| 10:10AM | 21 | Q Do flow assurance engineers such as yourself use multiphase |
| 10:10AM | 22 | simulators such as OLGA and LedaFlow to model multiphase flows |
| 10:10am | 23 | in various pipelines around the world? |
| 10:108M | 24 | A Yeah. These are the two commercially available tools, and |
| 10:10am | 25 | they are used almost for every pipeline or nearly all pipelines |


| 10:10AM | 1 | around the world to understand what's going on. |
| :---: | :---: | :---: |
| 10:10AM | 2 | Q Now, I don't want to get into a dissertation about this, but |
| 10:10AM | 3 | can you in a very brief fashion sort of tell the Court the |
| 10:10AM | 4 | general differences between OLGA on the one hand and LedaFlow on |
| 10:11AM | 5 | the other hand? |
| 10:11AM | 6 | A Well, OLGA and LedaFlow are very similar models. They are |
| 10:11AM | 7 | first principle mechanistic models, meaning they incorporate the |
| 10:11AM | 8 | physics of the problem into the model as opposed to an empirical |
| 10:11AM | 9 | model which is derived from just experimental evidence. |
| 10:11AM | 10 | Both of these models have similar equations. The |
| 10:11AM | 11 | subtleties are very small and very technical. As an example of |
| 10:11AM | 12 | that, LedaFlow has taken a physics-based approach to the |
| 10:11AM | 13 | modeling of hydrodynamic slugging; whereas OLGA takes a |
| 10:11AM | 14 | different approach that is not physics based for that particular |
| 10:11AM | 15 | phenomenon. |
| 10:11AM | 16 | Q How do flow assurance engineers such as yourself know that |
| 10:11AM | 17 | OLGA or LedaFlow or other multiphase flow simulators can |
| 10:11AM | 18 | accurately model multiphase flow in pipes or pipelines? |
| 10:11AM | 19 | A Well, these are considered enabling technologies. So as oil |
| 10:12AM | 20 | production moved from onshore to offshore, and in particular |
| 10:12AM | 21 | into deep water, the industry needed tools to understand what |
| 10:12AM | 22 | was happening. If there was a problem, it was a very expensive |
| 10:12AM | 23 | problem to fix as you moved into deeper and deeper water. |
| 10:12AM | 24 | That's what started the development of these |
| 10:12AM | 25 | tools. The fact, that we've been developing in deeper and |


| 10:12AM | 1 | deeper water is a tribute to how well these tools work. |
| :---: | :---: | :---: |
| 10:12AM | 2 | In addition to that, there's a huge body of |
| 10:12AM | 3 | experimental or of experiments that focus on multiphase flow. |
| 10:12AM | 4 | Both of these models incorporate that and compare against those |
| 10:12AM | 5 | experimental results. |
| 10:12AM | 6 | All of that would lead you to conclude that these |
| 10:12AM | 7 | models are very accurate in their predictions of multiphase |
| 10:12AM | 8 | flow. |
| 10:12AM | 9 | Q If we focus on your use of multiphase flow simulators |
| 10:12AM | 10 | throughout your career, on roughly how many projects or fields |
| 10:13AM | 11 | have you been involved in sort of performing modeling services |
| 10:13AM | 12 | using multiphase flow simulators? |
| 10:13AM | 13 | A I don't have a specific number, but certainly over 50. |
| 10:13AM | 14 | Q Have you previously used software such as OLGA and LedaFlow |
| 10:13AM | 15 | to actually calculate or evaluate the gas or oil flow rates that |
| 10:13AM | 16 | go through pipes or pipelines? |
| 10:13AM | 17 | A Yes. It's quite common to look at flow rates through gas |
| 10:13AM | 18 | pipelines, specifically if you were to think about slug flow, |
| 10:13AM | 19 | which is the context of this. Since slug flow is a problem and |
| 10:13AM | 20 | it's a bounded problem, meaning it only occurs in a certain |
| 10:13AM | 21 | range of flow rates, it's a very regular exercise for a flow |
| 10:13AM | 22 | assurance engineer to determine the boundaries of where slug |
| 10:14AM | 23 | flow would occur and advise an operator how to avoid slug flow, |
| 10:14AM | 24 | or in the case that it's unavoidable, how to operate when slug |
| 10:14AM | 25 | flow would be present. |

10:14AM 1 10:14AM 2
$10: 14 \mathrm{AM} 3$

10:14AM 4

10:14AM 5
$10: 14 \mathrm{AM} \quad 6$

10:14AM 7

10:14AM 8

10:14AM 9

10:14AM 10

10:14AM 11

10:14AM 12

10:14AM 13

10:14AM 14

10:14AM 15

10:14AM 16

10:14AM 17

10:14AM 18

10:14AM 19

10:14AM 20

10:15AM 21

10:15AM 22

10:15AM 23

10:15AM 24

10:15AM 25

```
MR. FIELDS: Thank you.
You Honor, BP and Anadarko tender Dr. Michael
Zaldivar as an expert in modeling and evaluating multiphase flow through pipes and pipelines, including evaluating slug flow.
THE COURT: All right. He'll be accepted.
BY MR. FIELDS:
Q Dr. Zaldivar, you prepared an expert report in this case?
A I did.
Q And that expert report set forth your opinions as well as the reasons for your opinions?
A That's correct.
MR. FIELDS: If we could pull up D-24560.
BY MR. FIELDS:
Q Is this the cover page of the expert report that you prepared in this litigation?
A It is.
MR. FIELDS: You Honor, we offer TREX Exhibit 11683 and
2 into evidence.
THE COURT: All right. Those are admitted.
(Exhibits admitted.)
THE COURT: Is that one report or two?
MR. FIELDS: It's just one report, Your Honor.
THE COURT: That report is in there, okay.
MR. FIELDS: Let's pull up D-24561.
BY MR. FIELDS:
```

| 10:15AM | 1 | Q Before getting into the details of your analysis, can you |
| :---: | :---: | :---: |
| 10:15AM | 2 | provide the Court with an executive summary or a high level |
| 10:15AM | 3 | summary of the analysis that you performed in order to address |
| 10:15AM | 4 | the two questions that you were asked to answer. |
| 10:15AM | 5 | A Sure. |
| 10:15AM | 6 | In order to address those questions, it started |
| 10:15AM | 7 | with of course reviewing lots of the information and |
| 10:15AM | 8 | documentation about the existence of slug flow. Several |
| 10:15AM | 9 | scientists had noted that it existed. |
| 10:15AM | 10 | And then there was a very comprehensive process to |
| 10:15AM | 11 | review hundreds of videos, or really hundreds of hours of ROV |
| 10:15AM | 12 | videos documenting slug flow in order to bound where slug flow |
| 10:15AM | 13 | occurred. |
| 10:15AM | 14 | During that process, I was also able to link slug |
| 10:16AM | 15 | flow to a portion of the riser that was moving, which I refer to |
| 10:16AM | 16 | as the buoyant loop. Once I had done that, I built multiple |
| 10:16AM | 17 | models of the full riser system and the kink using both LedaFlow |
| 10:16AM | 18 | and OLGA. |
| 10:16AM | 19 | I performed well in excess of a thousand |
| 10:16AM | 20 | simulations, and all of this took me about six months to |
| 10:16AM | 21 | accomplish, with the ultimate goal to provide some sort of |
| 10:16AM | 22 | conclusion with regards to the flow rate. |
| 10:16AM | 23 | MR. FIELDS: Let's pull up D-24552-2. |
| 10:16AM | 24 | BY MR. FIELDS: |
| 10:16AM | 25 | Q We'll obviously get into the details of your analysis as |


| 10:16AM | 1 | well as the reasons for your opinions, but can you provide the |
| :---: | :---: | :---: |
| 10:16AM | 2 | Court with just a high level answer to the questions that you |
| 10:16AM | 3 | were asked to address? |
| 10:16AM | 4 | A Sure. |
| 10:16AM | 5 | To the first question as to whether slug flow was |
| 10:16AM | 6 | present during mid-May 2010, I was able to conclude that it was, |
| 10:17AM | 7 | in fact, present, And that it was present specifically between |
| 10:17AM | 8 | May 13th and May 20th. |
| 10:17AM | 9 | What was particularly unique in this case is that |
| 10:17AM | 10 | slug flow exhibited very regular or patterned behavior; whereas |
| 10:17AM | 11 | slug flow is generally characterized as a chaotic or random sort |
| 10:17AM | 12 | of phenomena. |
| 10:17AM | 13 | With respect to No. 2, what conclusions could be |
| 10:17AM | 14 | drawn about the flow rate, $I$ was able to conclude that the total |
| 10:17AM | 15 | flow rate from the Macondo well during that same period, from |
| 10:17AM | 16 | May 13 to May 20, was a best estimate of 30,000 stock tank |
| 10:17AM | 17 | barrels per day, for a range of possible flow rates between |
| 10:17AM | 18 | 24,900 and 35,900 stock tank barrels per day. |
| 10:17AM | 19 | MR. FIELDS: Let's pull up D-23468. |
| 10:17AM | 20 | BY MR. FIELDS: |
| 10:17AM | 21 | Q We've heard a fair amount about multiphase flow. |
| 10:17AM | 22 | Can you use this demonstrative exhibit to help us |
| 10:18AM | 23 | understand multiphase flow patterns in horizontal pipes, |
| 10:18AM | 24 | including slug flow? |
| 10:18AM | 25 | A Sure. |


| 10:18AM | 1 | So what's complicated about multiphase flow is |
| :---: | :---: | :---: |
| 10:18AM | 2 | that it can orient itself spatially. |
| 10:18AM | 3 | Q What does that mean? |
| 10:18AM | 4 | A It means that the liquid and the gas can be in all sorts of |
| 10:18AM | 5 | configurations inside the pipe, which also means differences |
| 10:18AM | 6 | with respect to pressure drop, differences with respect to all |
| 10:18AM | 7 | of the properties that you would expect in a flow rate. |
| 10:18AM | 8 | If we were to look -- and this is examples of flow |
| 10:18AM | 9 | patterns or these geospacial orientations in a pipe, starting at |
| 10:18AM | 10 | the top, this is very common at low flow rates where the gas |
| 10:18AM | 11 | velocity is low and the liquid velocity is low or that they are |
| 10:18AM | 12 | similar in speed. This is referred to as stratified smooth |
| 10:19AM | 13 | where the gas is flowing across the top. It looks like pipe, |
| 10:19AM | 14 | and the bottom is the oil. |
| 10:198M | 15 | If you to imagine the gas velocity increasing with |
| 10:19AM | 16 | the liquids flowing at the same rate, you would see waves form |
| 10:19AM | 17 | on the surface, and that's referred to as stratified wavy flow. |
| 10:19AM | 18 | If you were to continue to increase the gas, you |
| 10:19AM | 19 | would you see those waves eventually bridge the pipe, and that |
| 10:19AM | 20 | would form something called slug flow, which we'll be talking a |
| 10:19AM | 21 | lot about today. |
| 10:19AM | 22 | The other two that are listed, annular flow, |
| 10:19AM | 23 | occurs at even faster velocity other lower level holdups. |
| 10:19AM | 24 | Bubble flow would occur if the pipe was almost |
| 10:19AM | 25 | liquid full and gas was bubbling through. |


| 10:19AM | 1 | Q You used a phrase a liquid holdup what is that? |
| :---: | :---: | :---: |
| 10:19AM | 2 | A The liquid holdup refers to the amount of liquid that's in a |
| 10:20AM | 3 | pipe section. |
| 10:20AM | 4 | MR. FIELDS: Why don't we pull up D-23840, which is a |
| 10:20AM | 5 | demonstrative exhibit that you helped us prepare. |
| 10:20AM | 6 | BY MR. FIELDS: |
| 10:20AM | 7 | Q Can you sort of set this up and explain what this particular |
| 10:20AM | 8 | demonstrative exhibit shows. |
| 10:20AM | 9 | A So what we're going to see in this video in a second is |
| 10:20AM | 10 | we're going to see a slug from an experimental setup. |
| 10:20am | 11 | If you'll recall from the previous slide, slug |
| 10:20AM | 12 | flow was characterized by a liquid-dominant flow followed by a |
| 10:20AM | 13 | gas pocket or what looked like stratified flow. |
| 10:20am | 14 | What we're going to see here if we can go ahead |
| 10:20AM | 15 | and hit play, is we will see the start of a slug and you're |
| 10:20AM | 16 | seeing the crashing, the very high turbulence area which |
| 10:20AM | 17 | entrains bubbles in. I can't really see the bubbles, but there |
| 10:20AM | 18 | re some bubbles in the main slug body or the oil slug, then |
| 10:21AM | 19 | followed by a gas pocket. |
| 10:21AM | 20 | Now, a gas pocket normally has liquid flowing |
| 10:21AM | 21 | along the bottom, so it looks like a lot like the stratified |
| 10:21AM | 22 | flow regimes that we were talking about here. |
| 10:21AM | 23 | Here we're seeing it loop again. Again, this is |
| 10:21AM | 24 | the start of the slug followed by the main slug body, and then |
| 10:21AM | 25 | we'll see the tail of the slug in a second. |


| 10:21AM | 1 | (Videotape played.) |
| :---: | :---: | :---: |
| 10:21AM | 2 | BY MR. FIELDS: |
| 10:21AM | 3 | Q Obviously, you've talked about slug flow and the existence |
| 10:21AM | 4 | of slug flow. |
| 10:21AM | 5 | What are some of the reasons that you actually |
| 10:21AM | 6 | have slug flow in pipes or pipelines? |
| 10:21AM | 7 | A When slug flow occurs, it is an undesirable event, or at |
| 10:21AM | 8 | least with respect to oil and gas production. But it occurs at |
| 10:21AM | 9 | specific ratios of oil and gas speeds. |
| 10:21AM | 10 | Q And what does the existence of slug flow tell you, if |
| 10:22AM | 11 | anything, about flow rate, or what can it tell you? |
| 10:22AM | 12 | A Well, slug flow, as I mentioned earlier, it provides a |
| 10:22AM | 13 | bound. At very, very high flow rates slug flow doesn't exist at |
| 10:22AM | 14 | all. It breaks down into miss flow or some other flow regimes |
| 10:22AM | 15 | that we saw earlier. It is generally characterized as a lower |
| 10:22AM | 16 | flow rate phenomena. |
| 10:22AM | 17 | Q Before we talk about your analysis and opinions in depth, |
| 10:22AM | 18 | let's get a lay of the land. |
| 10:22AM | 19 | MR. FIELDS: Let's pull up D-24679, which is an |
| 10:22AM | 20 | animation you helped us create, and sort of give the Court a lay |
| 10:22AM | 21 | of the land. |
| 10:22AM | 22 | BY MR. FIELDS: |
| 10:22AM | 23 | Q What does this show? And we'll be looking at this later; |
| 10:22AM | 24 | but just provide us with some information about what does this |
| 10:22AM | 25 | show about the configuration of the pipes and the blowout |


| $10: 22 \mathrm{AM}$ | 1 |
| :---: | :---: |
| $10: 22 \mathrm{AM}$ | 2 |
| $10: 23 \mathrm{AM}$ | 3 |
| $10: 23 \mathrm{AM}$ | 4 |
| $10: 23 \mathrm{AM}$ | 5 |
| $10: 23 \mathrm{AM}$ | 6 |
| $10: 23 \mathrm{AM}$ | 7 |
| $10: 23 \mathrm{AM}$ | 8 |
| $10: 23 \mathrm{AM}$ | 9 |

10:23AM 10

10:23AM 11

10:23AM 12

10:23AM 13

10:23AM 14

10:23AM 15

10:23AM 16

10:23AM 17
10:24AM 18
10:24AM 19

10:24AM 20

10:24AM 21

10:24AM 22
10:24AM 23

10:24AM 24

10:24AM 25
preventer on the bottom of the Gulf of Mexico.
A Sure. What we're seeing here is the riser once it's fallen to the seafloor as far as it got on May 13th.

And, just to take one step backward, what we know is that on April $22 n$, the riser detached from the drilling rig and then it fell. And it took some time to fall to the seafloor. And, in fact, during this period it hasn't completely fallen to the seafloor. What we're seeing here is its position or the highest position it reaches on May 13th.

If you were to look at the left side of this diagram, this is the BOP. Just above that is the leak or the kink section of the riser. Then it goes underground for a little bit, comes back up.

What you're seeing here with the rectangle in the center, that is the drilling rig wreckage. What $I$ am showing accurately, $I$ don't know about the scale of the wreckage, but I am showing where the wreckage touches the riser.

And then it comes around to this section of the riser.

I believe this is a video but it doesn't appear to be playing.

So the riser is moving. Then this is what $I$ refer to as the buoyant loop, and this moves up and down. So it hits the seafloor and then did goes back to floating.

And then, in the center of the screen, we have the

| 10:24AM | 1 | riser end or the riser end plume. |
| :---: | :---: | :---: |
| 10:24AM | 2 | At this time, from May 13th to May 20th, when |
| 10:24AM | 3 | you're seeing both the riser motion, you only have really two |
| 10:24AM | 4 | main sources for leaks, which are the kink section and the riser |
| 10:24AM | 5 | end. |
| 10:24AM | 6 | Q It indicates here on this demonstrative, D-24679, that this |
| 10:24AM | 7 | is at 5 times the playback speed. Why is that the case? |
| 10:24AM | 8 | A So what we're showing -- just so that we can perceive the |
| 10:24AM | 9 | motion of the riser, we're showing that at a faster pace on May |
| 10:24AM | 10 | 13th. The full motion of the riser took over four minutes for |
| 10:25AM | 11 | it to go to seafloor to floating back down to the seafloor, and |
| 10:25AM | 12 | it wouldn't be perceptible. It would take a long time to watch |
| 10:25AM | 13 | the full scale. |
| 10:25AM | 14 | MR. FIELDS: Let's pull up D-24680. |
| 10:25AM | 15 | BY MR. FIELDS: |
| 10:25AM | 16 | Q There are two locations where you just described -- there |
| 10:25AM | 17 | are two locations where you're seeing leaks in May 2010. |
| 10:25AM | 18 | So, if we pull up that one, can you walk us |
| 10:25AM | 19 | through D-24680? |
| 10:25AM | 20 | A So now we have a focus on the riser end. What we are seeing |
| 10:25AM | 21 | is ROV videos of the riser end on May 24 th. This is what the |
| 10:25AM | 22 | riser end plume looks like on that date. |
| 10:25AM | 23 | Q The riser is not moving? |
| 10:25AM | 24 | A Yeah. |
| 10:25AM | 25 | Q Why is that? |


| 10:25AM | 1 | A After May 20th the riser is no longer moving, so we're |
| :---: | :---: | :---: |
| 10:26AM | 2 | seeing relatively steadily flow at this point. |
| 10:26AM | 3 | MR. FIELDS: Would you pull up D-24681. |
| 10:26AM | 4 | BY MR. FIELDS: |
| 10:26AM | 5 | Q And what does this show? |
| 10:26AM | 6 | A So this is just showing you some of the ROV video footage |
| 10:26AM | 7 | like the video footage that I reviewed. This, again, is from |
| 10:26AM | 8 | the May 24 th timeframe. |
| 10:26AM | 9 | And this is just showing you what the kinked |
| 10:26AM | 10 | section of the riser looked like and the resulting leaks from |
| 10:26AM | 11 | the kinked section of the riser. |
| 10:26AM | 12 | Again, this is from May 24 th outside the time |
| 10:26AM | 13 | period that we'll be discussing a lot of, but when the riser had |
| 10:26AM | 14 | fully settled to the seafloor. |
| 10:26AM | 15 | Q Now, I want to talk a little bit about the first question |
| 10:26AM | 16 | that you answered, which was whether or not a slug flow pattern |
| 10:26AM | 17 | occurred in mid-May 2010. |
| 10:26AM | 18 | Where in the system was slug flow -- were you |
| 10:26AM | 19 | seeing slug flow? |
| 10:26AM | 20 | A Slug flow was only present at the riser end, and at the |
| 10:27am | 21 | riser end plume. |
| 10:27am | 22 | Q Let's pull up D-24564. |
| 10:27AM | 23 | As part of your work in this case, did you review |
| 10:27AM | 24 | various documents that were produced by the government? |
| 10:27AM | 25 | A I did. |


| 10:27AM | 1 | Q And, in those documents, did you see evidence that the |
| :---: | :---: | :---: |
| 10:27AM | 2 | government experts believed that slug flow might exist in May of |
| 10:27am | 3 | 2010? |
| 10:27AM | 4 | A Not that it might exist. In fact, several governmental |
| 10:27AM | 5 | scientists confirmed the existence of slug flow. |
| 10:27am | 6 | Q And what is demonstrative Exhibit D-24564? |
| 10:27AM | 7 | A This is the flow rate technical group's plume team report, |
| 10:27AM | 8 | and this is one expert from that report confirming the presence |
| 10:27AM | 9 | of slug flow. |
| 10:27AM | 10 | Q Now, did you review Dr. Dykhuizen's testimony, trial |
| 10:27am | 11 | testimony from earlier this week? |
| 10:27am | 12 | A I did. |
| 10:28AM | 13 | Q Why don't we pull up trial transcript 1487.1. |
| 10:28AM | 14 | These were some questions that were asked of |
| 10:28AM | 15 | Dr. Dykhuizen earlier in the trial. The first one I wanted to |
| 10:28AM | 16 | ask you about is -- the question says: And slug flow can only |
| 10:28AM | 17 | occur until certain boundary conditions; right? |
| 10:28AM | 18 | And Dr. Dykhuizen's answer was: That is correct. |
| 10:28AM | 19 | Do you agree that slug flow can only occur in |
| 10:28AM | 20 | certain boundary conditions? |
| 10:28AM | 21 | A Yeah. It can only occur in certain flow rate ranges, so |
| 10:28AM | 22 | that is correct. |
| 10:28AM | 23 | Q One of the other questions that was asked of Dr. Dykhuizen |
| 10:28AM | 24 | says: You testified about slug flow. You don't dispute that |
| 10:28AM | 25 | slug flow was observed in May of 2010; do you? |


| 10:28AM | 1 | And the answer is: No, I do not. |
| :---: | :---: | :---: |
| 10:28AM | 2 | As part of your analysis, did you reach a |
| 10:28AM | 3 | conclusion about whether slug flow was occurring in May of 2010? |
| 10:29AM | 4 | A I did. |
| 10:29AM | 5 | Q Let's talk about some of the work you did or the analysis |
| 10:29AM | 6 | you did to reach that conclusion. |
| 10:29AM | 7 | So what analysis did you perform in order to reach |
| 10:298M | 8 | your own conclusion that slug flow was occurring in May of 2010? |
| 10:298M | 9 | A Well, it was quite easy to confirm the existence of slug |
| 10:29AM | 10 | flow. As you'll recall, slug flow's characterized by |
| 10:298M | 11 | oil-dominant flows or oil and then gas and that pattern |
| 10:298M | 12 | repeating. |
| 10:29AM | 13 | You'll see that that's very evident from the |
| 10:298M | 14 | review of just one ROV video. What was a little more difficult |
| 10:29AM | 15 | and time consuming was to figure out where it occurred over this |
| 10:29AM | 16 | mid-May timeframe. |
| 10:29AM | 17 | That required quite literally hundreds of hours of |
| 10:29AM | 18 | ROV video to be reviewed, all the way from April 22 nd to May 26, |
| 10:29AM | 19 | n order to isolate this time period down to this May 13th to |
| 10:30AM | 20 | May 20th time period that we're discussing. |
| 10:30am | 21 | Q So, in your evaluation, you were not just focused on the May |
| 10:30AM | 22 | 13 th to 20 th time period to start the analysis? |
| 10:30AM | 23 | A No. I looked at the full range, April 22 nd to May 26 th, for |
| 10:30AM | 24 | the presence of slug flow. |
| 10:30AM | 25 | MR. FIELDS: Let's pull up D-23470. |


| $10: 30 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $10: 30 \mathrm{AM}$ | 2 |
| $10: 30 \mathrm{AM}$ | 3 |
| $10: 30 \mathrm{AM}$ | 4 |
| $10: 30 \mathrm{AM}$ | 5 |
| $10: 30 \mathrm{AM}$ | 6 |
| $10: 30 \mathrm{AM}$ | 7 |
| $10: 30 \mathrm{AM}$ | 8 |

10:30AM 10

10:30AM 11

10:30AM 12

10:30AM 13

10:31AM 14

10:31AM 15

10:31AM 16

10:31AM 17

10:31AM 18

10:31AM 19

10:31AM 20

10:31AM 21

10:31AM 22

10:31AM 23

10:31AM 24

10:31AM 25

BY MR. FIELDS:
Q Will you describe what this particular demonstrative exhibit shows.

A So, yes. We're going to see here what slug flow -- we're going to see the transition from oil-dominant to gas-dominant flow.

This first video clip is from May 14th. Actually, this full series is all from May 14th, and we're just going to jump forward.

Here we're seeing a predominantly dark plume that is now transitioning. You can see the gas breaking through, and you will you see it reaches basically what appears to be a white plume, which is the gas dominant flow.

Now we're 30 seconds later in that same video, and now we're going to see the gas-dominant flow cycle back to the oil-dominant flow.

