> UNITED STATES DISTRICT COURT EASTERN DISTRICT OF LOUISIANA

IN RE: OIL SPILL BY THE
OIL RIG DEEPWATER HORIZON
IN THE GULF OF MEXICO ON
APRIL 20, 2010
**

IN RE: THE COMPLAINT AND
DOCKET NO. 10-CV-2771
SECTION "J"

LEASING GMBH, ET AL

```
**************************************************************
```

UNITED STATES OF AMERICA
V.
DOCKET NO. 10-CV-4536
SECTION "J"
BP EXPLORATION \& PRODUCTION,
INC., ET AL

DAY 9 MORNING SESSION
TRANSCRIPT OF NONJURY TRIAL PROCEEDINGS
HEARD BEFORE THE HONORABLE CARL J. BARBIER UNITED STATES DISTRICT JUDGE

APPEARANCES:

FOR THE PLAINTIFFS: HERMAN HERMAN \& KATZ
BY: STEPHEN J. HERMAN, ESQ.
820 O'KEEFE AVENUE
NEW ORLEANS, LA 70113

DOMENGEAUX WRIGHT ROY \& EDWARDS
BY: JAMES P. ROY, ESQ.
556 JEFFERSON STREET, SUITE 500 POST OFFICE BOX 3668
LAFAYETTE, LA 70502

```
APPEARANCES CONTINUED:
```

LEVIN PAPANTONIO THOMAS MITCHELL RAFFERTY \& PROCTOR
BY: BRIAN H. BARR, ESQ.
316 SOUTH BAYLEN STREET, SUITE 600 PENSACOLA, FL 32502

WEITZ \& LUXENBERG
BY: ROBIN L. GREENWALD, ESQ. 700 BROADWAY
NEW YORK CITY, NY 10003

IRPINO LAW FIRM
BY: ANTHONY IRPINO, ESQ.
2216 MAGAZINE STREET
NEW ORLEANS, LA 70130

LUNDY, LUNDY, SOILEAU \& SOUTH
BY: MATTHEW E. LUNDY, ESQ.
501 BROAD STREET
LAKE CHARLES, LA 70601

MORGAN \& MORGAN
BY: FRANK M. PETOSA, ESQ.
188 EAST CAPITOL STREET, SUITE 777 JACKSON, MS 39201

FOR THE STATES'
INTERESTS:
ALABAMA ATTORNEY GENERAL'S OFFICE BY: COREY L. MAZE, ESQ. WINFIELD J. SINCLAIR, ESQ. 500 DEXTER AVENUE MONTGOMERY, AL 36130

```
APPEARANCES CONTINUED:
```

FOR THE STATE OF
LOUISIANA:
STATE OF LOUISIANA
BY: JAMES D. CALDWELL,
ATTORNEY GENERAL
1885 NORTH THIRD STREET
POST OFFICE BOX 94005
BATON ROUGE, LA 70804
KANNER \& WHITELEY
BY: ALLAN KANNER, ESQ.
DOUGLAS R. KRAUS, ESQ.
701 CAMP STREET
NEW ORLEANS, LA 70130
U.S. DEPARTMENT OF JUSTICE
TORTS BRANCH, CIVIL DIVISION
BY: STEPHEN G. FLYNN, ESQ.
POST OFFICE BOX 14271
WASHINGTON, DC 20044
U.S. DEPARTMENT OF JUSTICE
ENVIRONMENT \& NATURAL RESOURCES
DIVISION
ENVIRONMENTAL ENFORCEMENT SECTION
BY: THOMAS BENSON, ESQ.
STEVEN O'ROURKE, ESQ.
SCOTT CERNICH, ESQ.
A. NATHANIEL CHAKERES, ESQ.
ANNA CROSS, ESQ.
BETHANY ENGEL, ESQ.
RICHARD GLADSTEIN, ESQ.
JUDY HARVEY, ESQ.
SARAH HIMMELHOCH, ESQ.
P.O. BOX 7611
WASHINGTON, DC 20044

```
APPEARANCES CONTINUED:
```

FOR BP EXPLORATION \&
PRODUCTION INC.,
BP AMERICA PRODUCTION
COMPANY, BP PLC:

```
LISKOW & LEWIS
BY: DON K. HAYCRAFT, ESQ.
ONE SHELL SQUARE
7 0 1 ~ P O Y D R A S ~ S T R E E T ~
SUITE 5000
NEW ORLEANS, LA }7013
```

KIRKLAND \& ELLIS
BY: J. ANDREW LANGAN, ESQ.
HARIKLIA KARIS, ESQ.
PAUL D. COLLIER, ESQ.
MATTHEW T. REGAN, ESQ.
BARRY E. FIELDS, ESQ.
300 N. LASALLE
CHICAGO, IL 60654
KIRKLAND \& ELLIS
BY: MARTIN BOLES, ESQ.
333 SOUTH HOPE STREET
LOS ANGELES, CA 90071
KIRKLAND \& ELLIS
BY: ROBERT R. GASAWAY, ESQ.
JOSEPH A. EISERT, ESQ.
BRIDGET K. O'CONNOR, ESQ.
655 FIFTEENTH STREET, N.W.
WASHINGTON, DC 20005
COVINGTON \& BURLING
BY: ROBERT C. "MIKE" BROCK, ESQ.
1201 PENNSYLVANIA AVENUE, NW
WASHINGTON, DC 20004

```
APPEARANCES CONTINUED:
```

FOR TRANSOCEAN HOLDINGS
LLC, TRANSOCEAN
OFFSHORE DEEPWATER
DRILLING INC., AND
TRANSOCEAN DEEPWATER INC.:

FRILOT
BY: KERRY J. MILLER, ESQ. ENERGY CENTRE 1100 POYDRAS STREET, SUITE 3700 NEW ORLEANS, LA 70163

SUTHERLAND ASBILL \& BRENNAN
BY: STEVEN L. ROBERTS, ESQ. 1001 FANNIN STREET, SUITE 3700 HOUSTON, TX 77002

MUNGER TOLLES \& OLSON
BY: MICHAEL R. DOYEN, ESQ. BRAD D. BRIAN, ESQ. LUIS LI, ESQ. GRANT A. DAVIS-DENNY, ESQ. ALLEN M. KATZ, ESQ.
335 SOUTH GRAND AVENUE, 35TH FLOOR LOS ANGELES, CA 90071