We'll do a couple more jumps just to demonstrate the pattern repeated. Now we are going to see oil-dominant flow transition back to gas-dominant flow 15 seconds later in the video, and then we'll jump one more time where we'll see gas dominant back to oil.

Q Now, I see we have the dark fluid and the light fluid, but I wanted to talk about the analysis you did.

Oh, you still have one more. This is going on for a bit.
10:31AM 1 10:31AM 2

10:31AM 3

10:31AM 4
10:31AM 5

10:31AM 6

10:32AM $\quad 7$

10:32AM 8
10:32AM 9

10:32AM 10

10:32AM 11

10:32AM 12

10:32AM 13

10:32AM 14

10:32AM 15

10:32AM 16

10:32AM 17

10:32AM 18

10:32AM 19

10:32AM 20

10:33AM 21

10:33AM 22

10:33AM 23

10:33AM 24

10:33AM 25
(Video played.)
THE WITNESS: I think what's important is, you know, if you just saw this transition once, you wouldn't know that it was slug flow. What you're really looking for is this back and forth sort of gas, oil, gas, oil.

Specifically in this case it exhibits a very regular pattern, and we'll -- that can be observed. And that was the full pattern on May 14 th. BY MR. FIELDS:

Q Let's talk about how you were able to assess whether this light and dark flows were oil versus gas.

MR. FIELDS: If we can pull up D-24252.
BY MR. FIELDS:
Q Dr. Zaldivar, help us understand what this particular demonstrative exhibit shows and how it helped you in reaching conclusions about the existence of slug flow during May 2010? A So what we know -- this is the same video, and what we're looking at is the trajectory of these two flows. We would expect that oil being denser than gas would have a lower trajectory, and gas being less dense than oil would have a higher trajectory.

> So this was a just a trajectory analysis to confirm that the dark fluid was, in fact, oil dominant or mostly oil and the light fluid was gas dominant or mostly gas.

Q You mentioned this earlier in your testimony, but let me


| 10:34AM | 1 | So they took an ROV video and they focused on the |
| :---: | :---: | :---: |
| 10:35AM | 2 | brightness level of that video to say something about the color |
| 10:35AM | 3 | changes in the physical system. On the y-axis, they refer to it |
| 10:35AM | 4 | as intensity, which is the inverse of brightness, meaning that |
| 10:35AM | 5 | the darker -- the more intense you are, the darker the fluid |
| 10:35AM | 6 | would be. At the bottom you would see what would appear to be |
| 10:35AM | 7 | white fluid. |
| 10:35AM | 8 | What's particularly shown well in this figure is |
| 10:35AM | 9 | the pattern. So I've bracketed a slug period, which is the time |
| 10:35AM | 0 | for the pattern to repeat. So you see here this pattern repeats |
| 10:35AM | 11 | itself three times in this particular figure. |
| 10:35AM | 2 | Q And is this a pattern that was occurring over and over |
| 10:35AM | 13 | again? |
| 10:35AM | 14 | A Yes. This pattern continued from May 13th to 15th, this |
| 10:35AM | 15 | specific pattern. |
| 10:35AM | 16 | MR. FIELDS: Let's go to D-23916. |
| 10:35AM | 17 | BY MR. FIELDS: |
| 10:36AM | 18 | Q Now, this is a demonstrative that you helped us prepare. |
| 10:36AM | 19 | What does this show? |
| 10:36AM | 20 | A So we've taken the same figure at the bottom, and this is |
| 10:36AM | 21 | going to be a time trace of that figure. So, the red line, once |
| 10:36AM | 22 | they start, will move forward, and it will show you in time the |
| 10:36AM | 23 | transitions between oil and gas, remembering that oil is when |
| 10:36AM | 24 | you're at the higher side $y$-axis and gas is at the lower side. |
| 10:36AM | 25 | You can go ahead and start the video. |


| $10: 36 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $10: 36 \mathrm{AM}$ | 2 |
| $10: 36 \mathrm{AM}$ | 3 | 10:36AM 4 10:36AM 5 10:36AM 6 10:37AM 7

10:37AM 8
10:37AM 9

10:37AM 10

10:37AM 11
10:37AM 12

10:37AM 13

10:37AM 14

10:37AM 15

10:37AM 16

10:37AM 17

10:37AM 18

10:37AM 19

10:37AM 20

10:37AM 21

10:38AM 22

10:38AM 23

10:38AM 24

10:38AM 25

We'll start with what appears to be oil-dominant flow. You'll see it transition as it goes down. You'll see more and more white present. When it reaches the bottom, you'll see lots of white, and then it will sharply transition back to oil.

It remains -- this is a large oil slug.
Q And you sped this -- this is sped up as well?
A Yeah. This specific video is sped up 3.5 times real time. Again, the pattern cycle here is about four minutes, and we're trying to squeeze it into a palatable timeframe.

Now we're looking at the oil-dominant flow. We will now see that transition to the gas dominant and then back up to the start of the pattern, which is at the start of that middle peak here to here, which will transition back to the oil-dominant flow.

Q Now, as a flow assurance engineer, do you typically see the types of flow patterns that you saw or observed when you were looking at the plume that was coming from the riser end during May 13 to May 20th?

A The flow pattern, yes. Slug flow, again, is very, very common. This is something that a flow assurance engineer really focuses on.

But if you mean the specific pattern of slugs, no, that's very, very rare. I've never in my career seen slug flow exhibit a regular pattern.

| 10:38AM | 1 | Again, by the nature of the physics, you would |
| :---: | :---: | :---: |
| 10:38AM | 2 | expect it to be chaotic, random, meaning the duration of those |
| 10:38AM | 3 | slugs would be different lengths. |
| 10:38AM | 4 | Q Now, in your report you sometimes talk about the slug flow |
| 10:38AM | 5 | exhibiting a double peak behavior and sometimes exhibits a |
| 10:38AM | 6 | single peak behavior. |
| 10:38AM | 7 | What does that mean? |
| 10:38AM | 8 | MR. FIELDS: And let's go back to D-24257. |
| 10:38AM | 9 | BY MR. FIELDS: |
| 10:38AM | 10 | A Yes. So what I refer to as double peak behavior, again, if |
| 10:38AM | 11 | we look at the slug period, I'm referring to the fact that there |
| 10:38AM | 12 | are two oil slugs in the pattern. So, over that period and that |
| 10:38AM | 13 | pattern that repeats, there are two oil slugs or there are two |
| 10:38AM | 14 | alternation of flows. |
| 10:39AM | 15 | Single peak behavior would be a single alternation |
| 10:398M | 16 | or a repeated oil, gas, oil, gas, but only one slug per period. |
| 10:39AM | 17 | Q When did you see double peak behavior during May 2010? |
| 10:39AM | 18 | A Double peak behavior was only present between May 13th and |
| 10:39AM | 19 | May 15th. |
| 10:39AM | 20 | Q And when did you observe single peak behavior in May of |
| 10:39AM | 21 | 2010? |
| 10:39AM | 22 | A Single peak behavior was present between May 16 th and May |
| 10:39AM | 23 | 20 th. |
| 10:39AM | 24 | Q Was the existence of single peak and double peak behavior |
| 10:39AM | 25 | important to you as part of your analysis? |


| 10:39AM | 1 | A Yeah. It's these very characteristics that my model |
| :---: | :---: | :---: |
| 10:398M | 2 | attempts to match, and in fact does match. Yes. |
| 10:39AM | 3 | Q Did you observe slug flow, these regular patterns, before |
| 10:398M | 4 | May 13th? |
| 10:40AM | 5 | A No. Before May 13th, there was no slug flow that was |
| 10:40AM | 6 | present with regular patterns. |
| 10:40AM | 7 | Q Did you observe these regular patterns of slug flow after |
| 10:40AM | 8 | May 20th? |
| 10:40AM | 9 | A No. There was no slug flow after May 20 th. |
| 10:40AM | 10 | Q Now, you observed that the regular pattern of slug flow |
| 10:40AM | 11 | started on May 13th. |
| 10:40AM | 12 | In your opinion, what caused this slug flow to |
| 10:40AM | 13 | start on May 13th? |
| 10:40AM | 14 | A Well, the start of slug flow or the very first slug was |
| 10:40AM | 15 | caused by the falling of the riser. |
| 10:40AM | 16 | If you remember, on April 22nd, I mentioned |
| 10:40am | 17 | earlier that the drilling rig, the riser attaches from the |
| 10:40AM | 18 | drilling rig and it falls and it takes some time to fall. |
| 10:40AM | 19 | Now, when it finally reaches the seafloor, it |
| 10:40am | 20 | releases a ton of oil, and that's the first real slug. |
| 10:40AM | 21 | THE COURT: You say it takes some time to fall. Are |
| 10:40AM | 22 | you talking about days? Hours? What? |
| 10:41AM | 23 | THE WITNESS: Yeah. So from April 22nd until when it |
| 10:41AM | 24 | finally settles was May 20th. So multiple -- 20 days, 22 days. |
| 10:41AM | 25 | Most of the riser had settled by May 13th. There |

10:41AM 1

10:41AM 2

10:41AM 3

10:41AM 4

10:41AM 5

10:41AM 6

10:41AM $\quad 7$

10:41AM 8

10:41AM 9

10:41AM 10

10:41AM 11

10:41AM 12

10:41AM 13

10:42AM 14

10:42AM 15

10:42AM 16

10:42AM 17

10: 42AM 18

10:42AM 19

10:42AM 20

10:42AM 21

10: 42AM 22

10:42AM 23

10:42AM 24

10:42AM 25
was only one piece of the riser that was moving up and down, and that's the buoyant loop. It's very interrelated to the slug flow phenomena.

BY MR. FIELDS:

Q Talking about the buoyant loop -- first of all, how do you know that the riser motion caused the slug flow to start? A Well, prior to May l3th, slug flow wasn't present, so the riser motion clearly initiated the first slug.

After it initiated that first slug, there was a very complicated relationship between the slug flow and the moving portion of the buoyant loop.

MR. FIELDS: Let's show D-24568.
BY MR. FIELDS:

Q Can you explain the process of slug flow through the Deepwater Horizon's riser in May of 2010 using this demonstrative?

A Yeah. So what's shown here is a 2 D projection of the buoyant loop, and this is that small piece of riser that was bouncing up and down or moving up and down.

So, once it starts, when the cycle -- there's a very complicated relationship between the slug flow and the motion of the buoyant loop. So we're going to start the cycle at a high position here, and at a high position --

Q What do you mean a high position? What does that mean?
A I mean that the buoyant loop is floating and it's at its

| 10:42AM | 1 | peak position that it achieves while floating. |
| :---: | :---: | :---: |
| 10:43AM | 2 | At that position you're going to see liquid |
| 10:43AM | 3 | accumulating on the upstream section or this section closest to |
| 10:43AM | 4 | the BOP, and it will weigh down -- that accumulation of liquid |
| 10:43AM | 5 | will weigh down riser. |
| 10:43AM | 6 | The riser will then touch the ground. It will |
| 10:43AM | 7 | release all that oil that it trapped in the upstream section. |
| 10:43AM | 8 | Then once all of that oil's been released, it now is filled with |
| 10:43AM | 9 | a mix of oil and gas but that's considerably lighter, and so it |
| 10:43AM | 10 | will then move up again. |
| 10:43AM | 11 | Once it moves up again, it then starts to |
| 10:43AM | 12 | accumulate oil at the upstream section of the riser. |
| 10:43AM | 13 | Q You indicated that once slug flow started it became a |
| 10:43AM | 14 | complex relationship between the loop and the flow through the |
| 10:43AM | 15 | loop. |
| 10:43AM | 16 | Did you investigate other causes of slug flow? |
| 10:44AM | 17 | A I did. The most common causes of slug flow are |
| 10:44AM | 18 | terrain-induced slug flow and hydrodynamic slug flow. I |
| 10:44AM | 19 | investigated both of those as potential mechanisms that would |
| 10:44AM | 20 | match the slug flow behavior. |
| 10:44AM | 21 | Q And did you reach any conclusions regarding whether or not |
| 10:44AM | 22 | this slug flow was hydrodynamically induced or terrain induced? |
| 10:44AM | 23 | A I did. I ruled both of those mechanisms out as potentially |
| 10:44AM | 24 | responsible for the slug flow that was observed from the riser |
| 10:44AM | 25 | end. |


| 10:44AM | 1 | Q And how were you able to rule out those two mechanisms? |
| :---: | :---: | :---: |
| 10:44AM | 2 | A I built a detailed model of the riser and I studied both of |
| 10:44AM | 3 | those mechanisms through simulations. |
| 10:44AM | 4 | Q Now, as part of your analysis, in the end does it really |
| 10:44AM | 5 | matter what started the slug flow? |
| 10:44AM | 6 | A It does not. What's most important here is that there's a |
| 10:45AM | 7 | link, and that in the end the model matches the point of |
| 10:45AM | 8 | comparison. |
| 10:45AM | 9 | In this particular case, the point of comparison |
| 10:45AM | 10 | is the observed slug flow by the ROVs. What's causing or what |
| 10:45AM | 11 | started the slug flow really has no relevance on my conclusions. |
| 10:45AM | 12 | Q And I think you sort of indicated this earlier, but between |
| 10:45AM | 13 | May 13 and May 20th is there only one section of the riser that |
| 10:45AM | 14 | is moving at that point? |
| 10:45AM | 15 | A There is. Only the buoyant loop. I mean, we can re-show |
| 10:45AM | 16 | that diagram and I can highlight that. |
| 10:45AM | 17 | Q Is that D-24679 maybe? |
| 10:45AM | 18 | A Yeah. This will work. So this diagram, if you look at the |
| 10:45AM | 19 | screen, only this piece that's floating between here and here |
| 10:46AM | 20 | would we refer to as the buoyant loop, and that's the piece |
| 10:46AM | 21 | that's moving as they play back. |
| 10:46AM | 22 | Q Now, did the buoyant loop move on regular periods during May |
| 10:46AM | 23 | 13th through 20th? |
| 10:46AM | 24 | A In short timeframes the period was regular. Over time, like |
| 10:46AM | 25 | days time, the period was decreasing. |


| 10:46AM | 1 | MR. FIELDS: Let's look at D-24682.A. |
| :---: | :---: | :---: |
| 10:46AM | 2 | BY MR. FIELDS: |
| 10:46AM | 3 | Q And can you explain this demonstrative to the Court? |
| 10:46AM | 4 | A Yes. So during all my investigation I was looking at ROV |
| 10:46AM | 5 | videos. Initially, it wasn't obvious to me that the riser |
| 10:46AM | 6 | motion was at all relevant. In fact, the two primary causes for |
| 10:46AM | 7 | slug flow are terrain-induced and hydrodynamic. |
| 10:46AM | 8 | And, prior to ruling those out, I wasn't even |
| 10:46AM | 9 | focused on the riser motion. What we are going to see here is |
| 10:47AM | 0 | on May l6th a video of the riser end plume played back again at |
| 10:47AM | 1 | a higher speed, and then we're going to see the riser motion as |
| 10:47AM | 2 | characterized by me. Different ROVs observed the motion of the |
| 10:47AM | 3 | riser, and in taking that motion from those ROVs, we're going to |
| 10:47AM | 4 | see a sync between the two. |
| 10:47AM | 5 | At one specific moment on May 16th, there were |
| 10:47AM | 16 | ROVs that were surveying that buoyant loop and watching its |
| 10:47AM | 7 | motion, while also watching the riser end plume. |
| 10:47AM | 8 | If we can play it back. |
| 10:47AM | 19 | MR. FIELDS: Before we do that, there was a correction. |
| 10:47AM | 20 | It's actually just a typo. But if would pull up D-24862-A. |
| 10:47AM | 21 | Same one but the heading is changed. |
| 10:47AM | 22 | Can you pull that up? |
| 10:47AM | 23 | MR. CHAKERES: That's fine. |
| 10:47AM | 24 | MR. FIELDS: This was just a typo on the heading. |
| 10:48AM | 25 | So why don't we start this one over so |


| 10:48AM | 1 | Dr. Zaldivar can walk us through it. |
| :---: | :---: | :---: |
| 10:48AM | 2 | BY MR. FIELDS: |
| 10:48AM | 3 | A I guess, just to point out the typo, it shouldn't say Slow |
| 10:48AM | 4 | Flow, it should say Slug Flow Linked to Riser Motion. |
| 10:48AM | 5 | So this is a May 16 th ROV video. At the same |
| 10:48AM | 6 | time, again, there were ROVs monitoring the buoyant loop. |
| 10:48AM | 7 | From the same time, which was in the early hours |
| 10:48AM | 8 | of May 16th, about 1 a.m., we were able to conclude that the |
| 10:48AM | 9 | riser motion period, meaning the time it took from the sitting |
| 10:48AM | 10 | on the seafloor to floating back down to sitting on the |
| 10:48AM | 11 | seafloor, was identical to the observed slug flow behavior or |
| 10:48AM | 12 | the period from going from oil dominant to gas dominant back to |
| 10:48AM | 13 | oil dominant. |
| 10:48AM | 14 | What we're seeing here is the two linked together |
| 10:48AM | 15 | so that it demonstrates the link between the two that was |
| 10:48AM | 16 | observed. |
| 10:48AM | 17 | MR. FIELDS: Let's go to D-24567. |
| 10:48AM | 18 | BY MR. FIELDS: |
| 10:49AM | 19 | Q I believe part of this was in your report. |
| 10:49AM | 20 | But, in any event, can you explain what D-24567 |
| 10:498M | 21 | shows about riser motion as compared to slug flow periods? |
| 10:49am | 22 | A Right. So just a reminder, slug flow is the period of time |
| 10:49AM | 23 | that the pattern takes to repeat. |
| 10:49am | 24 | What we're seeing in this chart is period on the |
| 10:49AM | 25 | $y$-axis and then dates of time on the $x$-axis here. |


| 10:498M | 1 | What we note is the blue dots are the slug flow |
| :---: | :---: | :---: |
| 10:498M | 2 | period, meaning measuring or looking at the actual ROV videos |
| 10:49AM | 3 | and looking at the period of time it takes to alternate between |
| 10:498M | 4 | oil and gas. |
| 10:49AM | 5 | And then the red dots are looking at the riser |
| 10:49AM | 6 | motion period, And that was taken from RoVs monitoring the riser |
| 10:498M | 7 | motion during those same periods. |
| 10:50AM | 8 | We'll note the May 16 th point that we just |
| 10:50am | 9 | discussed where the slug flow period matches identically with |
| 10:50AM | 10 | the riser motion on May 16th. |
| 10:50am | 11 | The other point, important point to note, is the |
| 10:50am | 12 | May 13 th period where they had a survey of the motion. And |
| 10:50am | 13 | while they didn't have riser end plume available or video of the |
| 10:50am | 14 | riser end plume available at the same time, you can see that the |
| 10:50am | 15 | riser motion period does match the general trend of decline over |
| 10:50AM | 16 | the days. |
| 10:50AM | 17 | Q So, as I read this chart, it appears that over time the slug |
| 10:50AM | 18 | flow periods decreased in time. |
| 10:50am | 19 | A That's correct. |
| 10:50AM | 20 | Q Did you observe a cyclic motion of the buoyant loop prior to |
| 10:50am | 21 | May 13th? |
| 10:51AM | 22 | A Prior to May 13th, no. |
| 10:51AM | 23 | Q And did you observe that cycling motion of the buoyant loop |
| 10:51AM | 24 | after May 20th? |
| 10:51AM | 25 | A No. |


| 10:51AM | 1 | Q Let's take a look at TREX-11683.9.1. This is from your |
| :---: | :---: | :---: |
| 10:51AM | 2 | expert report. You say the signature of the slug flow, riser |
| 10:51AM | 3 | motion, and flow through the riser are intricately linked. |
| 10:51AM | 4 | What you do you mean by that statement? |
| 10:51AM | 5 | A So, again, I am referring to the characteristics now of the |
| 10:51AM | 6 | slug flow as well as the oscillatory motion of the riser. |
| 10:51AM | 7 | In our investigation, we determined that there is |
| 10:51AM | 8 | a direct link between the motion of the buoyant loop during this |
| 10:51AM | 9 | period and those specific characteristics, or that very |
| 10:51AM | 10 | patterned slug flow that we saw at the riser end. |
| 10:51AM | 11 | Q Let's turn back to D-24552-4, and let's focus on the second |
| 10:52AM | 12 | issue or question that you were asked, which has to do with |
| 10:52AM | 13 | trying to determine whether you can determine a flow rate based |
| 10:52AM | 14 | on the existence of slug flow. So let's talk about that. |
| 10:52AM | 15 | What was your general opinion that you reached on |
| 10:52AM | 16 | this particular question? |
| 10:52AM | 17 | A Using the very unique characteristics and that very |
| 10:52AM | 18 | patterned slug flow, I was able to build a model and match those |
| 10:52AM | 19 | characteristics and then determine that the slug flow was |
| 10:52AM | 20 | bounded during that timeframe, and that it was bounded between |
| 10:52AM | 21 | 24,900 and 35,900 stock tank barrels per day, with a best |
| 10:52AM | 22 | estimated flow rate during that period of 30,000 stock tank |
| 10:53AM | 23 | barrels per day. |
| 10:53AM | 24 | MR. FIELDS: Let's pull up D-24569. |
| 10:53AM | 25 | BY MR. FIELDS: |


| 10:53AM | 1 | Q You've been referring to building or creating a model. Is |
| :---: | :---: | :---: |
| 10:53AM | 2 | this a mathematical model? |
| 10:53AM | 3 | A This is a model or a representation of the riser. Under the |
| 10:53AM | 4 | hood, yes, it's a bunch of equations being solved that capture |
| 10:53AM | 5 | the physics of the oil and gas or of the fluid behavior in that |
| 10:53AM | 6 | riser. |
| 10:53AM | 7 | Q And, in general, how many different models did you develop |
| 10:53AM | 8 | in order to evaluate what the flow rate might be during the May |
| 10:53AM | 9 | 13th to May 20 th time period? |
| 10:53AM | 10 | A So I built two models. I built a no-kink model and I built |
| 10:53AM | 11 | a kink model. The no-kink model specifically focuses on the |
| 10:53AM | 12 | flow rate through the riser end. So it starts just after the |
| 10:53AM | 13 | kink section of the riser, and then focuses on matching the |
| 10:53AM | 14 | observed slug flow behavior, that really unique pattern behavior |
| 10:54AM | 15 | that we were seeing, and only the riser end flow. |
| 10:54AM | 16 | en I built a kink model which extends that |
| 10:54AM | 17 | original model back to include the kinked section of the riser, |
| 10:54AM | 18 | and then provide estimates of the kink flow rates as well as the |
| 10:54AM | 19 | riser end flow rates at the same time, resulting in a total |
| 10:54AM | 20 | estimate of flow rate at the Deepwater Macondo well. |
| 10:54AM | 21 | Q Let's take a look at first of all what you call the no-kink |
| 10:54AM | 22 | model. So, if we pull up D-23480.3, will you describe in |
| 10:54AM | 23 | general for the Court what your no-kink model was. |
| 10:54AM | 24 | A Yes. So the no-kink model is an accurate representation of |
| 10:54AM | 25 | the riser. It starts just downstream or above the BOP. It |



| 10:56AM | 1 | that patterned behavior. |
| :---: | :---: | :---: |
| 10:56AM | 2 | Q Let's continue talking a little bit about the model that you |
| 10:56AM | 3 | built and the inputs to that model. |
| 10:56AM | 4 | MR. FIELDS: If we could pull up D-24686. |
| 10:56AM | 5 | BY MR. FIELDS: |
| 10:56AM | 6 | Q We looked obviously at the schematic of your no-kink model, |
| 10:57AM | 7 | but can you walk us through the types of inputs that you had to |
| 10:57am | 8 | use in order to develop an accurate representation of what was |
| 10:57AM | 9 | going on on the bottom of the Gulf of Mexico in May 2010? |
| 10:57AM | 10 | A Yes. So, in order to build a multiphase model, or a riser |
| 10:57AM | 11 | model or both of the riser models in this case, you need inputs |
| 10:57am | 12 | of the fluid properties, you need to understand exactly the |
| 10:57AM | 13 | position of the riser, so how it sat along the seabed, the |
| 10:57AM | 14 | elevations of the riser. |
| 10:57AM | 15 | Q Let's do this. Let's go through them quickly one at a time. |
| 10:57AM | 16 | First of all, one of the inputs was fluid |
| 10:57AM | 17 | properties. What is that input, and why is it important to your |
| 10:57am | 18 | analysis? |
| 10:57AM | 19 | A So fluid properties are the thermodynamics or the PVT |
| 10:57AM | 20 | properties of the fluid, and they define the density, how much |
| 10:57AM | 21 | gas is present or how much liquid is present at a specific |
| 10:58AM | 22 | temperature and pressure. |
| 10:58AM | 23 | All that's needed in order to correctly model the |
| 10:58AM | 24 | behavior of the fluid as it moves through the system. |
| 10:58AM | 25 | So, when you start at a reservoir, you're really |


| 10:58AM | 1 | hot conditions, and the pressure and temperature decreases as |
| :---: | :---: | :---: |
| 10:58AM | 2 | you flow. Up the well it also decreases as you're flowing down |
| 10:58AM | 3 | the riser. So you need information about the fluid and what its |
| 10:58AM | 4 | doing as the pressure and temperature change. |
| 10:58AM | 5 | Q The second input that you list on D-24686 is riser position. |
| 10:58AM | 6 | What is that? |
| 10:58AM | 7 | A So riser position is the position of the riser as it sits on |
| 10:58AM | 8 | the seafloor. So the height of the riser along the seafloor, |
| 10:58AM | 9 | the elevation. |
| 10:58AM | 10 | Q Does that also include the riser motion? |
| 10:58AM | 11 | A It does. In this particular case it includes the riser |
| 10:58AM | 12 | motion which was observed by the ROVs. |
| 10:59AM | 13 | Q The third input to your model that is listed here is riser |
| 10:59AM | 14 | construction. |
| 10:59AM | 15 | What is riser construction and how does that |
| 10:59AM | 16 | differ from riser position? |
| 10:59AM | 17 | A So riser construction, when you build these models you need |
| 10:59AM | 18 | to also describe the heat flow outside. So how it's going to |
| 10:59AM | 19 | lose temperature to the surroundings. To do that, you kind of |
| 10:59AM | 20 | build the pipe in layers. |
| 10:59AM | 21 | So first you need to understand the outer pipe, |
| 10:59am | 22 | what it's made of, all of the properties of that pipe. Then you |
| 10:59AM | 23 | need to know what surrounds that pipe. In this case, soil or |
| 10:59AM | 24 | buoyancy materials, which are materials that were used to offset |
| 10:59AM | 25 | some of the weight of the riser. |


| 10:59AM | 1 | So that's what I mean. And all that's necessary |
| :---: | :---: | :---: |
| 10:59AM | 2 | to get the thermal modeling correct. |
| 10:59AM | 3 | Q And, when you say thermal modeling, what do you mean? |
| 10:59AM | 4 | A I mean the heat loss to the environment. |
| 10:59AM | 5 | Q You also have down here environmental conditions. |
| 11:00AM | 6 | What is that? |
| 11:00AM | 7 | A That is, again, associated with accurately capturing the |
| 11:00AM | 8 | heat loss to the environment. You need to know something about |
| 11:00am | 9 | the currents and the temperature of the seawater at those |
| 11:00AM | 10 | depths. |
| 11:00am | 11 | MR. FIELDS: Can we pull up D-23482. |
| 11:00AM | 12 | BY MR. FIELDS: |
| 11:00AM | 13 | Q This might be relevant, and you can let us know, to one of |
| 11:00AM | 14 | the earlier inputs we've been talking about. |
| 11:00AM | 15 | What is D-23482? |
| 11:00am | 16 | A So what we're seeing here is the riser elevation profile or |
| 11:00AM | 17 | the riser position. |
| 11:00AM | 18 | What you're seeing is this green line is actually |
| 11:00am | 19 | the riser position, and as it existed it was all nonmoving over |
| 11:00am | 20 | this. |
| 11:00am | 21 | And then the red line at the bottom is what the |
| 11:00am | 22 | riser looked like when it had settled to the seafloor. |
| 11:00AM | 23 | The green line is what the riser looked like or |
| 11:01AM | 24 | the height the riser reached on May 16 th. |
| 11:01AM | 25 | And then on the blue line is the height the |


| 11:01AM | 1 | buoyant loop was reaching on May 13th. |
| :---: | :---: | :---: |
| 11:01AM | 2 | Q So, if you look on the left-hand side, there's a larger hump |
| 11:01AM | 3 | on the left-hand side. What is that? What does that display or |
| 11:01AM | 4 | demonstrate? |
| 11:01AM | 5 | A The axis is depth, so this is the depth of the riser and |
| 11:01AM | 6 | this is the length of the riser. So we're just looking at the |
| 11:01AM | 7 | relationship between depth and length along the riser. |
| 11:01AM | 8 | Q But on the left-hand side you have this hump. |
| 11:01AM | 9 | Why is that so high? |
| 11:01AM | 10 | A What is the hump? The hump is the portion of the riser that |
| 11:01AM | 11 | was sitting on the wreckage of the DWH rig. |
| 11:01AM | 12 | Q Let's talk about riser motion. |
| 11:02AM | 13 | MR. FIELDS: If we can go to TREX-011683.93.1. |
| 11:02AM | 14 | BY MR. FIELDS: |
| 11:02AM | 15 | Q This has to do with the riser motion. |
| 11:02AM | 16 | The Court saw this chart I believe the other day |
| 11:02AM | 17 | in Dr. Dykhuizen's testimony. Can you explain this chart for |
| 11:02AM | 18 | us? |
| 11:02AM | 19 | A Yes. So what we're seeing on the Y-axis is depth, and then |
| 11:02AM | 20 | on the x -axis time or a time-like access. |
| 11:02AM | 21 | And what we're seeing here is the blue line is the |
| 11:02AM | 22 | measured movement of the riser as observed by the ROVs. |
| 11:02AM | 23 | And the orange line is the fit to that motion that |
| 11:02AM | 24 | was eventually inputted into the model. |
| 11:02AM | 25 | It is worth noting that this is only for one |


| 11:02AM | 1 | specific joint in the riser. |
| :---: | :---: | :---: |
| 11:03AM | 2 | Q So, just so I understand, the blue line is actually how the |
| 11:03AM | 3 | riser was actually moving. |
| 11:03AM | 4 | What is the orange line? |
| 11:03AM | 5 | A The orange line is the mathematical description. So in |
| 11:03AM | 6 | order to put this into LedaFlow, you needed to be able to |
| 11:03AM | 7 | describe it in a language that LedaFlow could understand. |
| 11:03AM | 8 | That orange line is a mathematical description |
| 11:03AM | 9 | that was then input into LedaFlow. |
| 11:03AM | 10 | Q Why doesn't the orange line that is depicted on this |
| 11:03AM | 11 | demonstrative exactly match the blue line? |
| 11:03AM | 12 | A In this sort of -- when you're taking measurements and |
| 11:03AM | 13 | you're trying to create a mathematical description, very often |
| 11:03AM | 14 | there is differences between the two. |
| 11:03AM | 15 | What you're seeing here is actually a very good |
| 11:03AM | 16 | fit of taking an actual measurement and then characterizing it |
| 11:03AM | 17 | mathematically. |
| 11:04AM | 18 | Q Now, talking about the movement of the riser, were you able |
| 11:04AM | 19 | to use a multiphase flow simulator in order to recreate the |
| 11:04AM | 20 | movement of the riser? |
| 11:04AM | 21 | A Yes, I was able to recreate this motion in LedaFlow. |
| 11:04AM | 22 | Q Why did you use LedaFlow as opposed to OLGA or some other |
| 11:04AM | 23 | multiphase simulator to model the moving riser? |
| 11:04AM | 24 | A So LedaFlow was the only multiphase flow simulator that was |
| 11:04AM | 25 | capable of including the motion of the riser. |


| 11:04AM | 1 | Q So is the capability to move the pipe or the riser, was that |
| :---: | :---: | :---: |
| 11:04AM | 2 | built in to LedaFlow or did you have to write some type of |
| 11:04AM | 3 | special module to do that? |
| 11:04AM | 4 | A No. That's built-in. That functionality is accessible to |
| 11:04AM | 5 | the off-the-shelf version of LedaFlow that I used for this |
| 11:04AM | 6 | particular soft -- investigation, which was Version 1.2. |
| 11:05AM | 7 | Q Now, we have discussed the various inputs that you put into |
| 11:05AM | 8 | your model. I guess one question I would have is, can you |
| 11:05AM | 9 | characterize or describe the quality of the data that you had in |
| 11:05AM | 10 | order to create this model that you used to evaluate the flow |
| 11:05AM | 11 | rate? |
| 11:05AM | 12 | A In large part, the data was good data. You know, it took a |
| 11:05AM | 13 | lot of searching for the data, but in large part the material |
| 11:05AM | 14 | properties, the position, all of those things were very |
| 11:05AM | 15 | well-known and well-characterized. |
| 11:05AM | 16 | There are a few inputs to the model that were less |
| 11:05AM | 17 | known, and for that we ran sensitivities. |
| 11:05AM | 18 | Q We'll get to that. |
| 11:05AM | 19 | The last input that was on that slide was |
| 11:06AM | 20 | something called riser geometry. |
| 11:06AM | 21 | Why don't you pull up D-23484 and tell us about |
| 11:06AM | 22 | riser geometry and why it was important to your model. |
| 11:06AM | 23 | A So what we're seeing here is the riser is the outer pipe. |
| 11:06AM | 24 | The riser had, going down the center of it, a drill pipe. |
| 11:06AM | 25 | Depending on where you were in the riser it had different |


| 11:06AM | 1 | diameters. |
| :---: | :---: | :---: |
| 11:06AM | 2 | This blowup here is a cross-section, so if you |
| 11:06AM | 3 | were to slice it you would see the outer ring is the riser, this |
| 11:06AM | 4 | inner ring is the drill pipe, and the area for flow is the area |
| 11:06AM | 5 | between these two pipes. |
| 11:06AM | 6 | Q Can you model this pipe and pipe geometry that we see here |
| 11:07AM | 7 | in multiphase flow simulators? |
| 11:07AM | 8 | A Yes, but it requires a geometric transformation to do so. |
| 11:07AM | 9 | MR. FIELDS: Why don't we pull up D-24643. |
| 11:07am | 10 | BY MR. FIELDS: |
| 11:07AM | 11 | Q Help us understand something that would be another example |
| 11:07am | 12 | of -- perhaps it's counterintuitive to a layperson -- of what a |
| 11:07AM | 13 | geometric transformation is. |
| 11:07AM | 14 | A So these models assume and are built to model flow in a |
| 11:07AM | 15 | circular pipe. That's where the focus has been scientifically. |
| 11:07AM | 16 | There are situations out there where people want |
| 11:07AM | 17 | to model multiphase flow or single phase flow in different |
| 11:07AM | 18 | ometries, and so there's a separate scientific investigation |
| 11:07am | 19 | out how to transform all of the knowledge that you have about |
| 11:07AM | 20 | circular pipes and model these other odd-shaped geometries or |
| 11:08AM | 21 | different geometries. |
| 11:08AM | 22 | So they developed methods in order to do so. |
| 11:08AM | 23 | That's what I mean specifically by a geometric transformation. |
| 11:08AM | 24 | And a geometric transformation simply takes a noncircular |
| 11:08AM | 25 | geometry and it transforms it into a circular pipe-like |


| 11:08AM | 1 | geometry, but with the goal to maintain the pressure drop flow |
| :---: | :---: | :---: |
| 11:08AM | 2 | rate relationships. |
| 11:08AM | 3 | Q Why is there a goal to maintain the pressure drop flow rate |
| 11:08AM | 4 | relationship? |
| 11:08AM | 5 | A Well, that's the primary purpose of these models, to |
| 11:08AM | 6 | understand the relationship between pressure drop and flow rate. |
| 11:08AM | 7 | Q Let's go to the next slide, which is D-24644. Can you help |
| 11:08AM | 8 | us understand what type of geometric transformation you used for |
| 11:09AM | 9 | the geometry in this case? |
| 11:09AM | 10 | A So what we're seeing on the left, of course the actual |
| 11:09AM | 11 | geometry. The geometric transformation that I used is something |
| 11:09AM | 12 | called the hydraulic diameter or the equivalent hydraulic |
| 11:09AM | 13 | diameter, where I take this geometry or information about the |
| 11:09AM | 14 | riser pipe and the drill pipe and I convert it into a circular |
| 11:09AM | 15 | pipe-like geometry. |
| 11:09AM | 16 | The hydraulic diameter focuses on maintaining the |
| 11:09AM | 17 | correct ratio of area to wetted perimeter. Area is the |
| 11:09AM | 18 | cross-sectional area to flow so that the area between the drill |
| 11:09AM | 19 | pipe and the riser and the wetted perimeter is the length along |
| 11:09AM | 20 | those two pipes. |
| 11:09AM | 21 | Q Why is it important to maintain the correct ratio of area to |
| 11:09AM | 22 | wetted perimeter when you're trying to perform flow rate |
| 11:10AM | 23 | calculations? |
| 11:10AM | 24 | A That's necessary in order to get the relationship between |
| 11:10AM | 25 | pressure drop and flow rate correct. |


| 11:10AM | 1 | Q Now, have you used hydraulic diameter for geometric |
| :---: | :---: | :---: |
| 11:10AM | 2 | transformation in your own modeling work prior to this case? |
| 11:10AM | 3 | A I have. |
| 11:10AM | 4 | Q And is the hydraulic diameter used by flow assurance |
| 11:10AM | 5 | engineers and specialists in order to deal with noncircular |
| 11:10AM | 6 | geometries? |
| 11:10AM | 7 | A Yeah. The hydraulic diameter is the gold standard |
| 11:10AM | 8 | transformation. There are very few hydraulic standards that |
| 11:10AM | 9 | have any scientific information outside of the hydraulic |
| 11:10AM | 10 | diameter. |
| 11:10AM | 11 | There are numerous teks. In this particular case, |
| 11:10AM | 12 | the user manuals actually tell you to use the hydraulic diameter |
| 11:10AM | 13 | for the software packages or multiphase flow simulators that |
| 11:10am | 14 | we're talking about. |
| 11:10AM | 15 | Q Now, when you use this geometric transformation, it results |
| 11:10AM | 16 | in a sectional area that is less than a cross-sectional area |
| 11:11AM | 17 | that actually exists in the pipe? |
| 11:11AM | 18 | A Yes. So one of the things that you mentioned is this is a |
| 11:11AM | 19 | bit counterintuitive. The area in this section is much larger |
| 11:11AM | 20 | than the resulting area using the hydraulic diameter. |
| 11:11AM | 21 | Q And you've heard criticisms at trial that you did not |
| 11:11AM | 22 | appropriately use the hydraulic diameter in your modeling? Have |
| 11:11AM | 23 | you heard those? |
| 11:11AM | 24 | A I have. |
| 11:11AM | 25 | Q And how do you respond to those criticisms? |


| 11:11AM | 1 | MR. CHAKERES: Your Honor, I'm going to object. This |
| :---: | :---: | :---: |
| 11:11AM | 2 | calls for surrebuttal testimony. |
| 11:11AM | 3 | MR. FIELDS: Your Honor, he was actually just |
| 11:11AM | 4 | reiterating and talking about the exact opinions that are set |
| 11:11AM | 5 | forth in his report. |
| 11:11AM | 6 | As Your Honor indicated earlier, a witness can |
| 11:11AM | 7 | hear the criticisms and he can sort of indicate why those |
| 11:11AM | 8 | criticisms are unfounded in light of his prior testimony or, |
| 11:11AM | 9 | sorry, in light of the prior opinions in the report. |
| 11:11AM | 10 | THE COURT: Was there a motion on rebuttal, a rebuttal |
| 11:12AM | 11 | -- surrebuttal report from this witness? |
| 11:12AM | 12 | MR. FIELDS: No. |
| 11:12AM | 13 | MR. CHAKERES: There was not. He didn't provide |
| 11:12AM | 14 | surrebuttal opinions in writing, so we have not filed a motion |
| 11:12AM | 15 | on that, no. |
| 11:12AM | 16 | THE COURT: I'll overrule the objection. |
| 11:12AM | 17 | BY MR. FIELDS: |
| 11:12AM | 18 | Q How do you respond to those criticisms? |
| 11:12AM | 19 | A They're absolutely unfounded and incorrect. |
| 11:12AM | 20 | Q And why is that? |
| 11:12AM | 21 | A Dr. Dykhuizen seems to say that the use of the hydraulic |
| 11:12AM | 22 | diameter is incorrect, or that if you use it you get only some |
| 11:12AM | 23 | information out of the model that then you can use later. |
| 11:12AM | 24 | When, in fact, the use of the hydraulic diameter |
| 11:12AM | 25 | results in the accurate relationship between pressure drop and |


| 11:12AM | 1 | flow rate. The flow rates that come from my model require no |
| :---: | :---: | :---: |
| 11:12AM | 2 | additional calculations to be corrected to a different flow |
| 11:12AM | 3 | rate. |
| 11:12AM | 4 | Q So you're confident that you used the correct geometric |
| 11:13AM | 5 | transformation and applied it in the correct fashion? |
| 11:13AM | 6 | A Not only am I confident, that's what the science tells me. |
| 11:13AM | 7 | Q Let's turn to talking about the simulations you performed. |
| 11:13AM | 8 | After constructing the riser model or the no-kink model with all |
| 11:13AM | 9 | of the properties that we've just discussed, what did you do |
| 11:13AM | 10 | next? |
| 11:13AM | 11 | A Sorry, could you repeat that question? |
| 11:13AM | 12 | Q Sure. After you constructed your riser model and it had all |
| 11:13AM | 13 | those different inputs that we just talked about, what did you |
| 11:13AM | 14 | do next? |
| 11:13AM | 15 | MR. FIELDS: Maybe we can pull up D-23480.3, which was |
| 11:13AM | 16 | what we looked at earlier. |
| 11:13AM | 17 | BY MR. FIELDS: |
| 11:13AM | 18 | A Yes. So I then -- once I built the model, I then varied the |
| 11:13AM | 19 | flow rate through the model. I ran numerous simulations, in |
| 11:13AM | 20 | excess of a thousand simulations, to explore the parameter |
| 11:14AM | 21 | space, running flow rates from 12,000 barrels per day all the |
| 11:14AM | 22 | way up a to 60,000 barrels per day, again, trying to match this |
| 11:14AM | 23 | unique pattern of slug flow behavior. |
| 11:14AM | 24 | Q And why did you pick the range between 12,000 and 60,000? |
| 11:14AM | 25 | A Well, generally speaking, you pick a range where you see the |



| 11:16AM | 1 | a very large amount of data. |
| :---: | :---: | :---: |
| 11:16AM | 2 | I don't know in that answers your question. |
| 11:16AM | 3 | Q It does. So was your no-kink model able to reproduce the |
| 11:16AM | 4 | slug flow behavior that you observed during the May 13th to 20th |
| 11:16AM | 5 | time period? |
| 11:16AM | 6 | A It does. |
| 11:16AM | 7 | Q Let's pull up D-24683-A. And before we play this, can you |
| 11:16AM | 8 | sort of give us a setup, tell us a little bit about what we're |
| 11:16AM | 9 | going to see when we play this particular demonstrative? |
| 11:16AM | 10 | A Yes. So earlier we saw a previous demonstrative that was |
| 11:16AM | 11 | set up very similarly where we had the ROV video on top, and |
| 11:16AM | 12 | then at the bottom we had a time trace. |
| 11:16AM | 13 | Here the yellow line will be time. The video - |
| 11:16AM | 14 | just to note, the video speed will be faster than real time. It |
| 11:16AM | 15 | will be running 3.35 times real time. This specific video was |
| 11:16AM | 16 | taken on May 16 th. |
| 11:16AM | 17 | Now at the bottom, what you're seeing is my model |
| 11:17AM | 18 | predictions for that same time period or a flow rate during that |
| 11:17AM | 19 | same time period. |
| 11:17am | 20 | What I am showing in this figure is the oil volume |
| 11:17AM | 21 | rate fraction on the y-axis, and then time moving along the |
| 11:17AM | 22 | x-axis here. What you will see here are the shaded regions that |
| 11:17AM | 23 | appear brown. Will be dark and appear dark in the video; |
| 11:17AM | 24 | whereas the grey region will be experiencing some sort of |
| 11:17AM | 25 | transition, either from dark to white or white to dark. |


| 11:17AM | 1 | And then the white highlighted area will appear |
| :---: | :---: | :---: |
| 11:17AM | 2 | white in the video. |
| 11:17AM | 3 | Q You ready to play? |
| 11:17AM | 4 | (Videotape Played.) |
| 11:17AM | 5 | BY MR. FIELDS: |
| 11:17AM | 6 | A So we start again, we're tracing through a period of time |
| 11:17AM | 7 | where you're seeing a dark plume. This lasts approximately 80 |
| 11:18AM | 8 | seconds. |
| 11:18AM | 9 | Then we'll see a sharp transition that takes 15 |
| 11:18AM | 10 | seconds in real time. I'm giving you numbers. |
| 11:18AM | 11 | Then we'll see it reach the white plume area. |
| 11:18AM | 12 | Then it will end as it transitions back to the start of the |
| 11:18AM | 13 | cycle, which will be the start of the next dark plume. |
| 11:18AM | 14 | What you can see from this is the excellent match |
| 11:18AM | 15 | of the model-predicted results of the actual observed slug flow |
| 11:18AM | 16 | behavior. |
| 11:18AM | 17 | This sort of matches is really unusual when you're |
| 11:18AM | 18 | looking at slug flow behavior, especially because it is so |
| 11:18AM | 19 | chaotic. You will almost never match this well. This is, in |
| 11:18AM | 20 | fact, the best match I've ever seen to the observed slug flow |
| 11:18AM | 21 | behavior. |
| 11:18AM | 22 | MR. FIELDS: Let's pull up D-23865. |
| 11:18AM | 23 | BY MR. FIELDS: |
| 11:19AM | 24 | Q In your report, you talk about this concept of qualifying |
| 11:19AM | 25 | flow rates at least for determining flow rates out of the riser |


| $11: 19 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $11: 19 \mathrm{AM}$ | 2 |
| $11: 19 \mathrm{AM}$ | 3 |

11:19AM 4 11:19AM 5 11:19AM 6 11:19AM 7 11:19AM 8 11:19AM 9

11:19AM 10

11:19AM 11

11:19AM 12

11:20AM 13

11:20AM 14

11:20AM 15

11:20AM 16

11:20AM 17

11:20AM 18
11:20AM 19

11:20AM 20

11:20AM 21

11:20AM 22
11:20AM 23
11:20AM 24

11:20AM 25
end.

Can you describe the process you used to determine what constituted a qualifying flow rate and how that assisted you in determining or estimating the flow rate out of the riser end?

A Yes. So, on May 13th, they're using the riser motion that was present on May 13th. I would simulate from approximately 12,000 stock tank barrels up all the way up to 60,000 stock tank barrels.

Now, during that period, as we discussed earlier, I'm looking for double peak behavior. In this particular example, I was able to see double peak behavior between 17,700 and 41,000 stock tank barrels.

Then using the May 16th, or the motion of the riser on May $16 t h, ~ I ~ w o u l d ~ r u n ~ t h e ~ s a m e ~ r a n g e ~ o f ~ f l o w ~ r a t e s: ~$ from approximately 12,000 all the way up to 60,000 stock tank barrels per day.

I was able to observe the behavior that was present then, which was the single peak behavior in the highlighted region. And that was between 11,700 stock tank barrels all the way up to 28,300 stock tank barrels.

But, by combining the two ranges, I'm able to estimate the qualifying range of flow rates between 17,700 and 28,300 stock tank barrels per day.

I was then able to apply one additional criterion

| $11: 20 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $11: 21 \mathrm{AM}$ | 2 |
| $11: 21 \mathrm{AM}$ | 3 |
| $11: 21 \mathrm{AM}$ | 4 |
| $11: 21 \mathrm{AM}$ | 5 |
| $11: 21 \mathrm{AM}$ | 6 |
| $11: 21 \mathrm{AM}$ | 7 |
| $11: 21 \mathrm{AM}$ | 8 |
| $11: 21 \mathrm{AM}$ | 9 | 11:21AM 10

11:21AM 11

11:21AM 12

11:21AM 13

11:21AM 14

11:21AM 15

11:21AM 16

11:22AM 17

11:22AM 18
11:22AM 19

11:22AM 20
11:22AM 21

11:22AM 22

11:22AM 23
11:22AM 24

11:22AM 25
to the lower bound of the flow rate for this line, this 17,700 stock tank barrels per day. I was looking specifically at the average density of the buoyant loop, or the weight of the buoyant loop, and ensuring that the buoyant loop wasn't moving up when the weight of the buoyant loop was at its highest.

In doing so, I was able to further reduce the bound or increase the lower bound up to 21,200 stock tank barrels per day.

I do want to emphasize that this is a specific example of a specific parameter set that I refer to as the base case set of parameters, meaning that the inputs, the default set of inputs that I put into the simulation before I explored my sensitivities.

I'll also note that this -- to come up with this one range was about 54 simulations.

Q You indicated that you were sort of combining the two different behaviors, the double peak behavior and the single peak behavior, in order to determine the range of qualifying flow rates.