FOR HALLIBURTON
ENERGY SERVICES, INC.:

GODWIN LEWIS

BY: DONALD E. GODWIN, ESQ. JENNY L. MARTINEZ, ESQ. BRUCE W. BOWMAN, JR., ESQ. PRESCOTT W. SMITH, ESQ. SEAN W. FLEMING, ESQ.
RENAISSANCE TOWER
1201 ELM STREET, SUITE 1700 DALLAS, TX 75270.

```
APPEARANCES CONTINUED:
```

 FOR ANADARKO
 PETROLEUM CORPORATION,
 ANADARKO E\&P COMPANY LP:
 KUCHLER POLK SCHELL
 WEINER \& RICHESON
 BY: DEBORAH D. KUCHLER, ESQ.
 1615 POYDRAS STREET, SUITE 1300
 NEW ORLEANS, LA 70112
 BINGHAM MCCUTCHEN
 BY: WARREN A. FITCH, ESQ.
 KY E. KIRBY, ESQ.
 2020 K STREET, NW
 WASHINGTON, DC 20006
 OFFICIAL COURT REPORTER: SUSAN A. ZIELIE, CRR, RMR, FCCR
FEDERAL CERTIFIED REALTIME REPORTER
REGISTERED MERIT REPORTER
500 POYDRAS STREET, ROOM HB406
NEW ORLEANS, LA 70130
(504) 589-7781
susan_zielie@laed.uscourts.gov
PROCEEDINGS RECORDED BY MECHANICAL STENOGRAPHY. TRANSCRIPT
PRODUCED BY COMPUTER.

```
            I N D E X
    EXAMINATION OF:
    CURTIS WHITSON
```

 Direct by Ms. Karis 2303
 Cross by Ms. Engel 2306
 Videotape of Jamie Loos 2384
 ROBERT ZIMMERMAN
 Direct by Mr. Fields
 2385
 | $\mathrm{P}-\mathrm{R}-\mathrm{O}-\mathrm{C}-\mathrm{E}-\mathrm{E}-\mathrm{D}-\mathrm{I}-\mathrm{N}-\mathrm{G}-\mathrm{S}$ | |
| :---: | :---: |
| OCTOBER 15, 2013 | |
| MOR N I N G S E S S I O N | |
| (COURT CALLED TO ORDER) | |
| 8:00 A.M. | 07:19AM |
| | 07:36AM |
| THE COURT: Good morning, everyone. Please be seated. | 08:04AM |
| Do we have any preliminary matters? | 08:04AM |
| MS. KING: Yes, Your Honor, Rachel King for the United | 08:04AM |
| States. I have here the list of exhibits, call-outs, and | 08:04AM |
| demonstratives used with Drs. Kelkar and Pooladi-Darvish on | 08:04AM |
| Wednesday. These lists have been circulated and there have been | 08:04AM |
| no objections. | 08:04AM |
| THE COURT: All right. Are there any remaining | 08:04AM |
| objections? | 08:04AM |
| Without objection, those are admitted. | 08:04AM |
| (Exhibit admitted.) | 08:04AM |
| MR. BROCK: Morning, Your Honor. I was just going to | 08:04AM |
| mention for planning purposes that we sort of looked at our | 08:04AM |
| witnesses and length of examinations. | 08:04AM |
| I don't want to get too far out of my skis here in | 08:05AM |
| terms of predictions, but we're hopeful that we will finish our | 08:05AM |
| case Thursday afternoon or Friday morning, even with the short | 08:05AM |
| week. | 08:05AM |
| I'll have a better sense of that tomorrow by | 08:05AM |

```
lunchtime, I think. But we'll see how much progress we make today and tomorrow.
And, I've advised Mr. O'Rourke and Ms. Himmelhoch of that, and they're going to let me know who their witnesses for Friday will be in the event that we make it that far.
We're on the same schedule that we talked about last week. No changes at this point to that. So I thought I would just let you know that for planning purposes.
THE COURT: You did switch around your witnesses from what we talked about.
MR. BROCK: From what we started with. We've left Dr. Whitson in the place, where we moved him to in order to accommodate the schedule for Thursday, and then we go back to Zimmerman, Gringarten, Merrill, straight down the line.
THE COURT: All right. Very well.
MR. BROCK: Mike Brock for BP.
THE COURT: All right. According to our timekeepers, the United States, as of last week, used 13 hours and 7 minutes; has 31:53 remaining. BP has used 14 hours and 16 minutes; and has 30 hours 54 minutes remaining.
Okay. Ms. Karis, good to see you back.
MS. KARIS: Thank you, Your Honor.
THE COURT: Feeling better?
MS. KARIS: I am. Not perfect. I have the Kleenex.
Thank you for accommodating our schedule on
```

```
Friday, and I apologize for any inconvenience.
MR. BROCK: That's another reason we need to finish the case, because it's moving back. The further back you go in the courtroom, the more people that are down with the cold.
THE COURT: I hope it's moving that way.
MS. KARIS: You and me both. I wish it was just moving away.
CURTIS wHITSON, being first duly sworn, testified
as follows:
CASE MANAGER: State and spell your name for the record, please.
THE WITNESS: Curtis Whitson, C-U-R-T-I-S W-H-I-T-S-O-N.
DIRECT EXAMINATION
BY MS. KARIS:
Q Good morning, Dr. Whitson. For the record, Hariklia Karis on behalf of \(B P\), conducting the direct examination of Dr. Curtis Whitson.
MS. ENGLE: I wanted to remind Your Honor that we do have a motion for summary judgment, and a Daubert motion as well, both related to the dissolution of oil question. I just wanted to remind you. I know you said you'd take those under consideration.
THE COURT: Yes. I've looked at that, and I'm going to 08:07AM reserve ruling on that issue. I think I have to listen to the 08:07AM
```

witness to understand exactly what he's saying and whether it's a pure legal issue or not.