Why did you do that?
A Well, on May 13th, we had observed double peak behavior.
On May 16th, we had only single peak behavior.
These dates are rather close together. It was only natural there was nothing that would indicate there would be large changes in flow rate between that period so that would

| 11:22AM | 1 | you conclude that a flow rate that matched the double peak |
| :---: | :---: | :---: |
| 11:22AM | 2 | behavior and matched the single peak behavior would qualify as a |
| 11:22AM | 3 | possible flow rate during that range. |
| 11:22AM | 4 | Q After developing this base case that you have here, what did |
| 11:22AM | 5 | you do next? |
| 11:22AM | 6 | A So from here I ran sensitivities on input parameters that |
| 11:22AM | 7 | were uncertain. |
| 11:22AM | 8 | Q What are sensitivities or sensitivity studies? |
| 11:22AM | 9 | A A sensitivity study is a study where you look at input |
| 11:23AM | 10 | parameters that aren't certain. You vary an input, and then you |
| 11:23AM | 11 | run simulations to determine what effect varying the input has |
| 11:23AM | 12 | on the results. |
| 11:23AM | 13 | Q And why did you perform sensitivity studies here? |
| 11:23AM | 14 | A Specifically, there were some parameters. An example of |
| 11:23AM | 15 | that would be pipe roughness, that were less certain than other |
| 11:23AM | 16 | parameters. |
| 11:23AM | 17 | MR. FIELDS: Why don't we pull up D-24570. |
| 11:23AM | 18 | BY MR. FIELDS: |
| 11:23AM | 19 | Q This is a table from your report, and it is titled: |
| 11:23AM | 20 | Sensitivity to Roughness of Riser Pipe. Why don't you help us |
| 11:23AM | 21 | understand how you assessed the sensitivity of the roughness of |
| 11:23AM | 22 | the riser pipe. |
| 11:23AM | 23 | A Yes. So, starting at the top of the table, the first row, |
| 11:24AM | 24 | you can see that the roughness value, that is the default value |
| 11:24AM | 25 | that I used that was in the base case set. That value |


| 11:24AM | 1 | corresponds to smooth carbon steel or carbon steel that was |
| :---: | :---: | :---: |
| 11:24AM | 2 | straight off the factory line. |
| 11:24AM | 3 | I then ran two sensitivities where I increased the |
| 11:24AM | 4 | roughness by a factor of 10 and then by a factor of 100. |
| 11:24AM | 5 | Now, for each parameter set, I varied the flow |
| 11:24AM | 6 | rates between 12,000 and 60,000 stock tank barrels per day on |
| 11:24AM | 7 | May 13th and May 16 th trying to match the double peak behavior |
| 11:24AM | 8 | that was present on May 13th and the single peak behavior that |
| 11:24AM | 9 | was present on May 16 th. |
| 11:24AM | 10 | I then was able to come up with a range of |
| 11:24AM | 11 | possible flow rates which are denoted as minimum and maximum for |
| 11:24AM | 12 | each of the parameter sets. |
| 11:24AM | 13 | Q Now, this is one type of sensitivity study that you |
| 11:24AM | 14 | performed. Were there other sensitivities that you have |
| 11:25AM | 15 | evaluated as part of your analysis? |
| 11:25AM | 16 | A Yeah. I performed other sensitivities as a part of my |
| 11:25AM | 17 | analysis on other uncertain inputs. |
| 11:25AM | 18 | MR. FIELDS: Why don't we pull up D-24571. |
| 11:25AM | 19 | BY MR. FIELDS: |
| 11:25AM | 20 | Q We talked about pipe roughness. What were the other |
| 11:25AM | 21 | sensitivities that you evaluated as part of your analysis? |
| 11:25AM | 22 | A So, I also evaluated inlet temperature, the position of the |
| 11:25AM | 23 | riser plume. I evaluated the outer heat transfer or the ability |
| 11:25AM | 24 | for the environmental conditions to move heat away from the |
| 11:25AM | 25 | pipe. |



| $11: 27 \mathrm{AM}$ | 1 |
| :--- | :--- |
| $11: 27 \mathrm{AM}$ | 2 |
| $11: 27 \mathrm{AM}$ | 3 | 11:27AM 4 11:27AM 5 11:27AM 6 11:27AM 7 11:27AM 8 11:27AM 9 11:27AM 10

$$
\text { 11:27AM } 11
$$

11:27AM 12
11:27AM 13
11:27AM 14

11:28AM 15

11:28AM 16

11:28AM 17

11:28AM 18

11:28AM 19

11:28AM 20

11:28AM 21

11:28AM 22

11:28AM 23
11:28AM 24

11:28AM 25
of variance.
What that tells an expert is that the model is robust and that the model is not sensitive to these inputs despite the fact that they weren't known.

Q The bottom line, on $D-23864$, you say: Resulting best estimate before model uncertainty.

Do you see that?
A I do.
Q At some point in your work, did you try to evaluate or characterize model uncertainty and the impact it might have on flow rates?

A I did.
Q And what did you do?
A So, for model uncertainty, what $I$ specifically mean is everything that we don't know about multiphase flow.

So, multiphase flow is incredibly complicated.
There's lots of physics that are involved in modeling multiphase flow. As an industry, there are things that we don't know about multiphase flow.

And so I wanted to characterize that uncertainty, which is something difficult to characterize. It's always difficult to characterize what you don't know.

In this particular case, $I$ was using or $I$ started my investigation using three different versions of software. I was using two different versions of OLGA and one version of

| 11:28AM | 1 | LedaFlow. |
| :---: | :---: | :---: |
| 11:28AM | 2 | Because all of those software packages are trying |
| 11:28AM | 3 | to estimate the true answer, you can learn something by the fact |
| 11:28AM | 4 | that their resultant answers are scattered. That's some |
| 11:28AM | 5 | indication of what the current understanding of what multiphase |
| 11:28AM | 6 | flow is, and that's how I was able to characterize model |
| 11:29AM | 7 | uncertainty. |
| 11:29AM | 8 | Q I thought you indicated earlier that OLGA was not able to |
| 11:29AM | 9 | model a moving riser. If that's the case, how were you able to |
| 11:29AM | 10 | compare your results from LedaFlow with your results in OLGA? |
| 11:29AM | 11 | A At the beginning of my investigation, I was using both OLGA |
| 11:29AM | 12 | and LedaFlow, and I was using static geometries. |
| 11:29AM | 13 | Q What does that mean? |
| 11:29AM | 14 | A Nonmoving geometries. |
| 11:29AM | 15 | At that time, I wasn't certain that the riser |
| 11:29AM | 16 | motion was important, so I used an simpler model and assumed |
| 11:29AM | 17 | that the riser was static. |
| 11:29AM | 18 | And those are the results that $I$ was able to |
| 11:29AM | 19 | compare: A static version of LedaFlow and the static two |
| 11:29AM | 20 | versions of OLGA. And that's how I was able to characterize the |
| 11:29AM | 21 | understanding of multiphase flow. |
| 11:29AM | 22 | Q What conclusions, if any, did you reach about the level of |
| 11:29AM | 23 | model uncertainty that might exist? |
| 11:29AM | 24 | A So, from that investigation, I was able to estimate the |
| 11:30AM | 25 | model uncertainty to be plus or minus 5 percent, or a total of |


| 11:30AM | 1 | 10 percent uncertainty. |
| :---: | :---: | :---: |
| 11:30AM | 2 | MR. FIELDS: So let's go to D-2866.1.1. |
| 11:30AM | 3 | BY MR. FIELDS: |
| 11:30AM | 4 | Q So, after taking into consideration your base case, your |
| 11:30AM | 5 | sensitivity studies, and model uncertainty, what results did you |
| 11:30AM | 6 | get for the flow rate out of the model end -- out of the riser |
| 11:30AM | 7 | end? Sorry. |
| 11:30AM | 8 | A Yeah. So I was able to conclude that the range of possible |
| 11:30AM | 9 | flow rates out of the riser end was between 20,000 stock tank |
| 11:30AM | 10 | barrels per day and 31,000, with a best estimate of 25,100 . |
| 11:30AM | 11 | Q And that's just out of the riser end? |
| 11:30AM | 12 | A And that is just out of the riser end. |
| 11:30AM | 13 | Q Now, let's talk about the your modeling of the flow out of |
| 11:31AM | 14 | the kink leaks. |
| 11:31AM | 15 | MR. FIELDS: First of all, let's pull up D-23478-A. |
| 11:31AM | 16 | BY MR. FIELDS: |
| 11:31AM | 17 | Q Let's first talk a little bit about the leaks from the kink. |
| 11:31AM | 18 | Can you describe the kink leaks for us using this and how they |
| 11:31AM | 19 | came into play with your modeling efforts? |
| 11:31AM | 20 | A So what we're seeing in this demonstrative is the kink |
| 11:31AM | 21 | section of the riser after it was removed on June 3rd. |
| 11:31AM | 22 | What's specifically highlighted and labeled A |
| 11:31AM | 23 | through F are the holes that were present at that time. |
| 11:31AM | 24 | Specifically of interest for this particular time period were |
| 11:31AM | 25 | holes B, C, D, and E. |

11:31AM 1 11:31AM 2

11:32AM 3
11:32AM 4

11:32AM 5

11:32AM 6

11:32AM 7

11:32AM 8

11:32AM 9

11:32AM 10

11:32AM 11

11:32AM 12

11:32AM 13

11:32AM 14

11:32AM 15

11:32AM 16

11:32AM 17

11:33AM 18

11:33AM 19

11:33AM 20

11:33AM 21

11:33AM 22

11:33AM 23

11:33AM 24

11:33AM 25

MR. FIELDS: Let's pull up D-23479.A.
BY MR. FIELDS:
Q When did the kink leaks appear in relationship to the range or the window that you were evaluating?

A So, the kink holes, other two kinks holes, $B$ and $C$, were present between May 13 and May 19.

On May 19th, another hole or potentially two additional holes appear, and those would be holes $D$ and E. Because they were so close together, you couldn't tell if it was a single hole that appeared or two holes, so I refer to them as D/E in this image. And they appeared on May 19th and were present through May 20 th.

MR. FIELDS: Let's go to D-23481.3.
BY MR. FIELDS:
Q Can you generally describe your second model, which is the kink model, and how it differed from your no-kink model. A So the kink model is very similar to the no-kink model. It's just an extension of the no-kink model. It extends back to include the kinked section of the riser, which is about a 45-foot-long extension.

It then uses a pressure boundary at the inlet of the model and a pressure boundary at the outlet of the model, which is the same as was present in the kink model -- no-kink model, excuse me.

MR. FIELDS: Why don't we pull up display D-23481.

| 11:33AM | 1 | BY MR. FIELDS: |
| :---: | :---: | :---: |
| 11:33AM | 2 | Q And this is sort of a enlargement of the BOP in your kink |
| 11:33AM | 3 | model. |
| 11:33AM | 4 | It indicates on here -- it shows the kink here and |
| 11:33AM | 5 | also shows pressure boundary. What is a pressure boundary and |
| 11:33AM | 6 | why did you use a pressure boundary in your kink model? |
| 11:33AM | 7 | A So a pressure boundary is when you specify the pressure of |
| 11:33AM | 8 | the model at that location. In this particular case, once I |
| 11:34AM | 9 | extend the model back to include the kink section, I now have |
| 11:34AM | 10 | the benefit of a measurement that was present at that location, |
| 11:34AM | 11 | and that's the PTM measurement, which is just above the BOP. |
| 11:34AM | 12 | Q PTM, is that different than BTB? |
| 11:34AM | 13 | A Yes. That's a different measurement. |
| 11:34AM | 14 | Q Now, the kink model also includes the holes that existed in |
| 11:34AM | 15 | the kink? |
| 11:34AM | 16 | A Yes. So the kink model includes the kink section. It |
| 11:34AM | 17 | includes the model of the kink holes. It also includes a model |
| 11:34AM | 18 | of the kink itself. |
| 11:34AM | 19 | The kink itself has some uncertainty as to what |
| 11:34AM | 20 | resistance to flow that would amount to, so I modeled the kink |
| 11:34AM | 21 | itself as a valve or a restriction that I could vary to vary |
| 11:34AM | 22 | that resistance to flow. |
| 11:34AM | 23 | Q Now, in your no-kink model, you used what I think was called |
| 11:35AM | 24 | a flow rate boundary. Here, you use a pressure boundary. |
| 11:35AM | 25 | Why did you use a pressure boundary here? |


| 11:35AM | 1 | A Pressure boundary was used here because we had a |
| :---: | :---: | :---: |
| 11:35AM | 2 | measurement, this PTM measurement that I am referring to. |
| 11:35AM | 3 | Because we had a known pressure, it made sense to |
| 11:35AM | 4 | use and leverage that pressure. |
| 11:35AM | 5 | MR. FIELDS: Let's go to TREX-011683.30.2. |
| 11:35AM | 6 | BY MR. FIELDS: |
| 11:35AM | 7 | Q Based on your analysis of the -- using the note -- sorry, |
| 11:35AM | 8 | let me step back. |
| 11:35AM | 9 | Using the kink model and performing the evaluation |
| 11:35AM | 10 | using the kink model, what conclusions did you reach about the |
| 11:35AM | 11 | flow rate coming from the kink holes during the period May 13 to |
| 11:35AM | 12 | May 20th? |
| 11:35AM | 13 | A So my approach was a little different for estimation of the |
| 11:35AM | 14 | kink leak flow rate. I chose to estimate a maximum flow rate |
| 11:36AM | 15 | during that period. I estimated that maximum to be 4,900 stock |
| 11:36AM | 16 | tank barreled per day. |
| 11:36AM | 17 | Q Why do you consider your kink leak flow rate estimate to be |
| 11:36AM | 18 | a maximum flow rate as opposed to a minimum or a best flow rate? |
| 11:36AM | 19 | A So, for the kink leak flow rate, I made a series of very |
| 11:36AM | 20 | conservative assumptions. So, given all of the conservatism |
| 11:36AM | 21 | built into my estimation of the kink leak flow rate, I can |
| 11:36AM | 22 | conceive of no possibility that could be greater than the number |
| 11:36AM | 23 | that I'm presenting today. |
| 11:36AM | 24 | Q And what were some of those assumptions or some of the |
| 11:36AM | 25 | inputs that you used that you believe lead you to a conservative |


| 11:36AM | 1 | or maximum flow rate? |
| :---: | :---: | :---: |
| 11:36AM | 2 | A So, the first assumption or the first conservative |
| 11:36AM | 3 | assumption would be, I used the maximum number of holes that |
| 11:36AM | 4 | were present during that time period. |
| 11:36AM | 5 | So, as we saw earlier, between May 13 and May 19, |
| 11:37AM | 6 | there were only two holes present. And then, on May 19th and |
| 11:37AM | 7 | 20TH, there were four holes present, or potentially four holes |
| 11:37AM | 8 | present. I used all four holes during the full period. |
| 11:37AM | 9 | In addition to that, $I$ used the final sizes of |
| 11:37AM | 10 | those holes. Those holes were created by erosion, so they |
| 11:37AM | 11 | likely grew. I used the sizes as they were on June 3rd when the |
| 11:37AM | 12 | riser was finally removed. |
| 11:37AM | 13 | In addition to that, I used or I modeled the leak |
| 11:37AM | 14 | holes upstream of the kinked section of the riser. So the holes |
| 11:37AM | 15 | would form at the highest velocity, at sort of the biggest |
| 11:37AM | 16 | restriction, and that would be the lowest pressure. |
| 11:37AM | 17 | I modeled them upstream of that restriction |
| 11:37AM | 18 | exposing them to the largest pressure available, which would |
| 11:38AM | 19 | result in the most conservative flow rate. |
| 11:38AM | 20 | In addition to that, there's one other |
| 11:38AM | 21 | conservative assumption, which is I used the maximum value of |
| 11:38AM | 22 | the PTM measurement during that period. So that gauge had |
| 11:38AM | 23 | indicated several pressure measurements during that period. I |
| 11:38AM | 24 | took the absolute maximum and I used that as my boundary |
| 11:38AM | 25 | condition. |


| 11:38AM | 1 | Q So did your calculations of the riser end flow and the kink |
| :---: | :---: | :---: |
| 11:38AM | 2 | leak flow give you a total estimated flow rate? |
| 11:38AM | 3 | A It does. |
| 11:38AM | 4 | MR. FIELDS: Why don't we pull up D-23866. |
| 11:38AM | 5 | BY MR. FIELDS: |
| 11:38AM | 6 | Q Were you able to calculate a final minimum, maximum, and |
| 11:38AM | 7 | best estimate of flow rate for the Macondo well for the period |
| 11:38AM | 8 | May 13th to 20th, 2010? |
| 11:39AM | 9 | And, if so, what was that? |
| 11:39AM | 10 | A I was able to calculate a possible range of flow rate |
| 11:39AM | 11 | between 24,900 stock tank barrels per day and 35,900, with a |
| 11:39AM | 12 | best estimated flow rate of 30,000 stock tank barrels per day. |
| 11:39AM | 13 | Q Based on your analysis, do you see any evidence that the |
| 11:39AM | 14 | flow rate during this time period was below approximately 25,000 |
| 11:39AM | 15 | stock tank barrels per day? |
| 11:39AM | 16 | A No. It could not have been below. |
| 11:39AM | 17 | Q Did you see any evidence that the flow rate could have been |
| 11:39AM | 18 | higher than approximately 36,000 barrels per day during the |
| 11:39AM | 19 | period of May 13th to May 20th? |
| 11:39AM | 20 | A No. Cannot have been higher. |
| 11:39AM | 21 | MR. FIELDS: Can we pull up trial transcript 11898.1. |
| 11:39AM | 22 | BY MR. FIELDS: |
| 11:39AM | 23 | Q This is also from Dr. Dykhuizen's critique, and it talks |
| 11:40AM | 24 | about your modeling or your model uses a pipe model that's half |
| 11:40AM | 25 | the size of the real pipe; so short, his numbers are off by a |


| 11:40AM | 1 | factor of 2. If you correct for that, he is getting about |
| :---: | :---: | :---: |
| 11:40AM | 2 | 60,000 barrels of oil per day similar to the calculations of |
| 11:40AM | 3 | Dr. Dykhuizen. |
| 11:40AM | 4 | I think this was actually from the opening |
| 11:40AM | 5 | statement. |
| 11:40AM | 6 | Do you agree with this statement? |
| 11:40AM | 7 | MR. CHAKERES: Your Honor, I'm going to renew the |
| 11:40AM | 8 | objection to that. Our motion for surrebuttal is a general |
| 11:40AM | 9 | motion, and we understood it applied to all experts. |
| 11:40AM | 10 | THE COURT: Well, does sound like we're getting into |
| 11:40AM | 11 | essentially what is surrebuttal, Mr. Fields, so I'm going to |
| 11:40AM | 12 | sustain the objection. |
| 11:40AM | 13 | MR. FIELDS: Thank you, Your Honor. |
| 11:40AM | 14 | BY MR. FIELDS: |
| 11:40AM | 15 | Q Based on your evaluation, why are you confident that the |
| 11:41AM | 16 | best estimate of flow rate from the Macondo well during the time |
| 11:41AM | 17 | period of May 13 to May 20 th was 30,000 stock tank barrels per |
| 11:41AM | 18 | day? |
| 11:41AM | 19 | A I'm confident because I performed extensive analysis. I |
| 11:41AM | 20 | looked at this issue for six months. I performed thousands of |
| 11:41AM | 21 | simulations looking at this issue, and ultimately I'm very |
| 11:41AM | 22 | confident in my answer that the best estimate would be 30,000 |
| 11:41AM | 23 | stock tank barrels per day. |
| 11:41AM | 24 | Q Why are you confident that the flow rate from the riser end |
| 11:41AM | 25 | and the kink leaks could not have exceeded 35,900 stock tank |



| 11:43AM | 1 | come with Dr. Momber next. That would be the only change we |
| :---: | :---: | :---: |
| 11:43AM | 2 | would make for tomorrow. |
| 11:43AM | 3 | THE COURT: Okay. |
| 11: 43AM | 4 | MR. BROCK: If that's okay. |
| 11: 43AM | 5 | THE COURT: All right. |
| 11:43AM | 6 | All right. Everyone have a good evening and we'll |
| 11: 43 AM | 7 | see you tomorrow. |
|  | 8 | (11:42 a.m., proceedings concluded.) |
|  | 9 |  |
|  | 10 |  |
|  | 11 |  |
|  | 12 |  |
|  | 13 |  |
|  | 14 |  |
|  | 15 |  |
|  | 16 |  |
|  | 17 |  |
|  | 18 |  |
|  | 19 |  |
|  | 20 |  |
|  | 21 |  |
|  | 22 |  |
|  | 23 |  |
|  | 24 |  |
|  | 25 |  |


| 0 | $1300{ }_{[1]}-2635: 10$ | 19［6］－2686：11， | 22 ［1］－2726：24 | $300 \text { [2] - 2633:12, }$ |
| :---: | :---: | :---: | :---: | :---: |
| $0{ }_{\text {［1］}}$－2664：24 | 1331 ［1］－2635：4 | 2688：16，2758：6， | 22nd［5］－2715：5， | 31 ［1］－2684：1 |
|  | 137 ［1］－2691：12 | 2761：5 | 2719：18，2719：23， | 31，000［1］－2757：10 |
| 1 | 13th［32］－2711：8， | 1997［1］－2702：15 | 2726：16，2726：23 | 316 ［1］－2631：4 |
|  | 2715：3，2715：9， | 19th［4］－2688：23， | 236603.1 ［1］－2640：6 | 32502［1］－2631：5 |
| 1 ［2］－2731：8，2735：1 | 2716：2，2716：10， | 2758：7，2758：11， | 24 ［6］－2661：15， | 333［1］－2633：15 |
| 1.2 ［1］－2741：6 | 2719：19，2719：22， | 2761：6 | 2661：20，2662：3， | 335［1］－2634：16 |
| $\begin{gathered} 10[5]-2630: 14, \\ 2648: 9,2694: 6, \end{gathered}$ | $\begin{aligned} & \text { 2722:10, 2723:14, } \\ & \text { 2725:18, 2726:4, } \end{aligned}$ |  | 2662：5，2666：20， 2667：17 | $35_{[1]}-2660: 9$ 35,000 [1] - 2662:8 |
| 2753:4, 2757:1 | $2726: 5,2726: 11,$ | 2 | 24,900 [3]-2711:18, |  |
| 10－CV－2771［1］－ $2630: 7$ | 2726：13，2726：25， 2727：7，2729：23， | $\begin{array}{r} 2[5]-2669: 14, \\ 2709: 18,271 \end{array}$ | 2733:21, 2762:11 | 2733:21, 2762:11, |
| 10－CV－4536［1］－ | 22：12，2732：2 | 2747：19，2763：1 | 24222.1 ［1］－2640：6 | 2763：25 |
| 2630：10 | 2732：22，2734：9， | 20 ［4］－2630：5， | 2717：8，2717：12 | 35TH［1］－2634：16 |
| 100［2］－2638：8， | 2739：1，2747：13， | 2638：4，2711：16， | 25，000［2］－2754：25， | 2764:6 |
| 2753：4 | 2748：4，2750：6， | 726：24 | 2762：14 | 36130 ［1］－2631：23 |
| 10003［1］－2631：8 | 2750：7，2751：21， | 20，000［1］－2757：9 | 25，100［3］－2754：21， | $3668[1]-2630: 24$ |
| 1001［1］－2634：10 | 2753：7，2753：8， | 20004［1］－2633：24 | 2754：25，2757：10 | $3700 \text { [2] - 2634:7, }$ |
| 10839［2］－2684：1， | 2762：8，2762：19， | 20005［1］－2633：20 | 250 ［3］－2681：8， | 2634:10 |
| 2686：9 | 2764：1 | 20006［1］－2635：14 | 2681：16，2682：1 | 38 ［1］－2684：22 |
| 10839．31．31．US［1］－ | 14 ［5］－2661：15， | 2002［3］－2702：17， | 257.67 ［1］－2681：3 | 39201［1］－2631：19 |
| 2684：2 | 2662：2，2692：25， | 2702：21，2703：1 | 25th［2］－2674：13， | 3rd［2］－2757：21， |
| 1084［1］－2684：21 | 2695：8，2696：16 | 20044［2］－2632：15， | 2689：25 | 2761：11 |
| 10931．2．1．US［2］－ | 1400 ［1］－2678：25 | 2632：24 | 25th－July［1］－ |  |
| 2687：19，2688：7 | 14271 ［1］－2632：15 | 2008［2］－2703：1， | 2689：25 | 4 |
| 11［1］－2701：12 | 1487.1 ［1］－2718：13 | 2703：12 | 26［2］－2689：22， |  |
| 11，700［1］－2750：20 | 14th［3］－2720：7， | 2010 ［26］－2630：5， | 2719：18 | 4［1］－2662：1 |
| 110 ［2］－2685：11， | 2720：8，2721：8 | 2644：6，2644：8， | 2642［1］－2636：4 | 4，900［1］－2760：15 |
| 2693：7 | 15 ［2］－2720：19， | 2644：12，2647：18， | 2682［1］－2636：5 | 40，000［1］－2747：6 |
| 1100 ［1］－2634：7 | 2749：9 | 2682：14，2688：5， | 26：15［1］－2642：8 | $41,000[1]-2750: 13$ |
| $11683{ }_{[1]}-2709: 17$ | 15－minute［1］－2700：2 | 2688：8，2688：16， | 26th [3]-2689:25, | $45[1]-2642: 8$ |
| 11898．1［1］－2762：21 | 15th［6］－2651：2， | 2689：22，2701：25， | 2694：8，2719：23 | 45，000［3］－2690：16， |
| 11：42［1］－2765：8 | 2656：7，2665：6， | 2704：2，2711：6， | 2700［1］－2636：7 | 2691：2，2691：9 |
| 12 ［24］－2656：10， | 2669:16, 2723:14, | $\begin{aligned} & \text { 2716:17, 2717:17, } \\ & \text { 2718:3, 2718:25, } \end{aligned}$ | 27th［2］－2638：1， | 45－foot－long［1］－ |
| 2659：11，2660：8， | 2725:19 | 2718：3，2718：25， | 2639：22 | 2758：20 |
| $\begin{aligned} & \text { 2660:15, 2661:1, } \\ & \text { 2663:6, 2663:13, } \end{aligned}$ | $\begin{gathered} 16[3]-2630: 5, \\ 2637: 2,2642: 6 \end{gathered}$ | $\begin{aligned} & \text { 2719:3, 2719:8, } \\ & \text { 2721:16, 2725:17, } \end{aligned}$ | 28,300 [2] - 2750:21, $2750: 24$ | $450[1]-2691: 6$ $\text { 4th }[2]-2338: 5,$ |
| $\begin{aligned} & \text { 2663:6, 2663:13, } \\ & \text { 2663:22, 2664:18, } \end{aligned}$ | $\begin{gathered} \text { 2637:2, 2642:6 } \\ 1615[1]-2635: 10 \end{gathered}$ | 2725：21，2727：15， | $\begin{gathered} 2750: 24 \\ 280[1]-2692 \end{gathered}$ | $\begin{aligned} & \text { 4th }[2]-2638: 5, \\ & 2638: 6 \end{aligned}$ |
| 2665：3，2668：11， | 1665［1］－2635：4 | 2736：9，2762：8， | $287 \text { [1] - 2638:3 }$ |  |
| 2668：17，2669：4， | 16th［17］－2669：15， | $2764: 2$ | 28:47 [1] - 2642:7 | 5 |
| 2669：13，2669：25， | 2670：18，2725：22， | 2012［2］－2704：19， 2704：20 | $29[1]-2647: 18$ |  |
| $\begin{aligned} & \text { 2670:6, 2674:22, } \\ & \text { 2688:10. 2688:14. } \end{aligned}$ | $\begin{aligned} & \text { 2730:10, 2730:15, } \\ & \text { 2731:5, 2731:8, } \end{aligned}$ | $\begin{gathered} \text { 2704:20 } \\ 2013[2]-2630: 5, \end{gathered}$ | 2D ${ }_{[1]}$－2727：17 | $5_{[4]}-2664: 24,$ |
| 2689:14, 2695:8, | 2732：8，2732：10， | 2637：2 | 3 | 2756：25 |
| 2697：3，2697：7， | 2738：24，2747：14， | 2020［1］－2635：14 |  | ［1］－2708：13 |
| 2747：19 | 2748：16，2750：14， | 20th［22］－2711：8， | $3.35[1]-2748: 15$ | 50，000［1］－2693：3 |
| 12,000[7]-2735:23, | 2750:15, 2751:22, 2753:7.2753:9 | $\begin{aligned} & \text { 2716:2, 2717:1, } \\ & \text { 2719:20, 2719:22, } \end{aligned}$ | $3.5[1]-2724: 8$ | $500[7]-2630: 23,$ |
| $\begin{aligned} & \text { 2746:21, 2746:24, } \\ & \text { 2747:8, 2750:8, } \end{aligned}$ | $\begin{gathered} \text { 2753:7, 2753:9 } \\ 17,000[1]-2747: 6 \end{gathered}$ | 2722:10, 2724:19, | $3.8[7]$－2660：8， 2661：4，2661：6， | $\begin{aligned} & \text { 2631:23, 2635:18, } \\ & \text { 2678:21, 2681:9, } \end{aligned}$ |
| 2750：16，2753：6 | 17，700［3］－2750：12， | 2725：23，2726：8， | 2661:14, 2664:19, | 2681：16，2682：1 |
| 120 ［1］－2638：6 | 2750：23，2751：1 | 2726：9，2726：24， | 2664:24, 2668:20 | 5000 ［1］－2633：6 |
| 1201－26－2633：23， | $1700{ }_{[1]}$－2634：23 | 2729：13，2729：23， | 30 ［4］－2643：19， | 501［1］－2631：15 |
| 2634：23 | 18 ［9］－2642：8， | 2732：24，2734：9， | 2648：24，2648：25， | 504［1］－2635：19 |
| 13 ［8］－2642：6， | 2656：10，2659：11， | 2748：4，2758：12， | $2720: 14$ | 514．04［1］－2681：5 |
| 2711：16，2724：19， | 2663：18，2663：23， | 2760：12，2762：8， | 30,000 [6] - 2692:4, | 54 ［2］－2747：14， |
| 2729:13, 2758:6, | 2668:11, 2669:25, | 2762：19，2763：17， | 2711:16, 2733:22, | 2751：15 |
| 2760：11，2761：5， | 2670：6，2674：22 | 2764：1 | 2762:12, 2763:17, | $55_{[1]}-2747: 14$ |
| 2763：17 | 188［1］－2631：18 | 20TH［1］－2761：7 | $2763: 22$ | $556[1]-2630: 23$ |
| 130 ［1］－2678：25 | 1885［1］－2632：5 | 21，200［1］－2751：7 | 30－plus［1］－2705：20 | 589－7781［1］－2635：19 |