Ms. ENGEL: Understood, Your Honor. Thank you
MS. KARIS: For the record, while Dr. Whitson's testimony will address the motion in limine, BP has submitted a request for a written submission on the summary judgment issue.

But I think Dr. Whitson's testimony will at least frame the issues with respect to the motion in limine. THE COURT: Okay. DIRECT EXAMINATION

BY MS. KARIS:
Q Good morning, Dr. Whitson. Could you begin by telling the Court what you were asked to do in connection with this case?

MS. KARIS: And if we can pull up D-23980 to frame
that.
BY MS. KARIS:
A Was asked to build a model to describe the properties of the gas and oil for the Macondo reservoir fluids, and that model is to be used by other experts in their calculations of rates and quantities released to the ocean. That was the first.

And the second was to review and evaluate the equation statement of Dr. Zick, who did the same type of work for the U.S. Government.

And, finally, I was asked to develop a realistic, physically realistic model, that would describe the
transformation or conversion of that reservoir fluid to a stock tank oil volume at the stock tank at issue.

Q Now, before we discussed the opinions that you reached in connection with the work you were asked to do, I'd like to talk about your background a little bit.

Where are you originally from?
A I grew up in Oklahoma, and for about 17 years, before I moved to California to study at Stanford University. And, there, I took a Bachelor's degree in Petroleum Engineering. Q And we're going to talk about your education briefly, but if we can first like at TREX-11496.180, please.

Dr. Whitson, is this your curriculum vitae that's attached to your report?

A Yes, ma'am.
Q And you told the Court briefly about your education, but can you describe more completely your educational background. A Like I said, I had taken the Bachelor of Science degree in Petroleum Engineering at Stanford university from 1974 to '78. And then I went to Norway thereafter and took a Ph.D. degree, which I received in 1984, in Chemical and Petroleum Engineering. Q Why did you go to Norway to get a Ph.D.?

A Well, I had a professor at Stanford, Dr. Stanley, who had been in Norway in the early 1970s when the oil industry had just got started. And, when he came to Stanford, he basically used 08:10am to talk about Norway, and that it was kind of a pioneering area, 08:10AM
it was just getting started in the business. So I decided to go there and see what was there.

Q And I'm going to ask you to just speak a little louder because I -- it could be my cold, but I'm having a hard time hearing.

A Yeah.
Q Now, you got your Ph. D. you said from the Norwegian Institute of Technology; is that correct?

A Yes, I did.
Q Did you write a thesis in connection with obtaining your Ph.D.?

A Yes, I did.
Q Tell the Court what the subject of your thesis was.
A The subject, the title, same thing, is Phase Behavior and Flow of Petroleum Reservoir Fluids.

Q Can you also tell us a little bit about your employment history after you finished school.

A Well, I got a job there at the University Trondheim when I arrived in 1978, and I've held the position there ever since then. I'm now a department professor. So I've had an employment with them for 35 years.

Early on, late 1979, I started working as a consultant to the petroleum industry, and have done so as a petroleum engineering consultant since then.

1988, I established the consulting company called

08:10AM

08:10AM

08:10AM

08:10AM

08:11AM

PERA, about 25 years ago. And then another company about in 2006, which is the software spin-off from that company.

In addition to that, I do industry courses, both public and in-house courses, for oil companies maybe two to five times a year, one-week courses where I talk about advanced phase behavior and development of fluid characterizations within an equation statement.

Q Let's talk about each of those three areas that you identified.

First, with respect to the teaching, your teaching 08:12AM at the university, you said you'd been there for approximately 35 years on staff as a professor. A Yes, ma'am.

Q What are the type of courses that you've taught there as they relate to the subjects that you're going to discuss in this case?

A Right. Well, pretty much all the reservoir engineering course curriculum, I've taught. PVT, at an introductory and advanced level. All of the standard reservoir engineering courses: Material balance, pressure trans analysis, defined curve analysis. And then one course in production engineering. Q All right. And then you mentioned you have a consulting company called PERA?

A Yes, ma'am.
MS. KARIS: If we could look at D-24584 please.

BY MS. KARIS:
08:13AM
Q Does this demonstrative accurately describe the different areas of business that PERA engages in?

A Yes, it does.
Q And tell us how the business of PERA relates with respect to the issues that you're going to discuss in this case. A Well, pretty much all of our work relates to building models to describe reservoir fluids and their properties of gas, oil, and water, typically for complex fluid systems where the oil companies have struggled themselves to come up with such a model. And that's kind of our bread-and-butter line of business, really. There's not a lot of people who are doing that.

Q Can you give us a sense of some of who PERA's clients are in the oil and gas industry.

A I think essentially all of the international and national oil companies we've worked for at one time or another.

Also larger independent companies and even some smaller oil and gas companies domestically in the U.S.

MS. KARIS: If we can look at D-23968, please. BY MS. KARIS:

Q Does this demonstrative accurately reflect some of the clients for which PERA has conducted business, including creating modeling such as the modeling that you've performed in this case?

A Yes. This would be a subset of all of the companies that we've worked for.

Q And for how many years have you been performing consulting for the oil and gas industry creating equation of state models similar to what you did in this case?

A Certainly over 30 years. I think the first would have been around 1981.

Q And then you reference that, in addition to teaching at the university and having PERA, you also teach courses to the industry?

A Yes, I do.
Q Tell us who some of the clients are that you teach courses to.

A Well, where I've been asked to come in to a specific company, a so-called in-house course, that would probably be somewhere around 15 companies through the years, maybe 15 or 20 .

But if you include the public courses where you |08:15Am could have five or ten different companies represented there, through all the years, it's probably most every oil company sent somebody to one of the courses I've taught.

Q What is the subsequent matter of the courses that you teach to the oil and gas industry?

A Most of the courses are advanced phase behavior and U.S. fluid characterization. But there's a couple of other courses I teach regularly. There's gas condensate. And, more recently,

08: 14AM 08:14AM

08:14AM

08:14AM

08:14AM

08:14AM

08:14AM

08:14AM

08:15AM

08:15AM

08:15AM

08: 15AM

08:15AM

```
about the shale gas, this kind of a newer course.
```

Q Is it fair to say that you teach courses for the industry
about subjects that are comparable or the same as what you're
going to testify here about today?
A Yes, ma'am.
Q All right. And I would like to talk a little bit about what
you've published.
Have you published any books?
A Yes. I've written two books. One on well performances and
the Phase Behavior Monograph of the Society of Petroleum
Engineers.
MS. KARIS: We can look at D-23974, please.
BY MS. KARIS:
Q Are these the two books that you've published?
A Yes, ma'am.
Q The one on phase behavior, there's been a reference to it as
a monograph.
A Yes.
Q What is a monograph?
A Well, the Society for Petroleum Engineers have I think about
30 of these now. They're taking a specific topic, and you're
supposed to provide the technology, the methods, the references
on how to conduct a particular engineering task.
And, in this case, it's the calculation of phase
behavior or estimated properties of gas, oil, and water.

```
Q And so are you one of the authors of the books that the Society of Petroleum Engineers uses in order to conduct or instruct on phase behavior?
A Yes, ma'am.
Q In addition to the books that you have published, have you also published papers, including some that are listed in your curriculum vitae?
A Yes.
Q Tell the Court approximately how many papers you've published.
A Well, it's over 100 papers, many, or maybe most of which, have been published in the journals, in presentations, and conferences.
Q And how many of those publications deal with the issue of fluid phase behavior?
A Oh, I guess the great majority. Eighty percent or something. I've never tallied it up, but the vast majority of those would be in this area.
Q And then, finally, have you been recognized with any awards in the industry for your contributions in the field of phase behavior?
A Yes. There's been some awards I've received.
MS. KARIS: If we can look at 11496.180.1, please.
BY MS. KARIS:
Q And again, from your CV, are these some of the professional
```

awards that you have received from the industry, recognition of your contribution to the industry?

A Yes, ma'am, they are.
Q There's one there that's referenced Anthony F. Lucas Gold Medal for the SPE in 2011.

Tell the Court what that is.
A Well, it's kind of the highest technical award given by the Society of Petroleum Engineers and AIME, so it was a very special honor to get that award. Maybe technical award.

MS. KARIS: Your Honor, at this time I tender Dr. Whitson as an expert in hydrocarbon fluid phase behavior and its properties.

MS. ENGEL: Subject to our two pending motions and cross examination, we have no objection.

THE COURT: I'll accept him as an expert.
MS. KARIS: Thank you, Your Honor.
BY MS. KARIS:
Q Dr. Whitson, I'd like to discuss some of the opinions now that you've reached in this case. Let's begin with TREX-11496.1, please.

Is this the expert report that you prepared that contains the opinions that you intend to give in this case? A It's the cover page from that report, yes.

Q Right. This is the cover page?
And then does Exhibit 11496 contain the opinions
$08: 18 \mathrm{AM}$

08:18AM

08:19AM

08:19AM
and the analyses that you've done in connection with the work you've done in this case?

A Yes, it is.
MS. KARIS: And if we can now look at D-24604.
BY MS. KARIS:
Q Can you give us a high level overview of what your opinions are in connection with this case.

A Well, my first opinion is that the model that we built for the reservoir fluid description in the Macondo reservoir is very accurate. We're very proud of what was developed, and I believe it accurately depicts the properties needed by the experts to make calculations of rates and amounts that spilled into the ocean.

The second thing is that we evaluated the work of Dr. Zick, his equation of state model, and found a couple of quite serious flaws. In particular, its ability to calculate or replicate the measurements of a shrinkage factor by the laboratories.

And this would have, of course, a very important impact on the decisions made by the Court here. So that was, I think, a fairly serious problem that was identified in that evaluation.

And then the final thing I did is to build a model that I believe represents accurately the realistic process by which reservoir fluid that entered the seabed and surfaced,
passed through, and led to the ultimate stock tank oil volume. Q So, in discussing your opinions, does the first half of your work relate to developing an equation of state model and then critiquing Dr. Zick's equation of state model?

A That's what was done, yes.
Q In relying on that state model, did you then also prepare something called a separator process?

A An oceanic separator process based on our equation state model.

Q Let's start with the first half of the work that you did; that is, constructing the equation of state model that accurately depicts the behavior of a Macondo fluid -- a reservoir fluid, as you've put on your slide here.

Before we get into the specifics of your characterization, I'd like to discuss a couple basic concepts with respect to equation state modeling.

First, let's start with the concept of the PVT, the acronym. What is PVT as it relates to equation of state models?

A Well, the letters stand for pressure, volume, and temperature. But, in petroleum engineering, what we mean by that is obtaining properties of gas, oil, and water, like density, viscosity, and the relative amounts of the gas and oil phases. That's what we mean by PVT. Equation of state can be very accurate to make calculations of those properties.

Q And do the experts in this case trying to quantify how much oil flowed from the Macondo reservoir need PVT, pressure volume temperature data?

A Well, all of the experts use models or equations to make the calculations of either rate or total amount that was released into the ocean.

In all of those equations, you need the properties of density of each phase, gas and oil, the viscosities of each phase, gas and oil, and the amounts of each phase, gas and oil.

Those are really the only properties you need to |08:22AM make those calculations in some form or another. Different experts needed some properties; other experts needed other properties; some experts needed all of the properties. But they basically couldn't make the calculations without those properties.

Q You told us what PVT data is. Now tell us what an equation of state model is.