| ```2631:11 anticipate [1] - 2638:2 anyway [1] - 2642:5 apologies [1] - 2687:20 apologize \([1]\) - 2638:8 appear [8]-2715:20, 2723:6, 2747:2, 2748:23, 2749:1, 2758:3, 2758:8 APPEARANCES [6] - 2630:17, 2631:1, 2632:1, 2633:1, 2634:1, 2635:1 appeared [2] - 2758:10, 2758:11 appendix [1] - 2705:13 applied [4]-2677:5, 2697:22, 2746:5, 2763:9 apply [1] - 2750:25 approach [4] - 2665:22, 2707:12, 2707:14, 2760:13 appropriately [1] - 2744:22 APRIL [1] - 2630:5 April [5] - 2715:5, 2719:18, 2719:23, 2726:16, 2726:23 aquifer [24]-2652:25, 2654:10, 2654:12, 2654:22, 2660:8, 2661:4, 2661:6, 2661:9, 2661:10, 2661:13, 2661:14, 2661:15, 2661:20, 2661:22, 2662:5, 2664:19, 2664:24, 2667:16, 2667:19, 2668:19, 2670:3, 2670:9, 2686:2 area [14]-2713:16, 2742:4, 2743:17, 2743:18, 2743:21, 2744:16, 2744:19, 2744:20, 2749:1, 2749:11 arguably [1] - 2706:10 arithmetic [9] - 2677:18, 2678:10, 2678:17, 2678:20, 2678:24, 2680:18, 2681:2, 2681:5, 2681:15 ASBILL [1] - 2634:9 assess [2]-2654:13, 2721:10 assessed [1] -``` | 2752：21 <br> ASSET［1］－2630：8 <br> assigned［1］－ <br> 2647：13 <br> assist $[1]$－2644：21 <br> assisted［1］－2750：3 <br> associated［1］－ <br> 2738：7 <br> assume［2］－2673：20， <br> 2742：14 <br> assumed［7］－ <br> 2667：11，2669：17， <br> 2690：16，2690：20， <br> 2690：21，2693：2， <br> 2756：16 <br> assuming［2］－ <br> 2692：3，2698：4 <br> assumption［5］－ <br> 2667：7，2668：19， <br> 2761：2，2761：3， <br> 2761：21 <br> assumptions［8］－ <br> 2663：3，2664：5， <br> 2664：19，2669：11， <br> 2669：18，2673：19， <br> 2760：20，2760：24 <br> assurance［16］－ <br> 2701：13，2703：2， <br> 2703：5，2703：8， <br> 2703：25，2704：21， <br> 2704：23，2705：23， <br> 2706：12，2706：21， <br> 2707：16，2708：22， <br> 2724：16，2724：21， <br> 2744：4 <br> attaches［1］－2726：17 <br> attachments［1］－ <br> 2674：13 <br> attempts［2］－ <br> 2682：19，2726：2 <br> attend［1］－2652：12 <br> attended［1］－2652：11 <br> attention［2］－ <br> 2638：12，2657：1 <br> attentions［1］－2645：5 <br> ATTORNEY［2］－ <br> 2631：21，2632：5 <br> August［1］－2644：12 <br> available $[7]-2667: 3$ ， <br> 2680：5，2699：9， <br> 2706：24，2732：13， <br> 2732：14，2761：18 <br> AVENUE $[4]$－ <br> 2630：20，2631：23， <br> 2633：23，2634：16 <br> average［11］－ <br> 2678：16，2678：17， <br> 2678：21，2678：24， <br> 2678：25，2747：20， <br> 2751：3，2754：13， | $\qquad$ <br> 2754：19 <br> averages［1］－2678：22 avoid［2］－2686：22， 2708：23 |  |  |
| :---: | :---: | :---: | :---: | :---: |



UNOFFICIAL TRANSCRIPT


UNOFFICIAL TRANSCRIPT



| 2675:12, 2697:6, | 2659:12, 2659:23, | 2652:21, 2653:3, | EISERT [1] - 2633:19 | 2634:19 |
| :---: | :---: | :---: | :---: | :---: |
| 2722:21 | 2660:3, 2660:12, | 2653:4, 2653:11, | either [11] - 2647 | ENFORCEMENT [1] - |
| documentation [1] - | 2662:15, 2665:9 | 2662:19, 2662:20, | 2652:24, 2654:21 | 2632:19 |
| 2710:8 | 2666:19, 2668:22, | 2671:9, 2671:20 | 655:10, 2667:19 | ENGEL [1] - 2632:22 |
| documenting [1] - | 2669:12, 2670:17, | 2678:8, 2679:21 | 6:25, 2687:10 | engineer [22] - |
| 2710:12 | 2671:6, 2671:17 | 2687:2, 2687:5, | 2688:6, 2689:14 | 2643:17, 2643:18, |
| documents [2] | 2672:4, 2673:4 | 2689:25, 2691:15, | 2703:6, 2748:25 | 2643:19, 2643:22, |
| 2717:24, 2718:1 | 2674:10, 2674:21, | 2701:25, 2702:3, | elevation [2] - 2737:9, | 2647:12, 2647:16, |
| DOMENGEAUX [1] - | 2675:13, 2675:22, | 2703:2, 2703:25, | 2738:16 | 2649:13, 2653:8, |
| 2630:22 | 2676:19, 2677:12, | 2706:1, 2710:14, | elevations [1] - | 2678:7, 2681:25, |
| dominant [20] - | 2678:2, 2679:20, | 2711:6, 2711:15, | 2736:14 | 2683:7, 2698:8, |
| 2705:20, 2713:12, | 2680:20, 2682:4, | 2715:7, 2721:16, | elicited [1] - 2680:14 | 2701:13, 2701:14, |
| 2719:11, 2720:5, | 2682:10, 2684:23, | 2722:9, 2724:18, | ELLIS [3] - 2633:9, | 2703:2, 2703:5, |
| 2720:13, 2720:15, | 2696:7, 2696:8, | 2725:17, 2729:22, | 2633:14, 2633:18 | $2705: 23,2706: 12$ |
| 2720:16, 2720:18, | 2699:2, 2699:15, | 2730:4, 2732:7, | ELM [1] - 2634:23 | 2708:22, 2724:16, |
| 2720:19, 2720:21, | $0: 6,2700: 15$ | $733: 8,2733: 20$ | elsewhere [1] - 2683:5 | 2724:21 |
| 2721:23, 2721:24, | 01:7, 2709:2 | $48: 4,2748: 18$ | email [12] - 2656:23, | engineering [15] - <br> 2643:2, 2643:3, |
| 2724:12, 2724:15, | 2709:7, 2718:10 | 2750:10, 2752:3, | 2671:16, 2671:24, | 2643:4, 2645:10, |
| 2731:12, 2731:13 | 2718:15, 2718:18, | 2760:11, 2760:15 | 2673:3, 2674:8 | 2675:8, 2675:23, |
| DON [1] - 2633:5 | 2718:23, 2721:14, | 2761:4, 2761:8, | 2674:11, 2674:12, | 2675:24, 2676:10, |
| DONALD [1] - 2634:20 | 2731:1, 2739:17, | 2761:22, 2761:23, | 2687:23, 2688:22, | 2702:15, 2702:17, |
| done [11]-2641:7, | $\begin{aligned} & \text { 2745:21, 2762:23, } \\ & \text { 2763:3, 2764:19, } \end{aligned}$ | $\begin{aligned} & 2762: 14,2762: 18 \\ & 2763: 16,2764: 1 \end{aligned}$ | 2696:25 | $\begin{aligned} & 2703: 19,2704: 9 \\ & 2704: 14.2704: 20 \end{aligned}$ |
| 2661:5, 2661:7, | 2764:20, 2764:21, | $\text { DWH }_{[1]}-2739: 11$ | emails [1] - 2697:1 | engineers [18] - |
| 2664:6, 2665:17, | 2764:22, 2764:23, | Dykhuizen [4]- | emphasize [1] - | engineers [18] - <br> $2643 \cdot 9,2645 \cdot 9$ |
| 2669:13, 2669:15, | $2764: 24,2765: 1$ | Dykhuizen [4] - | 2751:9 | 2643:9, 2645:9, $2652: 14,2653: 5$ |
| $\begin{aligned} & 2679: 24,2700: 1 \\ & 2710: 16,2722: 25 \end{aligned}$ | drawn [3] - 2664:8 | $2745: 21,2763: 3$ | empirical [1] - 2707:8 <br> enabling [1] - 2707:19 | 2653:14, 2653:19, |
| dots [4]-26 | 2702:3, 2711:14 | Dykhuizen's [4] - | encounter [6] | 2654:25, 2675:9, |
| 2669:20, 2732:1, | dress [1] - 2676:7 | 2718:10, 2718:18, | 2648:2, 2653:1, | 2676:10, 2696:9, |
| 2732:5 | drill [5] - 2650:22 <br> 2741:24, 2742 |  | 2655:8, 2672:10, | 2698:16, 2698:21, |
| double [12] - 2656:9, 2725:5, 2725:10, | $2743: 14,2743: 18$ | $2693: 13$ | $2672: 18,2673: 1$ | $704: 8,2706: 21,$ |
| 2725:17, 2725:18, | drillers [4] - 2648:2, |  | encountered [3] | 2707:16, 2744:5 |
| 2725:24, 2750:11, | 2672:9, 2672:18, | $E$ | $2654: 8$ | Engineers [1] - |
| 2750:12, 2751:17, | 2672:23 |  | end [40]-2645:5 | 2643:21 |
| $\begin{aligned} & 2751: 21,2752: 1, \\ & 2753: 7 \end{aligned}$ | DRILLING [1] - 2634:4 <br> drilling [10] - 2647:13, | E\&P [1] - 2635:8 early [10] - 2645:5, | 2650:18, 2651: | enlargement [1] - 2759:2 |
| doubt [1] - 2672:4 | 2648:2, 2672:18, | $2650: 18,2650: 20$ | $\begin{aligned} & 2655: 24,2660: 8, \\ & 2669: 24,2716: 1, \end{aligned}$ | enquire [1] - 2676:9 |
| DOUGLAS [1] - | 2672:25, 2698:6, | 2665:1, 2667:10, | 2716:5, 2716:20 | ensuing [1] - 2665: |
| 2632:9 | 2715:5, 2715:15, | 2669:17, 2682:14, | 2716:21, 2716:22, | ensure [1] - 2695:14 |
| down [19] - 2646:15, | 2726:17, 2726:18, $2735: 2$ | 764:20 | 2717:20, 2717:21, | ensures [1] - 2701:14 |
| 2680:20, 2689:4, |  | earth [1] - 2646:12 | 2722:5, 2724:18, | ensuring [1] - 2751:4 |
| 2691:5, 2714:14, | $\begin{aligned} & \text { drive [2] - } 2655: 10, \\ & 2655: 15 \end{aligned}$ | easily [2] - 2676:25 | $2728: 25,2729: 4$ | entire [1] - 2687:23 |
| $\begin{aligned} & \text { 2715:23, 2716:11, } \\ & \text { 2719:19, 2724:2, } \end{aligned}$ | driven | 2677:4 | 2729:7, 2730:10, | entrains [1] - 2713:17 |
| 2719:19, 2724:2, | drives [2] - 2656:1, | EAST [1] - 2631:18 | 2730:17, 2732:13, | $\begin{aligned} & \text { ENVIRONMENT [1] - } \\ & \text { 2632:18 } \end{aligned}$ |
| 2728:4, 2728:5, | 2664:1 | EASTERN [1] - 2630:1 | $2734: 12,2734: 15$ | environment [2] - |
| 2731:10, 2737:2, | drop [8] - 2677:5 | easy [1] - 2719:9 | 2734:19, 2735:5, | 2738:4, 2738:8 |
| 2738:5, 2741:24, | 2698:22, 2712:6, | educational [1] - | 2747:11, 2749:12, | ENVIRONMENTAL [1] |
| 2747:8 | 2743:1, 2743:3 | 2702 | 2750:1, 2750:5, | - 2632:19 |
| downstream [1] - | 2743:6, 2743:25, | EDWARDS [1] - | 2754:8, 2757:6 | environmental [2] - |
| 2734:25 | 2745:25 | 263 | 2757:7, 2757:9, | 2738:5, 2753:24 |
| DOYEN [1] - 2634:13 | duly [2]-2642:10, | effect [3] - 2646:6 | 2757:11, 2757:12 | Episcopal [2] - |
| Dr [65] - 2637:15, | 2700:7 | 2649:20, 2752:11 | 2762:1, 2763:24 | 2643:25, 2644 :1 |
| 2640:11, 2641:16, | Dupree [2] - 2652:13, | effective [1] - 2679:5 | ended [1] - 2747:7 | equal [2] - 2649:22, |
| 2642:20, 2642:24, | 2683:4 | effort [1] - 2697:10 | energy [4] - 2653:1, | 2686:5 |
| 2643:17, 2644:7, | duration [1] - 2725:2 | efforts [4] - 2656:14, | 2654:18, 2654:19, | equations [2] - |
| 2644:13, 2647:19, | during [51] - 2647:13, | 2664:23, 2666:2, | 2654:20 | 2707:10, 2734:4 |
| 2656:24, 2657:16, | 2648:2, 2649:10, | 2757:19 | ENERGY [2] - 2634:6, | equivalent [1] - |

UNOFFICIAL TRANSCRIPT



| follow-up [1] - 2691:19 | G | $\begin{aligned} & \text { 2704:5 } \\ & \text { geomechanical }[1] \text { - } \end{aligned}$ | GRAND [1] - 2634:16 <br> GRANT [1] - 2634:15 | HEARD $_{[1]}-2630: 15$ hearing $[1]-2657: 5$ |
| :---: | :---: | :---: | :---: | :---: |
| followed [3] - <br> 2713:12, 2713:19, <br> 2713:24 | Galápagos [1] <br> 2653:13 <br> Gas [1] - 2704:4 | 2647:4 <br> geomechanics [8] - | graph [1] - 2669:6 <br> greater [1]-2760:22 | $\begin{aligned} & \text { hearsay }[6]-2657: 11, \\ & 2658: 9,2658: 10, \\ & 2658: 21,2658: 24, \end{aligned}$ |
| following [2] 2674:11, 267 | $\begin{gathered} \text { gas }[46]-2677: 1, \\ 2702: 20,2702: 2 \end{gathered}$ | $\text { 47:8, } 2647: 10$ | 2738:23 | 2681:11 |
| follows [2] - 2642:11, | 2705:5, 2706:15 | 2659:14, 2703:19 | 2631:7 | $2738: 4,2738: 8,$ |
| 2700:8 footage $[2]-2717: 6$, | 2708:15, 2708:17 | geometric | grew [1] - 2761:11 | 53:23, 2753:24 |
| $\begin{aligned} & \text { footage [2] - 2717:6, } \\ & 2717: 7 \end{aligned}$ | $\begin{aligned} & \text { 2712:4, 2712:10, } \\ & \text { 2712:13, 2712:15, } \end{aligned}$ | $\begin{aligned} & \text { 2677:19, 2678:17, } \\ & \text { 2678:21, 2678:25, } \end{aligned}$ | grey [1] - 2748:24 Gringarten [1]- | $\begin{array}{r} \text { height [3] - 2737:8, } \\ 2738: 24,2738: 25 \end{array}$ |
| $\begin{aligned} & \text { FOR }[8]-2630: 19, \\ & 2631: 21,2632: 3, \\ & 2632: 13,2633: 3, \\ & 2634: 3,2634: 18, \\ & 2635: 7 \end{aligned}$ | 2712:18, 2712:25 | 2:8, 2742:13, | 2640:11 | held [2]-2649:22, |
|  | $\begin{aligned} & \text { 2713:13, 2713:19, } \\ & \text { 2713:20, 2714:8, } \end{aligned}$ | $\begin{aligned} & 742: 23,2742: 24, \\ & 743: 8,2743: 11, \end{aligned}$ | gross [1] - 2646:2 | $\begin{aligned} & \text { 2662:17 } \\ & \text { elp [8] - 2645:14, } \end{aligned}$ |
|  | 2714:9, 2719:11, $2720: 5,2720: 11,$ | $\begin{aligned} & \text { 2744:1, 2744:15, } \\ & 2746: 4 \end{aligned}$ | $\begin{aligned} & \text { 2728: } \end{aligned}$ | $2687: 25,2705: 2,$ |
| $\begin{aligned} & \text { form }[7]-2643: 18, \\ & 2643: 19,2665: 20, \end{aligned}$ | 20:13, 2720:15 | geometries [6] | Group [1] - 2722:24 | 42:11, 2743:7 |
|  | 720:19, 2720:20, | 2742:18, 2742:20, | group's [1] - 2718:7 | 2752:20 |
| $\begin{aligned} & \text { 2712:16, 2712:20, } \\ & \text { 2754:18, 2761:15 } \end{aligned}$ | $\begin{aligned} & \text { 2721:5, 2721:11, } \\ & \text { 2721:19, 2721:20 } \end{aligned}$ | $\begin{aligned} & \text { 2742:21, 2744:6 } \\ & \text { 2756:12, 2756:14 } \end{aligned}$ | guess [3] - 2680:16, | $\begin{aligned} & \text { helped }[4]-2713: 5, \\ & 2714: 20,2721: 15, \end{aligned}$ |
| $\begin{aligned} & \text { formation }[2] \text { - } \\ & \text { 2648:13, 2651:24 } \end{aligned}$ | $721: 24,2722: 1$ | geometry [9] - | 2731:3, 2741:8 | 2723:18 |
|  | 2722:14, 2722:18 | 2741:20, 2741:22 | Gulf [7] - 2643:1 | helping [1]-2688:2 |
| $\begin{aligned} & \text { formations [3] - } \\ & 2651: 15,2655: 15, \\ & 2664: 15 \end{aligned}$ | 23:23, 2723:24 | 3.1.2743:9 | 2647:4, 2652:15, | Hempstead [1] - |
|  | $\begin{aligned} & 2724: 12,2725: 16 \\ & \text { 2728:9, 2731:12, } \end{aligned}$ | $\begin{aligned} & 743: 1,2743: 9 \\ & 743: 11,2743: 13 \end{aligned}$ | 2653:15, 2683:5, | 2644:1 |
| formed [1] - 2702:5forth [5]-2656:8, | 2732:4, 2734:5 | 2743:15 | 2715:1, 2736:9 | 2670:17 |
|  | 2736:21 | geophysicists [1] 2661:24 | 2635:4 | HERMAN [3] |
| $\begin{aligned} & \text { forth [5] - 2656:8, } \\ & 2702: 6,2709: 9, \\ & 2721: 5,2745: 5 \end{aligned}$ <br> forward [5] - 2655:5, | $\begin{aligned} & 2720: 5,2720: 15 \\ & 2720: 19 \end{aligned}$ | $\begin{aligned} & \text { geospacial } \\ & 2712: 9 \end{aligned}$ | H | high [23]-2646:17, |
| $\begin{aligned} & 2656: 4,2656: 5 \\ & 2720: 9,2723: 22 \end{aligned}$ <br> founder [1] - 2701:7 | GASAWAY | given [4]-2654:18 | half [1] - 2762:24 | 655:7, 2656:10, |
|  | $\begin{aligned} & \text { 2633:18 } \\ & \text { gauge }[3]-2668: 3 \end{aligned}$ | $\begin{aligned} & \text { 2690:21, 2693:21, } \\ & 2760: 20 \end{aligned}$ | HALLIBURTON ${ }_{[1]}$ - <br> 2634:18 | $\begin{aligned} & \text { 2661:6, 2661:10, } \\ & \text { 2661:18, 2664:13 } \end{aligned}$ |
| four [9] - 2661:8, $2661.13,2678: 5$ | 2669:22, 2761:22 | GLADSTEIN [1] | hand [10]-2666:21, | 666:6, 2667:18, |
| $\begin{aligned} & \text { 2661:13, 2678:5, } \\ & \text { 2716:10, 2724:9, } \end{aligned}$2761:7, 2761:8 | $\begin{array}{\|c} \text { general [11] - 2646:5, } \\ \text { 2647:16, 2647:21, } \end{array}$ | $\begin{aligned} & \text { 2632:22 } \\ & \text { GMBH [1] - 2630:8 } \end{aligned}$ | $2667: 25,2668: 5$ | 2680:6, 2687:17, |
|  | 2701:21, 2705:3 | goal [3] - 2710:2 | 2707.4, 2707•5 | 688:17, 2710:2, |
| fourth [1] - 2754:10 | 707:4, 2732:15 | 2743:1, 2743:3 | 39:2, 2739 | 14:13, 2727:2 |
|  | 33:15, 2734:7 | GODWIN [3] | 739:8 | 2727:24, 2739:9 |
| $\begin{gathered} \text { fracture [3]-2664:15, } \\ 2664: 16,2684: 13 \end{gathered}$ | 2734:23, 2763:8 | 2634:19, 2634:20 | handful [1] - 2638:4 | higher [28]-2654:15, |
|  | GENERAL [1] - 2632:5 | 635: | happy [1] - 2641:9 | 2655:5, 2655:21, |
| fracturing [1] - | GENERAL'S ${ }_{[1]}$ - 2631:21 | gold [1] - 2744 | hard [4]-2659:24, | 2655:24, 2657:23, <br> 2659:1, 2659:3 |
| FRANK $_{[1]}-2631: 18$ | generally | $\begin{aligned} & \text { government }[24] \\ & \text { 2639:11, } 2640 \end{aligned}$ | $2670: 11,2677$ | $659: 5,2661: 17$ |
| frankly [1] - 2679:16 | 2711:11, 2714:15, | 2656:18, 2658:3, | HARIKLIA ${ }^{[1]}$ | 664:5, 2664:10, |
| frequently [1] - | $2722: 15,2746: 25$ | 2662:17, 2662:25 | 2633:10 | 6668:19, 2670:2, |
|  | 758:15 | 63:12, 2665:19 | HARVEY [1] - 2632:23 | 683:17, 2683:22, |
| FRILOT ${ }_{[1]}-2634: 5$ <br> full [8]-2710:17, | generate [1] - 2673:13 generated [1] - | $\begin{aligned} & 73: 12,2674: 3 \\ & 74: 5,2674: 13 \end{aligned}$ | $\mathrm{HAYCRAFT}_{[1]}$ - | $\begin{aligned} & \text { 2685:5, 2686:6, } \\ & 2692: 21,2695: 1 \end{aligned}$ |
| 2712:25, 2716:10, | $2747: 24$ | 675:5 | $2$ | $721: 21,2723: 2$ |
| $\begin{aligned} & \text { 2716:13, 2719:23, } \\ & 2720: 8,2721: 8, \end{aligned}$ | Geological [1] | 87:3, 2687:6 | heading [2]-2730:21, | 730:11, 2762:18, |
|  | 2671:7 | 87:11, 2695:8 | $2730: 24$ | 762:20, 2764:3, |
| $\begin{aligned} & 2761: 8 \\ & \text { fully }[1]-2717: 14 \end{aligned}$ | geological [3] - <br> 2661:7, 2696:20 | 96:8, 2697:10, | health $[2]-2643: 3$, | 2764:6 |
| function [1] - 2647:14 | 2697:17 | 2717:24, 2718:2 | $\begin{aligned} & \text { 2643:5 } \\ & \text { hear [2] - 2658:13, } \end{aligned}$ | $2683: 24,2715: 9,$ |
| $\begin{aligned} & \text { functionality }[1] \text { - } \\ & 2741: 4 \end{aligned}$ | geologists [3] - | nment's [2] | $2745:$ | 2751:5, 2761:15 |
|  | 2652:15, 2661:24 2667:13 | $\begin{array}{r} \text { 2687:13, } 2700: 22 \\ \text { governmental }[1] \end{array}$ | heard [7] - 2649:1, | highlight ${ }_{[1]}$ - 2729:16 highlighted [6] - |
| fundamental [1] - | 2667:13 <br> geology [1] - 2703:19 | governmental [1] - $2718: 4$ | 2651:17, 2661:1, | $\begin{aligned} & \text { highlighted [6] - } \\ & \text { 2673:6, 2680:20, } \end{aligned}$ |
|  | geomarket $[1]$ - | gradient [1] - 2664:16 | 2744:21, 2744:23 | 2680:21, 2749:1, |


| 2750:20, 2757:22 | HORIZON [1] - 2630:4 |  | increase [12] - | 2737:13, 2740:9, |
| :---: | :---: | :---: | :---: | :---: |
| highlighting ${ }_{[1]}$ - | Horizon's [1] - |  | 2649:23, 2650:1, | , 2752:6, |
| 2677:23 | 2727:15 | idea [2]-2638:1, | 2654:6, 2654:10 | 2752:9, 2752:10, |
| HIMMELHOCH [3] - | horizons [2] - | 2747:16 | 2654:14, 2655:16, | 2752:11 |
| 2632:23, 2640:13, | 2644:25, 2650:24 | identical ${ }_{[1]}-2731: 11$ | 661:1, 2661:13, | inputs [19]-2645:20, |
| 2640:19 | horizontal [1] - | identically ${ }^{[1]}$ - 2732:9 | 2664:21, 2712:18, | 2653:4, 2694:2, |
| Himmelhoch [1] - | 2711:23 | IL [1] - 2633:12 | 2751:7 | 97:21, 2699:15, |
| 2640:12 | Horner [7]-2665:21, | illustrated [1] - 2667:9 | increased [4] - | 2699:17, 2736:3, |
| $\begin{aligned} & \text { hired }[2]-2701: 17, \\ & 2706: 7 \end{aligned}$ | $\begin{aligned} & \text { 2666:21, 2666:22, } \\ & \text { 2666:23, 2668:7, } \end{aligned}$ | illustrating [1] 2666:9 | $\begin{aligned} & \text { 2664:7, 2686:2, } \\ & 2753: 3 \end{aligned}$ | $\begin{aligned} & \text { 2736:7, 2736:11, } \\ & \text { 2736:16, 2738:14, } \end{aligned}$ |
| history [3]-2705:19, | 2673:17, 2673:18 | image [1] - 2758:1 | increasing [3] - | 2741:7, 2741:16, |
| 2705 | host [1] - 2706: | imagine [1] - 2712 | 2649:21, 2654:12, | 46:13, |
| hit ${ }_{[1]}-2713: 15$ | hot [1] - 2737:1 | immediate [1] - | 2712:15 | 2751:12, 2753:17, |
| hits [1]-2715:23 | hours [9]-2642:6, | 2670:17 | incredibly [1] - | 2755:3, 2760:25 |
| HOLDINGS [1] - | 2642:8, 2666:20, | immediately [1] - | 2755:16 | inputted [1] - 2739:24 |
| 2634:3 | 2667:17, 2710:11, | 2665:25 | indicate [3] - 2695:16, | insensitive [1] - |
| holdup [2] - 2713:1, | 2719:17, 2726:22, | impact [1] - 2755:10 | 2745:7, 2751:24 | 2754:23 |
| 2713:2 | 2731:7, 2747:19 | implicit [1] - 2667:23 | indicated [6] - | inside [2] - 2651:20, |
| holdups [1] - 2712:23 | housekeeping [1] - | important [11] - | 2728:13, 2729:12, | 2712:5 |
| hole [6] - 2651:14, | 2764:14 | 2672:20, 2689:5, | 2745:6, 2751:16, | installed [1] - 2682:17 |
| 2651:16, 2694:23, | HOUSTON ${ }^{2}$ - | :2, 2725:25, | 2756:8, 2761:23 | instantaneous [1] - |
| 2695:1, 2758:7, | 2634:11, 2635:5 | 2732:11, | indicates [2]-2716:6, | 2669:17 |
| 2758:10 | Houston [3] - | :17, 2741:22, | 2759:4 | instructions [1] - |
| holes [19]-2757:23, | 2642:25, 2671:20, | 43:21, 2754:22, | indication [1] - 2756:5 | 2645:12 |
| 2757:25, 2758:5, | 2702:15 | 2756:16 | individuals [3] - | integrity [20]-2645:6, |
| 2758:8, 2758:10, | Hseih [5]-2671:6, | improving [1] - | $\begin{aligned} & \text { 2683:4, 2683:12, } \\ & \text { 2683.21 } \end{aligned}$ | 2651:13, 2651:15, <br> 2655:6, 2655:13, |
| $\begin{aligned} & \text { 2759:14, 2759:17, } \\ & \text { 2760:11, 2761:3, } \end{aligned}$ | $\begin{aligned} & \text { 2672:4, 2692:15, } \\ & \text { 2692:20, 2696:8 } \end{aligned}$ | $\begin{gathered} 2703: 16 \\ \text { IN } \mathbf{[ 3 ]}-2630: \end{gathered}$ | 2683:21 <br> induced [4] - 2728:18, | $\begin{aligned} & \text { 2655:6, 2655:13, } \\ & \text { 2655:18, 2656:1, } \end{aligned}$ |
| 2761:6, 2761:7, | huge [1] - 2708:2 | 2630:5, 2630:7 | 2728:22, 2730:7 | 2661:16, 2663:25, |
| 2761:8, 2761:10, | hum [1] - 2689:9 | INC [5] - 2630:12 | Industries [1] - | 2664:3, 2665:18, |
| 2761:14 | hump [4]-2739:2, | 2633:3, 2634:4, | 2643:15 | 2666:11, 2671:9, |
| homogenous [2] - | 2739:8, 2739:10 | 634:5, 2634:19 | industry [5] - 2643:12, | 75:2, 2675:3, |
| 2678:24, 2679:2 | hundreds [3] - | incident [14] - 2644:3, | 2702:21, 2702:22, | 682:22, 2683:23, |
| honestly [1] - 2653:17 | 2710:11, 2719:17 | :4, 2644:6, | 2707:21, 2755:18 | 695:13, 2695:17, |
| honor [1] - 2657:2 | Hunter [1] - 2673:24 | 44:21, 2644:22, | information [9] - | 2695:24 |
| Honor [35] - 2637:10, 2637:22, 2637:24, | Hunter/Secretary [1] $2673 \cdot 7$ | 2645:19, 2649:10, 2650:19, 2651:13, | $\begin{aligned} & \text { 2666:10, 2690:21, } \\ & \text { 2705:7, 2710:7, } \end{aligned}$ | intense [1] - 2723:5 intensity [1] - 2723:4 |
| 2638:24, 2640:13, | Hu | 8: | 2714:24, 2737:3, | interest [2]-2683:16, |
| 2641:11, 2641:14, | 2696:2 | 678:8, 2679:21, | 2743:13, 2744:9, | 2757:24 |
| 2641:22, 2642:15, | Hutchison [4] | 2687:5 | 2745:23 | INTERESTS ${ }_{[1]}$ - |
| 2649:3, 2658:1, | 87:25, 2688:8 | include [4]-2734:17, | informed [1] - 2687:10 | 2631:21 |
| 2658:3, 2658:21, | 2688:23, 2697:1 | 2737:10, 2758:19, | initiated [2] - 2727:8, | internal [2] - 2643:10, |
| 2676:4, 2681:10, | hydraulic [13] - | 2759:9 | 2727:9 | 2652:12 |
| 2682:5, 2687:20, | 2743:12, 2743:16, | included [1] - 2669:4 | inlet [2] - 2753:22, | internally [1] - 2675:6 |
| 2696:4, 2698:13, | 44:1, 2744:4, | includes [7]-2647:9, | 2758:21 | interpretation [4] - |
| 2699:11, 2699:21, | 44:7, 2744:8, | 2735:3, 2737:11, | inner ${ }_{[1]}$ - 2742:4 | 2665:14, 2666:23, |
| 2699:25, 2700:5, | 44:9, 2744:12 | 59:14, 2759:16, | inordinate [1] - | 2675:5, 2695:15 |
| 2700:19, 2700:25, | 2744:20, 2744:22, | 2759:17 | 2747:24 | interrelated [1] - |
| 2701:1, 2709:2, | $2745: 21,2745: 24$ | including [8] | input [31]-2646:24, | 2727:2 |
| 2709:17, 2709:22, | hydrocarbons [1] - | $2645: 16,2652:$ | 2646:25, 2648:7, | intervals [1]-2678:16 |
| 2745:1, 2745:3, | 2701:14 | 2683:21, 2693:17, | 2649:14, 2649:19, | intricately ${ }^{[1]}$ - $2733: 3$ |
| 2745:6, 2763:7, | hydrody | 694:20, 2709:4, | 2650:6, 2650:14, | introduce [1] - 2701:5 |
| 2763:13, 2764:7 | 2707:13, 2728:18, | 2711:24, 2740:25 | 2650:15, 2670:15, | inverse [2]-2648:10, |
| HONORABLE [1] - | 2730:7 | inconsistent [1] - | 2672:20, 2673:24, | 2723:4 |
| 2630:15 | hydrodynamically [1] | 2668:25 | 2674:17, 2676:21, | investigate [2] - |
| hood [1] - 2734:4 | - 2728:22 | incorporate [2] - | 2691:24, 2693:8, | 2728:16, 2735:11 |
| hope [1] - 2637:22 | hydrological [1] - | 2707:7, 2708:4 | 2693:10, 2693:21, | investigated [1] - |
| HOPE [1] - 2633:15 | 2693:10 | incorrect [5] - 2655:2, | 2696:13, 2697:22, | 2728:19 |
| hopefully [2] 2688:12, 2764:20 | hypothesis [1] - | 2659:17, 2670:15, | $\begin{aligned} & 2698: 9,2735: 10, \\ & 2736: 17,2737: 5, \end{aligned}$ | investigation [8] 2705:18, 2730:4 |



UNOFFICIAL TRANSCRIPT

| limited [1] - 2667:16 | 2670:6, 2671:15, | 2632:4 | 2743:16 | 2760:18, 2761:1, |
| :---: | :---: | :---: | :---: | :---: |
| line [21] - 2648:11, | 2672:15, 2673:2, | low [8] - 2646:19, | management [2] | 761:3, 2761:21 |
| 2667:9, 2689:1, | 2673:22, 2674:7, | 653:7, 2655:4 | 2703:16, 2704:8 | 2761:24, 2762:6 |
| 2689:10, 2723:21, | 2674:15, 2677:10, | 2659:20, 2679:9, | manager [1] - 2704:5 | MAZE [1] - 2631:22 |
| 2738:18, 2738:21, | 2677:15, 2677:23, | 2712:10, 2712:1 | managers [1] - | McAughan [4] - |
| 2738:23, 2738:25, | 2678:13, 2683:25, | lower [10]-2655:21, | 2654:25 | 2647:1, 2647:11, |
| 2739:21, 2739:23, | 2686:8, 2688:7, | 666:21, 2668:16, | manipulation [1] | 2647:12, 2677:9 |
| 2740:2, 2740:4, | 2696:11, 2696:22, | 2680:5, 2712:23, | 2667:2 | MCCUTCHEN [1] - |
| 2740:5, 2740:8, | 2696:24, 2702:18, | 714:15, 2721:19, | manuals [1] - 2744:12 | 2635:12 |
| 2740:10, 2740:11, | 2703:3, 2708:17, | 2723:24, 2751:1, | map [1] - 2661:8 | MDB [1] - 2660:10 |
| 2748:13, 2751:1, | 2712:8, 2715:10, | 2751:7 | mapped [1] - 2661:8 | MDL-2179 [1] - 2630:4 |
| 2753:2, 2755:5 | 2725:11, 2729:18, | lowest [1] - 2761:16 | mapping [1] - 2661:25 | mean [22]-2640:1, |
| lines [2]-2667:24, | 2730:1, 2733:1, | LP [1] - 2635:8 | marks [1] - 2660:18 | 2643:5, 2643:13, |
| 2701:16 | 2734:21, 2739:2 | LUIS [1] - 2634:14 | MARTINEZ ${ }_{[1]}$ | 2658:8, 2660:17, |
| link [4]-2710:14, | 2752:9 | lunch [1] - 2764:25 | 2634:20 | 2712:3, 2722:12, |
| $\begin{aligned} & 2729: 7,2731: 15, \\ & 2733: 8 \end{aligned}$ | $\begin{gathered} \text { looked [12] - 2665:1, } \\ 2666: 1,2700: 20, \end{gathered}$ | LUNDY [3]-2631:14, | Masters [1]-2702:17 match [28]-2674:13, | 2724:23, 2725:7, |
| Linked [1] - 2731:4 | 2703:9, 2713:13, | LUXENBERG ${ }_{[1]}$ - | 2691:2, 2691:8, | 2729:15, 2733:4, |
| $\begin{aligned} & \text { linked }[2]-2731: 14, \\ & 2733: 3 \end{aligned}$ | $\begin{aligned} & \text { 2717:10, 2719:23, } \\ & \text { 2736:6, 2738:22, } \end{aligned}$ | 2631:7 | 2691:11, 2691:14, | $\begin{aligned} & 2738: 1,2738: 3 \\ & 2738: 4,2742: 23, \end{aligned}$ |
| $\begin{aligned} & \text { liquid [11] - 2712:4, } \\ & \text { 2712:11, 2712:25, } \end{aligned}$ | $\begin{aligned} & 2738: 23,2746: 16, \\ & 2763: 20 \end{aligned}$ | M | $\begin{aligned} & \text { 592:14, 2693:18, } \\ & 694: 3,2694: 12, \end{aligned}$ | $\begin{aligned} & \text { 2747:20, 2747:21, } \\ & 2755: 14,2756: 13 \end{aligned}$ |
| $\begin{aligned} & \text { 2713:1, 2713:2, } \\ & \text { 2713:12, 2713:20, } \end{aligned}$ | $\begin{aligned} & \text { looking [26] - 2654:10, } \\ & \text { 2657:23, 2658:4, } \end{aligned}$ | $\begin{aligned} & \text { M-E-R-R-I-L-L [1] - } \\ & \text { 2642:14 } \end{aligned}$ | 2695:11, 2695:12, | $\begin{gathered} \text { meaning [8] - 2707:7, } \\ 2708: 20,2722: 13, \end{gathered}$ |
| 2728:2, 2728:4, | 2659:1, 2661:17, | M110 [3]-2684:10, | $732: 15,2733: 18,$ | 723:4, 2725:2 |
| 2736:21 | 2677:17, 2684:25, | 2685:7, 2685:16 | 2735:19, 2735:25, | 731:9, 2732:2, |
| $\begin{aligned} & \text { liquid-dominant [1] - } \\ & \text { 2713:12 } \end{aligned}$ | $\begin{aligned} & \text { 2689:21, 2703:16, } \\ & \text { 2703:17, 2714:23, } \end{aligned}$ | $\begin{gathered} \text { M56D [3] - 2677:24, } \\ 2680: 21,2681: 2 \end{gathered}$ | 2740:11, 2746:22, | $2751: 11$ <br> means [4] |
| liquids [1] - 2712:16 | 2721:4, 2721:18, | M56E [4]-2677:24, | 2749:20, 2753:7, | 2703:3, 2712:4, |
| LISKOW [1] - 2633:4 | 2724:11, 2724:18, | 2678:20, 2678:23, | 2764:3, 2764:6 | 2712:5 |
| list [4]-2641:15, | 2730:4, 2732:2, | 2681:5 | matched [5] - | measure [6] - |
| $\begin{aligned} & 2641: 17,2689: 4, \\ & 2737: 5 \end{aligned}$ | $\begin{aligned} & \text { 2732:3, 2732:5, } \\ & \text { 2739:6, 2749:18, } \end{aligned}$ | $\begin{gathered} \text { M56F [3]-2677:24, } \\ 2678: 24,2679: 1 \end{gathered}$ | $\begin{aligned} & \text { 2695:14, 2695:24, } \\ & \text { 2747:5, 2752:1, } \end{aligned}$ | $\begin{aligned} & \text { 2646:10, 2646:15, } \\ & \text { 2649:2, 2676:25, } \end{aligned}$ |
| listed [3] - 2702:19, 2712:22, 2737:13 | $\begin{aligned} & 2750: 11,2751: 2, \\ & 2754: 22,2763: 21 \end{aligned}$ | Macondo [32] 2644:3, 2644: | 2752:2 | 2677:4, 2678:18 |
| 2712:22, 2737:13 listen [1]-2644:7 | looks [7]-2691:20, | 2644:6, 2644:12 | matches [6] - 2690:3 2690:9, 2729:7, | $\begin{aligned} & \text { measured [20]-- } \\ & \text { 2648:21, 2655:3, } \end{aligned}$ |
| listening [1] - 2637:9 | 2703:1, 2704:19, | 2644:22, 2645:19, | 2732:9, 2735:14 | 656:9, 2659:9 |
| $\begin{aligned} & \text { lists [2] - 2705:15, } \\ & 2705: 17 \end{aligned}$ | $\begin{aligned} & \text { 2705:4, 2712:13, } \\ & 2713: 21,2716: 22 \end{aligned}$ | $\begin{aligned} & \text { 2647:20, 2647:23, } \\ & \text { 2648:25, 2649:1, } \end{aligned}$ | $\begin{aligned} & \text { 2749:17 } \\ & \text { matching [3] } \end{aligned}$ | $\begin{aligned} & \text { 2659:12, 2659:16, } \\ & \text { 2660:25, 2661:2, } \end{aligned}$ |
| literally [1] - 2719:17 | loop [25] - 2710:16, | 2649:10, 2650:4, | $2692: 10,2734: 1$ | 663:20, 2667:12, |
| litigation ${ }_{[1]}$ - 2709:15 | 2713:23, 2715:23, | 2650:11, 2650:19, | 2747:10 | 2667:21, 2671:1, |
| lively ${ }_{[1]}-2683: 14$ | 2727:2, 2727:5, | 2651:1, 2654:3, | material [1] - 2741:13 | 2671:3, 2671:4, |
| LLC [1] - 2634:3 | 2727:11, 2727:18, 2727:22, 2727:25, | 2655:2, 2659:16, 2661:22, 2662:9, | materials [2] - | 2671:5, 2672:2, 2679:4, 2699:8, |
| $\begin{aligned} & \text { location }[2]-2759: 8, \\ & 2759: 10 \end{aligned}$ | 2728:14, 2728:15, | $\begin{aligned} & \text { 2661:22, 2662:9, } \\ & \text { 2670:19, 2674:24, } \end{aligned}$ | 2737:24 <br> mathematical | 2699:11, 2739:22 |
| locations [3] - 2643:7, | 729:15, 2729:20, | 2676:1, 2677:18, | 2734:2, 2740:5 | measurement [11] - |
| 2716:16, 2716:17 | 29:22, 2730:16, | 680:3, 2697:15 | 2740:8, 2740:13 | 2705:8, 2705:11, |
| $\begin{aligned} & \log [2]-2678: 10, \\ & 2678: 13 \end{aligned}$ | $\begin{aligned} & \text { 2731:6, 2732:20, } \\ & \text { 2732:23, 2733:8, } \end{aligned}$ | $\begin{aligned} & \text { 697:23, 2699:5, } \\ & 711: 15,2734: 20, \end{aligned}$ | mathematically [1] - $2740: 17$ | $\begin{aligned} & \text { 2706:18, 2740:16, } \\ & \text { 2759:10, 2759:11, } \end{aligned}$ |
| look [50] - 2647:17, | 35:3, 2739:1, | 2762:7, 2763:16 | matter [2] - 2646:5, | 2759:13, 2760:2, |
| $2650: 8,2651: 25,$ | $\begin{aligned} & 2751: 3,2751: 4, \\ & 2751: 5 \end{aligned}$ | MAGAZINE [1] - | 2729:5 | 2761:22 |
| $\begin{aligned} & \text { 2652:7, 2652:17, } \\ & \text { 2654:4, 2654:7, } \end{aligned}$ | LOS [2]-2633:16, | 2631:11 magnitude [3] - | $\begin{gathered} \text { matters [4]-2637:12, } \\ 2639: 19,2641: 23, \end{gathered}$ | measurements [8] - 2648:19, 2649:15, |
| $\begin{aligned} & \text { 2654:4, 2654:7, } \\ & \text { 2654:15, 2656:4, } \end{aligned}$ | 2634:16 | $2655: 9,2655: 14,$ | $\begin{aligned} & \text { 2639:19, 2641:23, } \\ & \text { 2764:14 } \end{aligned}$ | 2659:20, 2705:8, |
| 2656:22, 2657:14, | lose [1] - 2737:19 | 664: |  | 2706:16, 2740:12, |
| 2659:22, 2660:1, | loss [3]-2695:17, | main [3]-2713:18 | 2631:14, 2633:11 | 2761:23 |
| 2662:14, 2662:22, | 2738:4, 2738:8 | 2713:24, 2716:4 | maximum [12] - | measuring [2] - |
| 2664:9, 2664:10, | lot's [1] - 2679:16 | maintain [3]-2743:1, | 2679:15, 2753:11, | 2668:4, 2732:2 |
| 2664:25, 2665:7, | LOUISIANA [3] - | 2743:3, 2743:21 | 2754:11, 2754:12, | MECHANICAL [1] - |
| 2666:15, 2668:13, | 2630:1, 2632:3, | maintaining [1] - |  | 2635:23 |