A Well, it's an equation or kind of a complicated set of equations. But it's really just a vehicle, a means to get those properties calculated accurately, with a consistency that doesn't differentiate whether it's being a gas or an oil or near-critical fluid, as you may have heard the term. It is all encompassing. It can calculate the properties of really any kind of fluid system at any set of conditions. Q Does an EOS, equation of state model, predict how fluid

```
properties change as that fluid moves through different
pressures and temperatures from the reservoir, then to the
surface?
A That's its intention, is that it's able to calculate these
properties over a wide range of pressure temperature, and then
potentially change in composition, as would be experienced in an
oceanic separation process, for example.
    MS. KARIS: Let's look at D-24586.
    BY MS. KARIS:
    Q Using this demonstrative, can you explain to the Court what
    an equation of state model is designed to do in this case. Walk
        us through what we're seeing here.
        A Basically, we start down with this red symbol down in the 08:24AM
        lower right-hand corner. This plot is showing pressure on the y
        axis.
            MS. KARIS: If I may approach?
        BY MS. KARIS:
        A There we go. So there is the starting point, and pressure
        and temperature. You can see that the pressure is increasing as
        we go down. And the initial reservoir pressure there is just
        short of 12000 psi.
            And then the stock tank conditions, where we're
        trying to quantify the volume of oil, is at 60 degrees
        Fahrenheit.
            We've got temperature here on the x axis starting
```

at the reservoir of 243 Fahrenheit, and it's going to go down to 60 Fahrenheit. And a pressure of just 15 psi.

So the point is that we're going to go from here to there in a path that's not well defined. May change over time. The experts that are making the calculations need to have the properties, these PVT properties, anywhere in the shaded area. Anywhere. Literally anywhere.

Now, the samples that were collected pre-incident from the reservoir were sent to laboratories, and they made property calculations in the laboratory at all of these yellow circles: Densities, viscosities, and phase volumes. So we have data from the laboratories at all these points, but we need data everywhere in the shaded area.

The equation of state will provide us the ability to calculate those properties anywhere in the shaded area, but only after we have tuned that equation of state model to the measured data at the other points.

Basically, it's a litmus test that the equation of state can do a good job where we have measurements. So the assumption is that it'll be able to calculate properties where we don't have measurements. Q We're going to talk briefly about how you went about filling in these shaded parts here. But, to be clear, the yellow dots, are those based on data that was collected, samples that were collected and data that was tested at different labs?

```
A That's right. There were three different laboratories and
four different samples. One laboratory did analysis and
measurements of properties, densities, and so forth on two
samples. The other two laboratories each had one sample.
                    They have all conducted a suit of standard
experiments to get us these properties that we need to tune the
equation of state.
Q Are equations of state similar to the one that you have you
graphed here customarily built in the oil and gas industry?
A It's become standard about the last -- since around 1985, it
started become the standard method of developing the PVT models.
Q Can you tell the Court how long it took you to develop the
equation of state model that we're going to be talking about
today?
A Just short of three months.
Q Now, you referenced some data, lab data, you relied on.
A Yes, ma'am.
MS. KARIS: Let's look at TREX-8583.3, please.
BY MS. KARIS:
Q Do you recognize this document?
A Yes, ma'am. This is one of the Pencor samples or Core Lab
samples.
Q And, to be clear, when were the samples that we're going to
be talking about collected?
A They were collected pre-incident, pre before the blowout.
```

They were collected when the well had been drilled before they put the production pipe in the well.

Q And when were those samples tested?
A I think the laboratories received the samples around April, and they finished them in June. I know most of the reports were delivered around middle of June.

Q So fair to say collected pre-incident but tested post-incident?

A That's right.
Q And, by incident, I mean the blowout.
A The start, yeah.
Q Now if we can look at TREX --
A And they were collected at two depths very close to each other. All four of these samples were collected. Q And the exhibit that we're looking at here, 8583, is this the Core Lab test results for the testing that was done on one of those samples?

A Yes.
MS. KARIS: And now if we can look at 8584.3.
THE WITNESS: They kind of look alike, I think. BY MS. KARIS:

Q Is this another one of the lab test reports that was, again, sample collected pre-incident but tested post-incident? A Right. That's right.

MS. KARIS: And if we can now pull up 8583.1.1.

BY MS. KARIS:
Q Does this indicate to you when these test reports came out? June 10th there?

A Yeah. They're actually dated, the reports themselves. But they're middle of June, yeah, that's right. I think the Schlumberger sample came in a little bit earlier.

Q Talk about the Schlumberger sample, 11575.1. Again, is this the lab report from Schlumberger from sample collected pre-incident but tested post-incident?

A Yes.
Q And then, finally, the last lab report 97 --
A Dated May 19th.
Q Sorry. The date at the bottom right-hand corner here.
A And then it's updated there in the middle. So, I think it was finally June, the final report.

There you go.
Q And then the last test report, 9734.20.
A Yeah. The Intertek, I think there were a couple of samples issued. The separator test and the viscosity and constant composition test was a separate report. This is the separator test.

Q Okay. So we've now looked at the four, at least the covers, of the four test reports. Did you rely on those reports in building your equation of state model?

A That's basically what we relied on, that's right. For
building equation of state, that's what we use. MS. KARIS: Let's look at D-24591, please. BY MS. KARIS:

Q Can you tell the Court what kind of testing did the labs perform and report on in those four reports that we just looked at.

A Okay. So, all four samples, all three laboratories conducted the so-called constant composition test. It's a test that provides the densities at single phase, where the fluid is single phased. So initial pressure and temperature run down to about 6500 pounds. That's what gives us the densities.

And it gives us two phases. And the amounts of 08:31Am the two phases is below that 6500 pound saturation pressure. So the laboratories measure these tests at reservoir temperature on down to 100 Farenheit.

The separation tests were also conducted by all three labs on all four samples. And, there were two types of separation tests, which are important in coming up with measure of shrinkage factor. One is a single-stage flash, and that's also used to help get the composition of the reservoir fluid.

The other is a four-stage separation process, which the main intension is to come up with a shrinkage factor to tune the equation state with.

And then there were some initial measurements made 08:32AM for viscosities by the three labs except Schlumberger. And the 08:32AM
difference liberation was conducted on the two samples by Pencor.

Q Now, given the timing of these tests, was there anything in these reports to suggest that the four-stage separation test indicated how the reservoir was going to be produced, had it been produced?

A I never saw any documentation to that effect, no. So it's -- you know, that's not usually the way it works. You know, we're --

Q Tell us how it usually works in connection with what lab tests are requested.