| ```mechanisms [4] - 2728:19, 2728:23, 2729:1, 2729:3 mechanistic [1] - 2707:7 meeting [33] - 2649:10, 2650:2, 2652:1, 2652:3, 2652:4, 2652:9, 2652:11, 2652:12, 2652:21, 2653:5, 2653:11, 2653:14, 2654:1, 2654:4, 2654:5, 2654:9, 2654:24, 2656:19, 2657:24, 2658:18, 2658:23, 2660:4, 2661:13, 2662:21, 2663:1, 2663:13, 2665:2, 2665:15, 2669:14, 2683:3, 2683:11, 2684:1, 2684:6 meetings [3] - 2660:5, 2684:7, 2684:8 member [2] - 2643:20, 2643:21 members [1] - 2662:25 mentioned [11] - 2650:2, 2651:25, 2656:15, 2666:22, 2679:13, 2680:9, 2714:12, 2721:25, 2726:16, 2735:8, 2744:18 MERIT [1] - 2635:18 Merrill [39]-2637:11, 2641:12, 2642:13, 2642:20, 2642:24, 2643:17, 2644:7, 2644:13, 2647:19, 2656:24, 2657:16, 2657:19, 2659:12, 2659:23, 2660:3, 2660:12, 2662:15, 2665:9, 2666:19, 2668:22, 2669:12, 2670:17, 2671:17, 2673:4, 2674:10, 2674:21, 2675:13, 2675:22, 2676:19, 2677:12, 2678:2, 2679:20, 2680:20, 2682:4, 2682:10, 2684:23, 2696:7, 2699:2, 2699:15 MERRILL [2] - 2636:4, 2642:10 methods [3] -``` | ```2643:16, 2653:7, 2742:22 MEXICO [1] - 2630:5 Mexico [6] - 2647:5, 2652:15, 2653:15, 2683:5, 2715:1, 2736:9 Michael [6] - 2645:16, 2673:3, 2700:6, 2700:11, 2701:7, 2709:2 MICHAEL [4] - 2634:13, 2636:6, 2700:7, 2700:11 Michigan [1] - 2702:16 microsips [56] - 2648:9, 2648:14, 2649:19, 2650:5, 2650:14, 2650:16, 2652:20, 2656:13, 2657:2, 2659:11, 2659:13, 2660:9, 2660:15, 2661:1, 2663:6, 2663:14, 2663:18, 2663:23, 2664:18, 2665:2, 2665:4, 2667:13, 2668:11, 2668:17, 2669:5, 2669:13, 2670:1, 2670:24, 2671:14, 2672:2, 2672:19, 2674:4, 2674:19, 2674:25, 2675:1, 2675:11, 2675:21, 2676:2, 2688:10, 2688:14, 2689:14, 2691:3, 2691:9, 2692:6, 2692:25, 2695:8, 2696:17, 2697:4, 2697:7, 2697:16, 2697:24 mid [10] - 2644:6, 2645:3, 2660:14, 2660:22, 2667:14, 2667:15, 2701:25, 2711:6, 2717:17, 2719:16 mid-case [4] - 2660:14, 2660:22, 2667:14, 2667:15 mid-May [6] - 2644:6, 2645:3, 2701:25, 2711:6, 2717:17, 2719:16 middle [3]-2660:15, 2661:14, 2724:14 might [21]-2644:25, 2645:1, 2646:11,``` |  |  | ```2757:13, 2757:19, 2762:24 models [26] - 2649:14, 2650:6, 2695:10, 2695:14, 2696:13, 2697:14, 2699:16, 2703:3, 2703:10, 2703:21, 2703:22, 2704:13, 2704:15, 2705:10, 2707:6, 2707:7, 2707:10, 2708:4, 2708:7, 2710:17, 2734:7, 2734:10, 2736:11, 2737:17, 2742:14, 2743:5 modern [1] - 2691:23 module [1] - 2741:3 Momber [3]-2764:19, 2764:23, 2765:1 moment [1] - 2730:15 monitoring [2] - 2731:6, 2732:6 MONTGOMERY [1] - 2631:23 months [3] - 2710:20, 2747:17, 2763:20 moot [1] - 2642:4 MORGAN [2] - 2631:17 MORNING [1] - 2630:14 morning [16] - 2637:7, 2637:10, 2638:12, 2642:20, 2642:21, 2644:16, 2682:5, 2682:10, 2682:12, 2682:14, 2684:9, 2684:16, 2700:5, 2764:13, 2764:18, 2764:24 Most [1] - 2663:8 most [22]-2644:22, 2645:12, 2660:8, 2660:17, 2660:18, 2660:21, 2660:23, 2663:14, 2663:16, 2664:22, 2671:2, 2671:4, 2698:9, 2699:4, 2706:9, 2706:10, 2726:25, 2728:17, 2729:6, 2735:17, 2735:18, 2761:19 mostly [3] - 2650:21, 2721:23, 2721:24 motion [42] - 2700:18, 2700:24, 2716:3, 2716:9, 2716:10, 2727:6, 2727:8,``` |
| :---: | :---: | :---: | :---: | :---: |


| 2727:22, 2730:6, | 2698:13, 2698:15, | mud [2] - 2672:24, | 2676:21, 2679:4, | 2732:8, 2732:11, |
| :---: | :---: | :---: | :---: | :---: |
| 2730:9, 2730:11, | 2698:18, 2698:20, | 2673:1 | 2706:12, 2736:11, | 2748:14, 2751:14, |
| 2730:12, 2730:13, | 2699:1, 2699:13, | multi [1]-2704:6 | 36:12, 2737:3, | 2754:22, 2760:7 |
| 2730:17, 2731:9, | 2699:14, 2699:21, | multi-phase [1] | 2737:17, 2737:21, | noted [1] - 2710:9 |
| 2731:21, 2732:6, | 2699:25, 2700:5, | 2704:6 | 2737:23, 2738:8, | nothing [4]-2655:22, |
| 2732:7, 2732:10, | 2700:14, 2700:19, | multiphase [36] | 2764:14 | 2656:3, 2667:19, |
| 2732:12, 2732:15, | 2700:25, 2701:1, | 2701:12, 2704:13, | needed [4]-2670:6, | 2751:24 |
| 2732:20, 2732:23, | 2701:4, 2701:19 | 2704:25, 2705:2, | 2707:21, 2736:23, | noting [1] - 2739:25 |
| 2733:3, 2733:6, | 2701:20, 2702:10, | 705:4, 2705:15 | 2740 | number [47] - |
| 2733:8, 2735:3, | 2702:11, 2705:12, | 2705:22, 2705:24, | Nesic [3] - 2764:20, | 2645:14, 2648:4, |
| 2737:10, 2737:12, | 2705:14, 2709:1, | 2706:4, 2706:13, | 2764:22, 2764:24 | 2648:7, 2649:21, |
| 2739:12, 2739:15, | 2709:6, 2709:12 | 706:14, 2706:21 | net ${ }_{[1]}$ - 2646:2 | 2650:10, 2652:12, |
| 2739:23, 2740:21, | 2709:13, 2709:17, | 2706:22, 2707:17, | never [5] - 2649:11, | 2652:14, 2656:6, |
| 2740:25, 2745:10, | 2709:22, 2709:24, | 2707:18, 2708:3, | 2679:3, 2686:25, | 2659:12, 2660:6, |
| 2745:14, 2750:6, | 2709:25, 2710:23, | 2708:7, 2708:9, | 2724:24, 2749:19 | 2660:23, 2661:10, |
| 2750:14, 2756:16 <br> 2763:8, 2763:9 | 2710:24, 2711:19, 2711:20, 2713:4, | 2708:12, 2709:3 | new [3]-2638:6, | 2662:16, 2663:6, |
| Motion [1] - 2731:4 | 2713:6, 2714:2 | $\begin{aligned} & : 21,2711: 2 \\ & 2: 1,2736: 10 \end{aligned}$ | 2660:8, 2673:6 | 13, 2664:19, <br> 13, 2670:21 |
| move [8]-2658:14, | 2714:19, 2714:22, | 740:19, 2740:23, | 2630:20, 2631:8 | 670:22, 2671:23, |
| 2687:15, 2691:17, | 2716:14, 2716:15, | 40:24, 2742:7, | 2631:12, 2632:10, | 672:5, 2672:16, |
| 2723:22, 2728:10, | 2717:3, 2717:4, | 72:17, 2744:13 | 33:7, 2634:7, | 774:23, 2675:10, |
| 2729:22, 2741:1, | 2719:25, 2720:1, | 755:15, 2755:16, | 2635:10, 2635:19 | 675:19, 2677:7, |
| 2753:24 | 2721:9, 2721:12 | 755:17, 2755:19, | next [12]-2638:17, | 680:2, 2680:11, |
| moved [2] - 2707:20, | 2721:13, 2722:2, | 2756:5, 2756:21 | 50:3, 2663:3 | 683:4, 2683:20, |
| 2707:23 | 2722:3, 2723:16 | Multiphase [4] | 00:6, 2704:3, | 685:18, 2687:4, |
| movement [3] - | 2723:17, 2725:8, | 2702:23, 2702:25, | 43:7, 2746:10, | 690:23, 2691:7, |
| 2739:22, 2740:18, | 2725:9, 2727:4, | 2703:5, 2703:12 | 46:14, 2749:13, | 691:8, 2695:9 |
| 2740:20 | 2727:12, 2727:13, | multiple [4]-2695:24, | 52:5, 2764:25, | 2697:9, 2697:16, |
| $\begin{gathered} \text { moves [3] - } 2715: 23, \\ 2728: 11,2736: 24 \end{gathered}$ | $\begin{aligned} & \text { 2730:1, 2730:2, } \\ & \text { 2730:19, 2730:23, } \end{aligned}$ | 2710:16, 2726:24, $2747 \cdot 23$ | $2765: 1$ | $\begin{aligned} & \text { 2698:6, 2699:3, } \\ & \text { 2699:8, 2699:20, } \end{aligned}$ |
| moving [15] - 2687:21, | $2730: 24,2731: 2,$ | multiples [1] | night [1] - 2638:8 <br> NO [3] - 2630:4 | $2708: 13,2754: 25,$ |
| 2710:15, 2715:22, | 2731:17, 2731:18, | MUNGER [1] - | 2630:7, 2630:10 | 2760:22, 2761:3 |
| 2716:23, 2717:1, | 2733:24, 2733:25, | 2634:13 | no-kink [14] - 2734:10, | numbers [23] - |
| 2727:1, 2727:11, | 2735:6, 2735:7, |  | 34:11, 2734:21, | 2649:15, 2654:15, |
| $\begin{aligned} & \text { 2727:19, 2729:14, } \\ & \text { 2729:21, 2740:3, } \end{aligned}$ | $\begin{aligned} & \text { 2736:4, 2736:5, } \\ & \text { 2738:11, 2738:12, } \end{aligned}$ | N | 734:23, 2734:24, | $\begin{aligned} & 2655: 5,2656: 6, \\ & 2659: 6,2659: 8, \end{aligned}$ |
| $\begin{aligned} & \text { 2740:23, 2748:21, } \\ & 2751: 4,2756: 9 \end{aligned}$ | $\begin{aligned} & \text { 2739:13, 2739:14, } \\ & \text { 2742:9, 2742:10, } \end{aligned}$ | $\begin{aligned} & \text { N.W }_{[1]}-2633: 20 \\ & \text { name }[7]-2642: 12, \end{aligned}$ | $\begin{aligned} & 746: 8,2748: 3, \\ & 758: 16,2758: 17, \end{aligned}$ | $\begin{aligned} & \text { 2661:17, 2671:24, } \\ & \text { 2677:15, 2677:17, } \end{aligned}$ |
| $\begin{gathered} \text { MR }_{[157]}-2633: 15, \\ 2637: 10,2637: 15, \end{gathered}$ | $\begin{aligned} & \text { 2745:1, 2745:3, } \\ & 2745: 12,2745: 13, \end{aligned}$ | $\begin{aligned} & \text { 2642:13, 2682:5, } \\ & \text { 2682:10, 2700:10, } \end{aligned}$ | $\begin{aligned} & \text { 2758:18, 2758:23, } \\ & 2759: 23 \end{aligned}$ | $\begin{aligned} & \text { 2678:7, 2680:5, } \\ & \text { 2680:19, 2680:25, } \end{aligned}$ |
| 2637:20, 2638:15, | 2745:17, 2746:15, | 00:15, 2701:7 | ody [2] - 2640:2 | 81:15, 2681:18, |
| 2639:12, 2639:21, | 2746:17, 2749:5, | name's [1] - 2700:11 | 2681:1 | 687:10, 2687:12, |
| 2640:11, 2640:22, | 2749:22, 2749:23, | named [2]-2671:6, | menclature [1] - | 688:13, 2696:13, |
| 2641:1, 2641:6, | 2752:17, 2752:18, | 2687:25 | 2673:16 | 2749:10, 2762:25 |
| 2641:11, 2642:15, | 2753:18, 2753:19, | Nat [2] - 2682:6 | noncircular [2] | numerous [4] - |
| 2642:19, 2649:3, | 2754:5, 2754:6, | 2682:10 | $2742: 24,2744: 5$ | 2694:11, 2703:10, |
| 2649:6, 2649:9, | 2757:2, 2757:3, | NATHANIEL [1] | NONJURY | 2744:11, 2746:19 |
| 2657:11, 2657:13, | 2757:15, 2757:16, | 2632:21 | 2630:14 | NW [2] - 2633:23, |
| 2658:1, 2658:3, | 2758:1, 2758:2, | natural [1] - 2751:24 | nonmoving [2] - | $2635: 14$ |
| $\begin{aligned} & \text { 2658:11, 2658:16, } \\ & \text { 2658:21, 2658:25, } \end{aligned}$ | $\begin{aligned} & \text { 2758:13, 2758:14, } \\ & \text { 2758:25, 2759:1, } \end{aligned}$ | NATURAL [1] - <br> $2632 \cdot 18$ | 2738:19, 2756:14 | NY ${ }_{[1]}$ - 2631:8 |
| 2676:4, 2676:7, <br> 2676:9, 2676:18, | $\begin{aligned} & \text { 2760:5, 2760:6, } \\ & \text { 2762:4, 2762:5, } \end{aligned}$ | nature [2]-2646:2, | nonprivileged [1] - 2644:14 | 0 |
| 2680:12, 2680:13, | 2762:21, 2762:22, | nearby ${ }_{[2]}$ - 2653:12, | 2641:25 | O'CONNOR [1] |
| 2680:17, 2681:10, | 2763:7, 2763:13, | 2653:15 | normally [2] - | 2633:19 |
| $\begin{aligned} & \text { 2681:13, 2682:4, } \\ & \text { 2682:5, 2682:9, } \end{aligned}$ | $\begin{aligned} & \text { 2763:14, 2764:7, } \\ & \text { 2764:16, 2765:4 } \end{aligned}$ | $\text { nearly }[1]-2706: 25$ | $2713: 20,2722: 1$ | O'KEEFE [1] - |
| 2685:1, 2685:3, | MS [5] - 2631:19, | necessary [2] - $2738: 1,2743: 24$ | [1] - 2632 | O'ROURKE [1] - |
| 2687:20, 2696:2, | 2640:13, 2640:19, | need [15] - 2645:25, | notation [1] - 2648:12 note [9]-2675:14, | 2632:20 |
| 2696:4, 2696:6, | $\begin{aligned} & \text { 2641:13, 2641:22 } \\ & \text { MSI }[1]-2703: 23 \end{aligned}$ | 2666:24, 2667:1, | 2692:20, 2732:1, | object [9]-2638:22, |


| 2640：7，2640：14， | 2710：13，2717：17， | 2724：6，2724：11， |
| :---: | :---: | :---: |
| 2640：17，2649：3， | 2719：1 | 272 |
| 2657：11，2676：8， | occurring［ | 2725 |
| 2699：21，2745：1 | 20， 27 | 26：20， 2 |
| objected［2］ | 2719：8，2723：12 | 27 |
| 2639：11，2640：25 | occurs［4］－2708：20， | 2731：12，2731：13， |
| objecting［1］－ | 2：23，2714：7， | 2732：4，2734：5 |
| 2680：13 | 2714：8 | 2748：20，2763： |
| objection［20］ | OCTOBER［2］ | Oil［1］－2704：4 |
| 2637：18，2638：20， | 2630：5，2637：2 | oil＇s［1］－2728：8 |
| 2638：25，2640：1， | odd［1］－2742：20 | oil－dominant［7］ |
| 2640：3，2640：4 | odd－shaped［1］ | 19 |
| 2641：19，2649：8， | 2742：20 | 2720：16，2720：18， |
| 2658：1，2658：14， | OF［10］－2630：1 | 2724：1，2724：11， |
| 2658：24，2676：17， | 2630：5，2630：8 | 2724：15 |
| 2680：14，2680：16， | ：10，2630：14 | OLGA［19］－2704：6， |
| 2698：13， 2 | 2632：3，2632：4， | 04：24，2705：17， |
| 2700：22，2745：16， | 2632：13，2632：17 | 2705：19，2705：24， |
| 2763：8，2763：12 | off－the－shelf［1］－ | 2706：1，2706：22， |
| objections［8］－ | 2741：5 | 2707：4，2707：6 |
| 2637：16，2639：2 | offer［3］－2639：6 | 2707：13，2707：17， |
| 2639：13，2639：16， | 2640：6，2709：1 | 2708：14，2710：18， |
| 2639：18，2640：5 | offered［2］－2640：18， | 2740：22，2755：25， |
| 2640：15，2641：18 | 658：6 | 2756：8，2756：10， |
| observe［6］－2725：20， | offering［1］－2639：6 | 2756：11，2756：20 |
| 2726：3，2726：7， | OFFICE［4］－2630：24， | OLSON［1］－2634：13 |
| 2732：20，2732：23， | 2631：21，2632：6 | ON［1］－2630： |
| 2750：18 | 2632：15 | once［11］－2674：12， |
| observed［29］ | OFFICIAL［1］－ | 2710：16，2715：2 |
| 2649：24，2650：22， | 2635：17 | 2721：3，2723：21， |
| 2653：12，2665：14， | offset［1］－2737：24 | 2727：20，2728：8， |
| 2670：3，2718：25， | offshore［1］－2707：20 | 28：11，2728：13， |
| 2721：7，2722：9 | OFFSHORE［1］－ | 2746：18，2759：8 |
| 2724：17，2726：10， | 2634：4 | one［52］－2643：18， |
| 2728：24，2729：10， | often［2］－2703：25， | 2643：19，2645：24， |
| 2730：12，2731：11， | $2740: 13$ | 2646：2，2647：10， |
| 2731：16，2734：14， | OIL［2］－ 2 | 49：10，2651：12， |
| $2735: 15,2735: 19$ | $2630: 2$ | $2653: 4,2660: 6$ |
| 2737:12, 2739:22, | oil［63］－ | 2661:12, 2662:20, |
| 2747：1，2747：2， | 2662:13, 2664:15, | 2667：3，2673：21， |
| 2747：4，2747：5， | 2667:13, 2677:1, | 2675：12，2676：6， |
| 2748：4，2749：15 | $7: 20,2679$ | 2683：7，2684：13， |
| 2749:20, 2751:21, | 2679:7, 2679:19, | 2685:1, 2688:2, |
| 2764：4 | 2679：24，2681：23， | 2690:12, 2704:17, |
| observing［3］－ <br> 2668．24 2670 | 2691:11, 2691:18, | 2706:10, 2706:18, |
| 2691:15 | 2692:10, 2693:6, | 2709:22, 2715:4, |
| obtained［1］－2702：21 | $2705: 5,2706: 1$ | 2716：18，2718：8， |
| obvious［1］－2730：5 | 2707:19, 2708:15, | 2718：15，2718：23， |
| obviously［4］－ | 2712:14, 2713:18, | 2719：14，2720：20， |
| 2710：25，2714：3， | 2714:8, 2714:9, | 2720：24，2725：16， |
| 2736：6，2747：22 | 2719：11，2720：5， | 2727：1，2729：13， |
| occasion［2］－ | 2720：16，2720：18， | $2730: 15,2730: 21,$ |
| 2643：10，2671：10 | 2720：21，2721：5， | 2730:25, 2736:15, |
| occur [8] - 2651:22, | 2721:11, 2721:19, | 2736:16, 2738:13, <br> 2739：25，2741：8 |
| 2664:17, 2706:18, | 2721：20，2721：23， | 2739:25, 2741:8, $2744: 18,2750: 25$ |
| 2708:23, 2712:24, | 2721：24，2722：13， | 2751:15, 2753:13, |
| $718: 21$ | 2722：14，2722：18， | $2755: 25,2761: 20,$ |
| occurred［3］－ | 2724:1, 2724:5, |  |