A Well, the lab may or may not conduct a multi-stage separator test. It's done really to give data to help tune the equation 08:33Am of state to make sure it can calculate accurate shrinkage factor.

Often, you discover, you'd would never know what kind of separation conditions you're going to use to sell the oil. Sometimes they don't even ask for a separator test. It just varies from lab to lab.

At least I never saw any documentation that this 08:33AM was the intention of the company, to produce the field at these conditions, though.

Q And we'll be talking more about the four-stage separation briefly. But, before we go there, can you tell us, now that we've looked at what an EOS is designed to do and what data

you've relied on, how you went about building your equation of	08:33AM
state.	08:33AM
A Well, to build an equation of state, you need data. That's	08:33AM
all you need. You need the PVT measurements and the	08:33AM
compositions, the sample upon which the measurements were made.	08:34AM
That's really it. You need -- that's the data.	08:34AM
And then you need, of course, to understand what	08:34AM
you're doing. And you need skill-set and understand the methods	08:34AM
to develop an equation of state.	08:34AM
But, without data, you can't build an equation of	08:34AM
state.	08:34AM
Q Now, after building an equation of state, how do you know if	08:34.M
you have a good model?	08:34AM
A You compare the model, the equation of state model, against	08:34AM
the measured data. If you match those measured data,	08:34AM
particularly those data that are accurately measured and those	08:34AM
that are important to the particular process, then you know you	08:34AM
have a good equation	08:34AM
Q Now with respect to the shrinkage factor, for example,	08:34AM
coming from the equation of state, is there some litmus test you	08:34AM
have for evaluating the accuracy of your equation of state	08:34AM
model?	08:34AM
A Well, the shrinkage factor in all fields we work on is kind	08:34AM
of the most important measurement made, because it's going to	08:34. ${ }^{\text {M }}$
translate what they discover, the reservoir volume, the	08:35AM

geologists give them to potentially sellable oil volume. So that's always an important number. The laboratories know that.

Now, most of the revenues derived in any field $08: 35 \mathrm{AM}$ will come from the oil. So measuring the oil volume accurately is really the key. And that's what they measure in the shrinkage test and the multi-stage separator.

So gas has much less volume. So getting the property, the gas volume accurate, you should expect some accuracy, but they don't pay as much attention to gas volumes as they do to oil volumes.

Q After building your equation of state, can you compare your model to the measured data with respect to shrinkage to see how good your model was?

A Yes.
Q Can you tell us about that analysis.
A Well, I mean, basically we want to get the shrinkage factor within a couple percent at the most, within 2 percent. I mean, the company's expect it. And we generally -- the data are that accurate. We're generally always able to deliver that kind of accuracy for all the samples.

Now, here, there are four samples. We do studies where there are 40 samples or 80 samples. But they expect that shrinkage factor to be predicted within 1, 2 percent for all samples.

Q And how did your model compare? Did you conclude whether it
was a good model or not?
A Well, for the shrinkage, it was a good model. I mean, we
08:36AM had an unbiased prediction. Some of the numbers were less than 08:36Am a percent, some more than a percent. But it was within our goal of achieving the accuracy of the plus/minus 2 percent.

Q Are you aware that Dr. Zick constructed an equation of state model, the United States' expert?

A Yes.
Q And did you compare Dr. Zick's equation of state model with the measured lab data that you were looking at?

A Yes, I did.
MS. KARIS: Let's look at D-24595, please.
BY MS. KARIS:
Q Can you tell the Court what you found when you evaluated Dr. Zick's equation of state model and compared it to the measured lab data?

A Well, there's two things. First, every sample of the four 08:37am samples, he overpredicted the shrinkage factor. For every sample. So it was a biased error.

And the magnitude of error was, on average -- it says there 4 to 5 percent -- was 4.5 percent. It's a lot of error, and it's all on the high side. So I was very surprised when I saw it.

We could never deliver this to an oil company in a 08:37AM regular situation.

```
Q And you talked about overpredicted shrinkage. And we've 08:37\textrm{m}
discussed this previously, sort of it's counterintuitive. If
    you're overpredicting shrinkage, what is the effect of that with
respect to predicting stock tank barrels?
A Well, you'd be predicting too much stock tank oil.
Q Let's talk about some of the details that you just
referenced when you said it's overpredicted.
    MS. KARIS: Your Honor, at this time, I'd like to put
    up a demonstrative that we produced to the United States. There
    was an objection.
    The alternative is, we can write it on the white
        board. It's just numbers that Dr. Whitson uses from his report
        to compare his data to Dr. Zick's data.
        THE COURT: What's the objection?
        MS. ENGEL: I'd have to see the demonstrative.
        MS. KARIS: Sure. D-24589A, and then there is a
        companion one. That's single stage, and then we have one for
        the four stage. D-24589A, please.
    MS. ENGEL: Our objection was simply that we got this
        on Sunday morning, I believe, when Dr. Whitson was originally
        supposed to take the stand last week.
        THE COURT: So it's moot now.
        Okay, go ahead.
        MS. KARIS: Thank you, Your Honor.
        BY MS. KARIS:
```

Q Now, Dr. Whitson, can you please tell us what this demonstrative titled EOS models compared to lab data for single stage is demonstrating.

A Okay. Well, the four top numbers in black text, those are the measurements from the laboratory of the shrinkage for a single-stage process. They range from 42.4 in the one sample to as much as 44 for the Intertek sample.

Q Okay. So let me stop you there. Are these the shrinkage factors for single stage then that are reported or that you calculated?

A No, no. Those are the measured laboratory data. Those are the measured numbers. So you've got 100 barrels of reservoir fluid initial conditions. That's how many stock tank barrels of oil that they measured would result from that, and the average of those four measurements is 43.4 stock tank barrels. Q So does this come straight from the reports?

A Straight from the reports. This is what they measured.
Q Now you have your equation of state average. Tell us what you're demonstrating here, 43.4 plus . 2 percent. A So the deal is that we take our equation of state, and for each of those four samples we calculated a number. Okay? For each of those four samples which are not shown, our equation of state.

But then we take the average of those four 08:40AM calculated numbers, and we get 43.4. Okay?

So then our average of the four samples is 43.4.	08:40AM
And it's almost spot-on to the average of the four laboratory	08:40AM
data.	08:40AM
Q And then can you tell us how Dr. Zick's equation of state	08: 40AM
model, his average, how it compared to the measured lab data.	08:40AM
A Yes.	08:41AM
Q For single stage.	08:41AM
A Okay. So he reports in -- he uses an average fluid in most	08:41AM
of his report. Not a fluid that was actually in the lab report,	08:41AM
but he kind of takes an average of the four fluids that he has.	08: 41AM
I don't remember exactly how he does that.	08:41AM
en he makes these calculations, for example, in	08: 41AM
single-stage flash with that average fluid. That gave the 44.5	08: 41AM
number.	08:41AM
Now, if instead you look at his calculations from	08:41AM
his equation of state in those four tests and you put those four	08:41AM
numbers up against the lab reporting numbers there, that average	08:41AM
would only be 1.1 percent different than the lab numbers, not	08: 41AM
2.8. It would only be 1.1.	08:41AM
The reason I didn't put that number there is	08:41AM
because the 44.5 number is the number that he continuously puts	08:41AM
in the report. But it's a little bit unfair in that case,	08:41AM
because his equation of state was within 1.1 percent on average	08:41AM
of those one-stage shrinkage factors.	08: 42AM
Q Let's now talk about his four stage, which was one of the	08: 42AM

```
processes that he recommended for the Court to adopt.
    MS. KARIS: Let's look at D-245908, please.
BY MS. KARIS:
A So this is --
Q I'm sorry, let me stop you for a second. Is this report the
measured data from the four samples for the four stage separator
process?
A Yes, ma'am. That is in black.
Q And tell us what we see here.
A So, those in black there, those are the four measurements.
    Now, the laboratories all use the same set of
    conditions for the four stages. So, you can compare all the Red
        Delicious apples, you can compare those four numbers.
    And then we just take the hermetic average of
        those four laboratory numbers, and we get 47.3.
    If we take our equation of state and calculate for
        the four tests, the four states, we simulate the laboratory test 08:42AM
        and we average our four numbers and we get 47.9. So it's 1.3 08:43AM
        percent high.
            Again, what we would label Zick EOS average, this
        is his average sample, his average composition, which wasn't
        measured in a lab. Just an average composition put through that
        four-stage separator process. He puts the 49.9 number as his
        calculated number, which is 4.4 percent high.
            But the more proper comparison, as I've talked
```



```
A The problem is, if you're going to use the four-stage flash,
you just use the data. Take the average and use the data. You 08:45AM
don't need a model. You don't my model; you don't need his 08:45AM
model. So, if you just stick to the four-stage flash or
single-stage flash, you just use the data.
The problem is that, if you use these equations of 08:45AM state and it's got an underprediction/overprediction bias, and 08:45AM you use it to simulate another process where there's no laboratory check of how accurate it's calculating, that's the problem.
So, if you do some other kind of oceanic process, 08:45AM any kind of other separator process and you have a general bias, 08:45AM \begin{tabular}{l|l} 
that bias is going to carry over into the other simulated & 08:45AM
\end{tabular} process. That's the problem.
THE COURT: Ms. Karis, let me interrupt for a second. 08:45AM Let me ask you so I can understand.
So these four samples that we're talking about, 08:45AM
these are the actual oil samples that were taken from the Macondo well before the blowout?
THE WITNESS: That's right. THE COURT: They were tested afterwards. THE WITNESS: That's right. THE COURT: And they were tested by four different labs.
THE WITNESS: Three different.
```

THE COURT: Three different labs, I'm sorry. Using	08:46AM
different methods of separation.	08:46AM
THE WITNESS: Well, the three labs used the same four	08:46AM
stage set of -- the same process for four different samples.	08:46AM
THE COURT: You talked about single stage and four	08:46AM
stage.	08:46AM
THE WITNESS: Correct.	08:46AM
THE COURT: So, as I understand it, I assume the goal	08:46AM
or the object for the oil company would be generally to produce	08:46AM
as much sellable oil as they can from the well; correct?	08:46AM
THE WITNESS: That's right.	08:46AM
THE COURT: So is it always the case that this	08:46AM
four-stage separation method produces more stock tank than a	08:46AM
single stage?	08:46AM
THE WITNESS: Well, you have the six-stage separation	08:46AM
process by the Pencor lab, which is a differential process, six	08: 47 AM
stages, that produces much less.	08:47AM
But the four stage and a traditional separator	08: 47AM
multiple-stage test will generally produce more.	08:47AM
THE COURT: I guess what I'm trying to understand is,	08: 47 AM
if your goal is to produce as much sellable oil as you can,	08: 47 AM
seems logically you would use the separation method that would	08: 47 AM
produce the most sellable oil; correct?	08: 47AM
THE WITNESS: That's correct.	08:47AM
THE COURT: And what method would that be? I know I'm	08:47AM

oversimplifying things here for you, but...
THE WITNESS: Well, at this point in time, you wouldn't 08:47AM know, because there would be so many other considerations. It 08:47AM might be a three-stage separation process with completely different conditions than what we have here that might be the optimal for a given field, for this field.

THE COURT: Well, based on the lab data that was taken before the blowout, it looks like between the single stage and the four stage, the four stage obviously produces more oil. THE WITNESS: Yes, sir. THE COURT: Okay. Go ahead. THE WITNESS: Yes, sir.

MS. KARIS: If we can look at TT.1759.1. BY MS. KARIS:

Q I guess, before we look at this testimony, to follow-up on Judge Barbier's caution, in terms of which tests were requested, single stage, four stage, had those been identified before the incident, or were those identified after the incident in connection with the testing? A Well, they were identified when they sent the samples to the laboratory.

Q And that would have been after the incident?
A Yes.
Q And, so at the time the testing was specified, did that testing to you in any way indicate what, if any, plan there was
in terms of how they were going to try and produce Macondo had there not been a blowout?