UNOFFICIAL TRANSCRIPT

| 2652：4， 2654 | ```raised [3] - 2653:5, 2653:11, 2683:7 raising [2] - 2638:11, 2676:13``` | $\begin{aligned} & \text { 2746:3, 2746:19, } \\ & \text { 2748:18, 2748:21, } \end{aligned}$$2750: 3,2750: 4$ | $\begin{aligned} & \text { ready }[1]-2749: 3 \\ & \text { real }[6]-2724: 8 \text {, } \end{aligned}$ | $\begin{aligned} & \text { rectangle }[1] \text { - } \\ & 2715: 14 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2654：11，2743： |  |  |  |  |
| purposely ${ }^{\text {［1］}}$ |  | $\begin{aligned} & 2750: 3,2750: 4, \\ & \text { 2751:1, 2751:25, } \end{aligned}$ | 2726：20，2748：14， 2748：15，2749：10， | $\begin{aligned} & \text { rector }_{[1]}-2643: 25 \\ & \text { red }[4]-2663: 3 \text {, } \end{aligned}$ |
| 2647:25 | 2676：1 | $\begin{aligned} & \text { 2751:1, 2751:25, } \\ & \text { 2752:1, 2752:3, } \end{aligned}$ | 2748：15，2749：10， 2762:25 | $\begin{aligned} & \text { red }[4]-2663: 3, \\ & 2723: 21,2732: 5, \\ & 2738: 21 \end{aligned}$ |
| 266 | 2669：7，2675： | 2754：7，2754：14， | realizations［1］－$2694: 11$ |  |
| 8，2683：2 | 99－24 2741 | 2754:20, 2757:6,2759:24, 2760:11, |  | redirect［1］－2696：3 |
| 2695：19 | 19 |  | $\begin{aligned} & \text { really [15] - } 2664: 11, \\ & 2667: 17,2700: 22, \end{aligned}$ | $\begin{aligned} & \text { REDIRECT }_{[1]}- \\ & 2696: 5 \end{aligned}$ |
| pushes［1］－26 | 14，2752 | $\begin{aligned} & \text { 2759:24, 2760:11, } \\ & \text { 2760:14, 2760:17, } \end{aligned}$ |  |  |
| put $[17]$－ $2641: 25$ | 2753：3 | 2760：18，2760：19， | 2705:9, 2706:14, | reduce［1］－2751：6 <br> refer［9］－2660：12， |
| 2647：25，2648： | random［4］ | 2760：21，2761：1， | 2710:11, 2713:17, |  |
| 4：20，2658：3 | ：13，2722：16， | 1：19，2762 | 2716：3，2721：4， | $\begin{array}{r} \text { refer [9] - 2660:12, } \\ 2663: 4,2710: 15, \end{array}$ |
| 2660：17，2698：9 | 2725：2 | 2：7，2762：10 | 2724：21，2729：4，2729：11， $2734: 14$, | 2715：22，2723：3， |
| 8：15，2698：24 | range［21］ | 2：12，2762：1 |  | $\begin{aligned} & \text { 2725:10, 2729:20, } \\ & \text { 2751:10, 2758:10 } \end{aligned}$ |
| 9：3，2699：1 | 6：5，2668：25 | ：17，2763：16 | 2729：11，2734：14， 2736:25, 2749:17 |  |
| 9：19，2740：6 | 2，2681：1 | 763：2 | realms［1］－2659：2 <br> REALTIME［1］－ | reference［4］－ <br> 2660．22，2673：8 |
| 2741：7，2751：12 | ：25，2708：21， | $\begin{aligned} & \text { Rate }[1]-2722: 23 \\ & \text { rates }[29]-2670: 9, \\ & 2686: 22,2690: 23, \end{aligned}$ |  | $\begin{aligned} & \text { 2660:22, 2673:8, } \\ & 2697: 3,2697: 6 \end{aligned}$ |
| $2764: 24$ | 1：17，2719：23， |  | $\begin{aligned} & \text { REALTIME [1] - } \\ & \text { 2635:17 } \end{aligned}$ |  |
| putting［1］－2660：17 <br> PVT［1］－2736：19 | ：24，2746：25， | 2686：22，2690：23， | $\begin{gathered} \text { reason [6] - 2641:4, } \\ 2647: 25,2657: 23, \end{gathered}$ | referenced［2］－ 2704：24，2706：3 |
|  | ， | 8：3，2708：1 | $\begin{aligned} & \text { 2669:16, 2670:2, } \\ & \text { 2679:12 } \end{aligned}$ | $\begin{aligned} & \text { 2704:24, 2706:3 } \\ & \text { references [2] - } \end{aligned}$ |
| Q | 51：18，2752：3， | $\begin{aligned} & \text { 2708:21, } \\ & \text { 2712:10, } \end{aligned}$ | 2679：12 reasonable $[4]$－ | $\begin{aligned} & 2696: 20,2705: 18 \\ & \text { referred }[2]-2712: 12, \end{aligned}$ |
| qualificat 2701:9 | 758：3，2762：10 | 2714：13，2734：18， 2734：19，2735：16， | $\begin{aligned} & 2690: 3,2690: 4 \\ & 2690: 8,2764: 24 \end{aligned}$ | $\begin{aligned} & \text { 2712:17 } \\ & \text { referring }[9]-2639: 1, \end{aligned}$ |
| qualify ${ }_{[1]}$－ 2752 | $735: 22,2750: 22$ | $2746: 1,2746: 21$ |  | $\begin{aligned} & \text { referring [9]-2639:1, } \\ & \text { 2650:25, 2669:3, } \end{aligned}$ |
| qualifyin | rare［1］－2724：2 | 50：23， $2751: 19$ | $\begin{aligned} & \text { reasonably [1] - } \\ & 2694: 12 \end{aligned}$ | 2677:19, 2678:2, |
| 2749：24，2750 | rate［99］－2644：24 | 50：23，2751：19 | $\begin{aligned} & \text { 2694:12 } \\ & \text { reasoning }[1]-2676: 1 \end{aligned}$ | $\begin{aligned} & 2725: 11,2733: 5, \\ & 2734: 1,2760: 2 \end{aligned}$ |
| 50：23，2751：18 | 2654：18， | 53：6，2753：11 | reasons［3］－2709：10， |  |
| $\begin{aligned} & \text { quality }[2]-2683: 8, \\ & 2741: 9 \end{aligned}$ | 2655：15，2660：13， | $\begin{aligned} & 54: 24,2755: 1 \\ & 57: 9,2764: 3, \end{aligned}$ | $\text { 2711:1, } 2714: 5$ | $\begin{gathered} 2734: 1,2760: 2 \\ \text { refers [2] - } 2647: 22, \end{gathered}$ |
| quanti | 2662:11, 2662:12, | － | receive［1］－2656：23 <br> received［5］－2647：1， | 2713:2 |
| 2667：6，2670：13 | 66：25 | rather［3］－2706： |  | $\begin{aligned} & \text { reflected [2] - } \\ & 2665: 23,2665: 24 \end{aligned}$ |
| questions［16］ | 67：7，2667：14 | 764 | $\begin{gathered} \text { received }[5]-2647: 1, \\ 2657: 15,2677: 8, \end{gathered}$ | $\begin{aligned} & \text { reflection }[1] \text { - } \\ & 2693: 24 \end{aligned}$ |
| 2644：5，2644：8 | 7：15，2670：12， | ratio［2］－2743：17 | 2702：14，2702：17 |  |
| 2644：15，2644：16， | 70：13，2673：19， | 3：2 | $\begin{aligned} & \text { receiving }[2]- \\ & 2701: 15,2706: 17 \\ & \text { recess }[4]-2641: 24, \end{aligned}$ | $\begin{aligned} & \text { REGAN }_{[1]}-2633: 11 \\ & \text { regard }[2]-2660: 23, \end{aligned}$ |
| 2689：16，2689：19， | 3：20，2685：16， | ratios［1］－2714 |  |  |
| 96：2，2696：4， | 6：18，2687：1， | －2658：12 |  | 2698：9 |
| $\begin{aligned} & \text { 01:22, 2702:5, } \\ & 10: 4,2710: 6, \end{aligned}$ | $\begin{aligned} & \text { 2690:16, 2690:20, } \\ & \text { 2690:21, 2690:22, } \end{aligned}$ | $\begin{aligned} & \text { 2669:7, 2698:2! } \\ & 2729: 15 \end{aligned}$ | $\begin{aligned} & \text { recess }[4]-2641: 24, \\ & 2700: 2,2700: 3, \end{aligned}$ | $\begin{aligned} & \text { regarding }[4]- \\ & \text { 2649:11, } 2682: 25, \end{aligned}$ |
| $1: 2,2718: 1$ | $1: 21,2691: 24,$ | RE［2］－2630：4 | recognize［12］－ | $\begin{aligned} & \text { 2649:11, 2682:25, } \\ & 2695: 21,2728: 21 \end{aligned}$ |
| 2718：23，2764：8 | 2692：4，2693：3 | 2630：7 |  | regards［1］－2710：22 |
| $\begin{gathered} \text { quickly [3] - } 2638: 17, \\ 2664: 14,2736: 15 \end{gathered}$ | $\begin{aligned} & \text { 2694:15, 2695:6, } \\ & 2695: 18,2702: 2, \end{aligned}$ | $\begin{aligned} & \text { re-ask [2] - 2658:1 } \\ & 2698: 25 \end{aligned}$ | 2655:18, 2659:23 | $\begin{aligned} & \text { regimes [2] - 2713:22, } \\ & 2714: 14 \end{aligned}$ |
| $\text { quite }[7]-2683: 1$ |  | $\text { an [1] - } 266$ | 2662:15, 2665:9 |  |
| 2693：20，2704：15， | 11：14，2711：15， | re－show［1］－2729：15 | $\begin{aligned} & \text { 2665:18, 2671:16, } \\ & \text { 2673:4, 2675:13, } \end{aligned}$ | $\begin{aligned} & \text { region }[2]-2748: 24, \\ & 2750: 20 \end{aligned}$ |
| 2706：7，2708：17， | 2:7, 2712:16, | reach［7］－2719：2 | 2677：12，2677：13 | regions［1］－2748：22 |
| 2719：9， $2719: 17$ quotation［1］－ | 74：11，2714：16， | 2719:6, 2719:7, | $\begin{aligned} & \text { recollection [2] - } \\ & \text { 2639:18, 2653:25 } \end{aligned}$ |  |
| quotation 2660：18 | $2733: 13,2733: 22$ | 749:1 |  | REGISTERED［1］－ 2635:18 <br> regular［11］－2708：21， |
| quote［2］－ 2660 | 2734:8, 2734:12, | reached［2］－2733：15， | $\begin{aligned} & \text { recommended }[1] \text { - } \\ & 2665: 19 \end{aligned}$ | 2711:10, 2721:7, |
| quotes［1］－2663：1 | 34：20，2735：2 | 2738：24 | recommends［1］－ |  |
|  | 35：12， | reaches［4］－2715：9， | $\begin{aligned} & \text { 2660:7 } \\ & \text { record [2] - 2642:1 } \end{aligned}$ | 2726:3, 2726:6, |
| R | $\begin{aligned} & 2735: 13,2735: 14, \\ & 2735: 17,2735: 19, \end{aligned}$ | $724:$ |  | $\begin{aligned} & \text { 2726:7, 2726:10, } \\ & \text { 2729:22, 2729:24 } \end{aligned}$ |
| $\begin{aligned} & \text { Rachel }[1]-2641: 1 \\ & \text { radio [1] }-2667: 11 \end{aligned}$ | $\begin{aligned} & 35: 21,2735: 22, \\ & 35: 23,2741: 11, \end{aligned}$ | reaching［2］ | $\begin{aligned} & \text { RECORDED }_{[1]}- \\ & 2635: 23 \\ & \text { recover }[1]-2686: 5 \\ & \text { recreate }[2]-2740: 19, \\ & 2740: 21 \end{aligned}$ | ```reiterating [1] - 2745:4 relate [2]-2647:6, 2661:4 related [4] - 2644:2, 2645:19, 2675:16,``` |
| RAFF | 2743：2，2743：3， | re |  |  |
| 2631：3 | :6, 2743:22, | 2, 2686:15 |  |  |
| raise［1］－2653：23 | 2743：25，2746：1， | 2732：17 |  |  |

UNOFFICIAL TRANSCRIPT


2671:11, 2672:16, 2673:24, 2674:17, 2674:24, 2675:19, 2675:22, 2676:2, 2676:14, 2677:1, 2677:3, 2677:4, 2689:11, 2691:3, 2692:21, 2692:25, 2696:13, 2697:22, 2698:10, 2698:17, 2698:22, 2699:3,
2699:5, 2699:20
rocks [2]-2646:11, 2647:7
role [1] - 2656:21
ROOM [1] - 2635:18 rotary [10] - 2648:19, 2648:21, 2649:2, 2649:12, 2649:15, 2653:6, 2653:24, 2655:4, 2659:20, 2683:8
rotate [1] - 2685:1
ROUGE [1] - 2632:6
roughly [2] - 2661:8, 2708:10
roughness [7] -
2752:15, 2752:21, 2752:24, 2753:4, 2753:20, 2754:1, 2754:10
Roughness [1] 2752:20
round [1] - 2681:16
rounded [1] - 2681:8
ROV [11] - 2710:11, 2716:21, 2717:6, 2719:14, 2719:18, 2723:1, 2730:4, 2731:5, 2732:2, 2748:11, 2764:5
ROVs [8] - 2729:10, 2730:12, 2730:13, 2730:16, 2731:6, 2732:6, 2737:12, 2739:22
row [3]-2696:17, 2752:23, 2754:10 rows [1] - 2680:22
ROY [2] - 2630:22, 2630:23
rule [2] - 2658:10, 2729:1
ruled [1] - 2728:23
ruling [1] - 2730:8 run [11] - 2669:9, 2685:24, 2688:9, 2696:13, 2697:14, 2697:25, 2698:1, 2747:9, 2747:16,
$2750: 15,2752: 11$
running $[7]-2690: 7$
$2695: 10,2746: 21$
$2747: 21,2747: 22$
$2748: 15,2754: 11$
$\mathbf{S}$

Saint [1] - 2644:1 sand [1] - 2684:10 sands [4] - 2684:17, 2685:7, 2685:11, 2685:16
SARAH [1] - 2632:23 sat [1] - 2736:13 Saturday [1] - 2638:8 saw [12] - 2668:10, 2668:19, 2669:3, 2714:15, 2721:3, 2722:17, 2724:17, 2733:10, 2739:16, 2747:4, 2748:10, 2761:5
scale [2] - 2715:16, 2716:13
scattered [1] - 2756:4
scenario [1] - 2684:13
scenarios [6] 2660:6, 2661:15, 2661:19, 2668:25, 2669:2, 2669:3
SCHELL [1] - 2635:8 schematic [1] - 2736:6 Schott [5] - 2653:9, 2653:23, 2656:8, 2683:7, 2683:11 science [5] - 2662:25, 2665:19, 2673:7, 2673:12, 2746:6
Science [1] - 2702:14 scientific [5] - 2644:9, 2655:1, 2659:15, 2742:18, 2744:9 scientifically [1] 2742:15
scientists [8] 2645:9, 2675:9, 2676:11, 2696:8, 2698:16, 2698:21, 2710:9, 2718:5 scope [1] - 2649:4 SCOTT [1] - 2632:20 screen [3] - 2691:7, 2715:25, 2729:19 script [1] - $2663: 3$ scroll [1] - $2691: 5$ seabed [1] - 2736:13 seafloor [14] - 2715:3, 2715:7, 2715:8, 2715:24, 2716:11,

2717:14, 2726:19, 2731:10, 2731:11, 2735:5, 2737:8, 2738:22
SEAN [1] - 2634:22 searching [1] 2741:13 seat [1] - 2700:9 seated [1] - 2637:7 seawater [1] - 2738:9 second [13]-2637:20, 2638:10, 2667:25, 2676:6, 2689:2, 2694:10, 2696:17, 2702:1, 2713:9, 2713:25, 2733:11, 2737:5, 2758:15
seconds [4] 2720:14, 2720:19, 2749:8, 2749:10 Secretary [1] 2673:23 section [24]-2645:1, 2664:18, 2664:19, 2713:3, 2715:12, 2715:18, 2716:4, 2717:10, 2717:11, 2722:1, 2728:3, 2728:7, 2728:12, 2729:13, 2734:13, 2734:17, 2742:2, 2744:19, 2757:21, 2758:19, 2759:9, 2759:16, 2761:14
SECTION [4] - 2630:4, 2630:8, 2630:11, 2632:19
sectional [3] -
2743:18, 2744:16 see [67]-2646:19, 2646:21, 2656:21, 2657:3, 2661:20, 2666:5, 2666:9, 2666:21, 2667:11, 2677:25, 2678:20, 2679:6, 2679:11, 2680:19, 2683:24, 2684:12, 2688:11, 2688:15, 2688:24, 2689:6, 2690:14, 2712:16, 2712:19, 2713:9, 2713:10, 2713:14, 2713:15, 2713:17, 2713:25, 2718:1, 2719:13, 2720:4, 2720:5, 2720:11, 2720:12, 2720:15, 2720:18, 2720:20, 2720:22, 2722:7, 2723:6,

> 2723:10, 2724:2, $2724: 4,2724: 12$, $2724: 16,2725: 17$, $2728: 2,2730: 9$ $2730: 11,2730: 14$, $2732: 14,2742: 3$, $2742: 6,2746: 25$, $2748: 9,2748: 22$, $2749: 9,2749: 11$, $2749: 14,2750: 12$, $2752: 24,2755: 7$, $2762: 13,2762: 17$, $2765: 7$
> seeing $[25]-2664: 13$, $2713: 16,2713: 23$, $2715: 2,2715: 8$, $2715: 14,2716: 3$, $2716: 17,2716: 20$, $2717: 2,2717: 19$, $2720: 10,2731: 14$, $2731: 24,2734: 15$, $2738: 16,2738: 18$, $2739: 19,2739: 21$, $2740: 15,2741: 23$, $2743: 10,2748: 17$, $2749: 7,2757: 20$
> senior $[2]-2678: 7$, $2683: 12$
> sense $[1]-2760: 3$
sensitive [1] - 2755:3
sensitivities [12] -
2663:17, 2741:17, 2751:13, 2752:6, 2752:8, 2753:3, 2753:14, 2753:16, 2753:21, 2754:17, 2754:18, 2754:24
sensitivity [11] 2752:8, 2752:9, 2752:13, 2752:21, 2753:13, 2754:2, 2754:8, 2754:9, 2754:13, 2754:15, 2757:5
Sensitivity [1] 2752:20 sent [2] - 2674:2, 2674:11
sentence [2]-2657:1, 2657:18
separate [2] - 2644:9, 2742:18
separated [1] -
2651:14
September [2] -
2638:1, 2639:22
series [3] - 2720:8,
2754:11, 2760:19
serious [1] - 2665:17
served [1] - 2703:2
service [1] - 2704:21 SERVICES [1] -
2634:19
services [2] - 2704:21, 2708:11
SESSION [1] -
2630:14
set [15] - 2637:24, 2650:8, 2689:2, 2702:6, 2709:9, 2713:7, 2745:4, 2747:13, 2747:15, 2748:11, 2751:10, 2751:11, 2752:25, 2753:5
sets [1] - 2753:12
settled [3] - 2717:14,
2726:25, 2738:22
settles [1] - 2726:24
setup [2] - 2713:10,
2748:8
several [4] - 2639:3, 2710:8, 2718:4, 2761:23
shaded [1] - 2748:22
shadow [1] - 2697:10
shadowed [1] -
2695:14
shadowing [3] 2696:8, 2696:12, 2697:20
shallower [3] -
2651:23, 2655:15, 2664:14
shape [1] - 2693:14
shaped [1] - 2742:20 sharp [1] - 2749:9 sharply [1] - 2724:4 shelf [1] - 2741:5
SHELL [1] - 2633:5 short [2]-2729:24, 2762:25
show [9]-2678:10,
2714:23, 2714:25, 2717:5, 2722:22,
2723:19, 2723:22, 2727:12, 2729:15
showed [3] - 2686:4, 2690:4, 2693:24 showing [10] -
2659:15, 2659:19, 2695:23, 2715:15, 2715:17, 2716:8, 2716:9, 2717:6, 2717:9, 2748:20
shown [8] - 2667:22,
2668:4, 2690:13, 2696:22, 2697:3, 2697:6, 2723:8, 2727:17


UNOFFICIAL TRANSCRIPT

| specifics $[1]-2689: 18$ specified $[1]-$ $2662: 13$ specify $[1]-2759: 7$ sped $[3]-2724: 7$, $2724: 8$ speed $[6]-2664: 2$, $2685: 7,2712: 12$, $2716: 7,2730: 11$, $2748: 14$ speeds $[1]-2714: 9$ spell $[2]-2642: 12$, $2700: 9$ spILL $[1]-2630: 4$ spoken $[1]-2657: 18$ sponges $[1]-2646: 13$ spongy $[1]-2646: 10$ spreadsheet $[3]-$ $2677: 8,2677: 13$, $2677: 16$ sQUARE $[1]-2633: 5$ Squares $[1]-2693: 16$ squeeze $[1]-2724: 10$ squiggles $[1]-$ $2678: 13$ stack $[1]-2645: 6$ Stack $[6]-2662: 18$, $2668: 3,2669: 22$, $2682: 16,2682: 19$, $2687: 2$ stand $[2]-2637: 13$, $2660: 10$ standard $[1]-2744: 7$ standards $[1]-2744: 8$ stands $[1]-2680: 15$ start $[24]-2644: 3$, $2644: 8,2651: 4$, $2662: 16,2679: 9$, $2684: 18,2713: 15$, $2713: 24,2719: 22$, $2723: 22,2723: 25$, $2724: 1,2724: 13$, $2726: 13,2726: 14$, $2727: 6,2727: 22$, $2730: 25,2736: 25$, $2749: 6,2749: 12$, $2749: 13,2764: 10$ started $[17]-2638: 12$, $2644: 5,2644: 11$, $2644: 20,2645: 3$, $2646: 25,2651: 6$, $2666: 7,2666: 1$, $2704: 20,2707: 24$, $2710: 6,2726: 11$, $2728: 13,2729: 5$, $2729: 11,2755: 23$ starting $[2]-2712: 9$, $2752: 23$ starts $[5]-2727: 20$, $2728: 11,2734: 12$, |  | ```2751:2, 2751:7, 2753:6, 2754:21, 2757:9, 2760:15, 2762:11, 2762:12, 2762:15, 2763:17, 2763:23, 2763:25 stop \({ }_{[1]}\) - 2638:10 straight [2]-2659:24, 2753:2 stratified [4] - 2712:12, 2712:17, 2713:13, 2713:21 stratographic [2] - 2645:1, 2650:23 stray [1] - 2644:5 stream [1] - 2644:9 STREET [16] - 2630:23, 2631:4, 2631:11, 2631:15, 2631:18, 2632:5, 2632:10, 2633:6, 2633:15, 2633:20, 2634:7, 2634:10, 2634:23, 2635:10, 2635:14, 2635:18 stress [1] - 2647:7 structure [1] - 2661:25 studied [1] - 2729:2 studies [5] - 2704:9, 2752:8, 2752:13, 2754:8, 2757:5 study [8] - 2647:7, 2659:15, 2659:18, 2659:19, 2703:10, 2752:9, 2753:13 studying [2] - 2705:21, 2705:22 sub [1] - 2663:3 subject \({ }_{[1]}-2683: 16\) subscript \({ }_{[1]}\) - 2648:12 subsea [2] - 2664:2, 2664:16 subsurface [2] - 2694:11, 2703:17 subtleties [1] - 2707:11 Suez [1] - 2643:15 suggest [1]-2667:19 suggested [1] - 2681:15 SUITE [9]-2630:23, 2631:4, 2631:18, 2633:6, 2634:7, 2634:10, 2634:23, 2635:4, 2635:10 summary [2]-2710:2, 2710:3 summer [1] - 2644:8 support [3] - 2667:20,``` |  | ```2762:12, 2762:15, 2763:17, 2763:23, 2763:25 teach [2]-2643:10, 2643:16 teaching [1] - 2643:8 Team[1]-2722:24 team [15]-2645:9, 2645:10, 2645:13, 2645:18, 2659:4, 2659:15, 2661:25, 2662:25, 2665:19, 2673:7, 2681:25, 2687:3, 2704:8, 2704:10, 2718:7 teams [1] - 2704:8 technical [4] - 2645:17, 2656:17, 2707:11, 2718:7 Technical [1] - 2722:24 technologies [1] - 2707:19 Technologies [1] - 2704:4 teks [1] - 2744:11 temperature [6] - 2736:22, 2737:1, 2737:4, 2737:19, 2738:9, 2753:22 ten [2]-2684:13, 2705:21 ten-year [1] - 2705:21 tended [1] - 2698:3 tender [1]-2709:2 terabytes [1] - 2747:25 term [3] - 2643:13, 2647:21, 2683:15 terms[5] - 2646:22, 2650:18, 2655:23, 2675:8, 2697:21 terrain [3]-2728:18, 2728:22, 2730:7 terrain-induced [2] - 2728:18, 2730:7 test [8]-2645:6, 2655:6, 2661:16, 2670:4, 2671:9, 2675:2, 2683:23, 2691:15 testified [7] - 2642:11, 2651:3, 2686:17, 2687:16, 2697:12, 2700:8, 2718:24 testimony [15] - 2640:10, 2640:15, 2649:5, 2649:6, 2676:8, 2680:14, 2698:14, 2700:23,``` |
| :---: | :---: | :---: | :---: | :---: |



UNOFFICIAL TRANSCRIPT

| $\begin{aligned} & \text { type }[4]-2704: 18, \\ & 2741: 2,2743: 8, \\ & 2753: 13 \\ & \text { types }[2]-2724: 17, \\ & 2736: 7 \\ & \text { typically }[2]-2705: 7, \\ & 2724: 16 \\ & \text { typo }[3]-2730: 20, \\ & 2730: 24,2731: 3 \end{aligned}$ | 2632：13 <br> United［11］－2638：4， 2638：6，2638：20， 2640：14，2641：13， 2641：15，2642：6， 2671：6，2682：6， 2692：15，2696：20 University［2］－ 2702：15，2702：16 | upper［1］－2662：4 upstream［5］－2728：3， 2728：7，2728：12， 2761：14，2761：17 useful［1］－2639：5 user［1］－2744：12 uses［2］－2758：21， 2762：24 USGS［3］－2692：18， 2696：18，2697：17 | 2715：20，2717：6， 2717：7，2719：14， 2719：18，2720：7， 2720：14，2720：20， 2721：1，2721：17， 2722：25，2723：1， 2723：2，2723：25， 2724：8，2730：10， 2731：5，2732：13， | $\begin{gathered} \text { wellbore [9]-2645:6, } \\ \text { 2655:6, 2661:16, } \\ 2663: 25,2666: 11, \\ 2671: 9,2675: 2, \\ 2675: 3,2695: 13 \\ \text { wellhead [5]-2645:2, } \\ 2655: 10,2665: 15, \\ 2668: 25,2685: 6 \\ \text { wells [4]-2645:4, } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| U |  | V |  |  |
|  | unusual［1］－2749：17 up 1933 － $2637: 9$, <br> 2637：20，2639：3， 2642：22，2651：5， 2652：5，2655：24， 2656：6，2661：15， 2665：3，2669：24， 2675：22，2676：7， 2678：6，2678：14， 2684：17，2684：23， 2685：8，2685：12， 2685：17，2687：11， 2687：21，2688：12， 2689：19，2691：19， 2695：15，2699：17， 2701：19，2702：10， 2705：12，2709：12， 2709：24，2710：23， 2711：19，2713：4， 2713：7，2714：19， 2715：13，2715：23， 2716：14，2716：18， 2717：3，2717：22， 2718：13，2719：25， 2721：12，2722：1， 2722：20，2724：7， 2724：8，2724：13， 2727：1，2727：19， 2728：10，2728：11， 2730：20，2773：22， 2733：24，2734：22， 2735：6，2735：24， 2736：4，2737：2， 2738：11，2741：21， 2742：9，2746：15， 2746：22，2748：7， 2748：11，2749：22， 2750：8，2750：16， 2750：21，2751：5， 2751：7，2751：14， 2752：17，2753：10， 2753：18，2754：5， 2754：10，2754：17， 2754：20，2757：15， 2758：1，2758：25， 2762：4，2762：21， 2764：25 update［1］－2669：10 | $\begin{gathered} \text { value [20] - 2652:18, } \\ 2652: 20,2661: 2, \\ 2663: 20,2670: 24, \\ 2671: 1,2671: 2, \\ 2671: 3,2671: 4, \\ 2673: 24,2679: 22, \\ 2692: 21,2692: 25, \\ 2698: 10,2698: 22, \\ 2699: 4,2752: 24, \\ 2752: 25,2761: 21 \\ \text { values }[17]-2656: 10, \\ 2657: 24,2659: 1, \\ 2660: 25,2675: 4, \\ 2675: 7,2678: 10, \\ 2679: 7,2683: 8, \\ 2683: 18,2683: 22, \\ 2685: 5,2688: 10, \\ 2688: 13,2697: 18, \\ 2754: 13,2754: 18 \\ \text { valve }[1]-2759: 21 \\ \text { variable }[1]-2678: 18 \\ \text { variance }[1]-2755: 1 \\ \text { varied }[3]-2735: 23, \\ 2746: 18,2753: 5 \\ \text { variety }[1]-2664: 24 \\ \text { various }[8]-2644: 25, \\ 2693: 17,2704: 13, \\ 2705: 15,2706: 23, \\ 2717: 24,2741: 7, \\ 2754: 8 \\ \text { vary }[5]-2735: 1, \\ 275: 22,2752: 10, \\ 2759: 21 \\ \text { varying }[3]-2690: 24, \\ 2735: 21,2752: 11 \\ \text { velocity }[5]-2712: 11, \\ 2712: 15,2712: 23, \\ 2761: 15 \\ \text { version }[3]-2741: 5, \\ 2755: 25,2756: 19 \\ \text { version }[1]-2741: 6 \\ \text { versions }[3]- \\ 2755: 24,2755: 25, \\ 2756: 20 \\ \text { versus }[2]-2678: 15, \\ 2721: 11 \\ \text { video }[25]-2713: 9, \\ \hline \end{gathered}$ |  |  |

UNOFFICIAL TRANSCRIPT


UNOFFICIAL TRANSCRIPT
SUSAN A．ZIELIE，CRR，RMR，FCRR