A Yeah. It seldom is the actual process they end up producing to sell the oil with -- I mean, it might be four stage, it might be two stage. You don't know. I mean, it's going to produce more oil as a single stage.

But, which multiple stage process they're going to use, nobody knew then, and nobody knows now. So that's the problem.

Q Now, we were talking about the significance of the overprediction of the one stage and the four stage that Dr. Zick, his EOS, demonstrated.

I want to show you Dr. Zick's testimony. He was asked: For purposes of your separation analysis, can you summarize how your equation of state compares to Dr. Whitson's? And he says: Our equations of state have differences in the details; but, overall, they both reproduce the behavior of the Macondo fluid reasonably well. The differences between them, at least as far as the shrinkage factors, are relatively insignificant, only about 3 percent, which relative to the uncertainties in the -- it says PTB, but I think it should be PTV data.

A PVT.
Q I'm sorry -- PVT data, I believe, in my opinion, are not significant.

08: 49AM

08: 49AM

08: 49AM $08: 49 \mathrm{AM}$

Do you agree with Dr. Zick's comment there? 08:50AM A No. There's several problems here.

The first thing is that it doesn't -- what matters 08:50AM is how the equation of state compares against the data, not one equation of state against the other. That's the first one.

The second thing is that his shrinkage factors that he's quantifying here are not from initial pressure but from saturation pressure, which is only like -- initial pressure is close to 12000 pounds; saturation pressure is closer to 6000 pounds. So there more error in the shrinkage than what's being indicated here.

The third point is that 3 percent. That's a lot. I mean, for accurately measured data, data that is bottom line important in every situation, well, 3 percent, or in reality 4 and a half percent, it's just not good enough. Means too much money, too many barrels. It's not acceptable. Q Is an overprediction of 4 and a half to 5-- 4.4 to 4.7 percent something that you would deem acceptable for providing an equation of state model to a client of PERA's or yours? A No. I'd be out of business a long time ago if I did that. Q Let's now turn to the second half on the work that you did, and that is in connection with the separator process. We go back to D-24604.

And, again, just to orient us, tell us what the 08:52AM second half of your work in this case pertains to.

A Well, I was trying to come up with a realistic model of how the reservoir fluids passed from the point they entered the sea at the seabed to ultimate stock tank conditions, modeling that process of changing pressure and temperature through a large body of water. That's what I tried to do.

Q Now, what, in your opinion, was the separator process that
08:52AM you believe to be most appropriate for performing the conversion from reservoir fluid to stock tank barrels?

A Well, it should be -- in my whole life as an engineer and a scientist, all I've tried to do is model the real processes. That's all I do. I try to take a real process and create a good model to describe that process. That's what I've always done. So, when I took on this project, that was the first thought, try to model the actual process. That's what I did. That's why I called it the oceanic process.

Q I was going to ask you, what is that process that you believe to be most realistic?

A Well, I mean, I call it oceanic process. It's just a multi-stage process that takes into account what actually happened from seabed to surface.

Q Why is a separation process needed in this case?
A Well, my understanding is that the penalties to be levied are to be levied on an oil at stock tank conditions. The oil that entered the seabed is not stock tank conditions, so has to be a conversion.

Q So is it for the purpose of then converting reservoir fluid oil to stock tank conditions?

A That's right.
Q How does the EOS model that we have been talking about this morning relate to the work that you did in connection with the separator process?

A Well, the separator process, the oceanic separator process obviously is not modeled in the laboratory. We have to use the equation of state to make those calculations of the oceanic process.

So its reliability, its accuracy, is paramount to getting a good shrinkage factor through the oceanic process. Q So, if you're going to recommend an oceanic process like you and Dr. Zick ultimately did, is it important to have an accurate equation of state model?

A That's right.
Q And, if your equation of state model overpredicts shrinkage factors, what effect do you expect that to have any oceanic separator process that's recommended?

A Well, if you have an EOS model that's got kind of carrying a biased overprediction or underprediction, but let's say overprediction as in the case of Dr. Zick's, that's going to carry over into the oceanic process.

You don't know whether that overprediction's going 08:55AM to get bigger, because you go from four stages to 130 stages.

But, you know, you will never be able to know for sure, but that it's going to get less doesn't make any sense.

MS. ENGEL: Your Honor -- I'm sorry, I don't mean to 08:55AM cut you off. The United States filed a motion regarding Dr. Whitson's improper surrebuttal opinions, which you granted. I'm afraid we're starting to step into this area where Dr. Whitson is criticizing Dr. Zick's oceanic separation, which is improper surrebuttal under your order.

MS. KARIS: Your Honor, two points.
One is, we do intend to make a separate offer of proof with respect to Dr. Whitson's testimony responding to Dr. Zick.

But, that said, this is not intended to go into Dr. Zick's oceanic separator process, because we acknowledge the Court's order. This is intended to say, if an oceanic -- in general, if an equation of state model overpredicts, what effect would that have on an oceanic separator?

THE COURT: Sounds like you're criticizing him without putting a name on it. You're saying, what if somebody did what Dr. Zick did.

MS. KARIS: I can move on, Your Honor. We're not going to get into Dr. Zick 's oceanic separator.

THE COURT: Yeah, we'll move on to another subject. BY MS. KARIS:

Q Dr. Whitson, can you tell the Court, first, with respect to

an oceanic separator, or any separator process, how does the	08:56AM
concept of equilibrium fit into this separator process analysis?	08:56AM
A Well, thermodynamic equilibrium, what that really means is	08:56AM
that the separation process consists of going from reservoir	08:56AM
conditions to stock tank conditions. It will go through one or	08:56AM
more stages, get there.	08:56AM
At each stage, you have to have a pressure and	08:56AM
temperature defined and what's coming into that stage.	08:57AM
Now, thermodynamic equilibrium, what that means,	08:57am
is that the stuff that's there in that stage at the pressure and	08:57am
temperature, Mother Nature is going to decide whether there's	08:57am
two phases, gas and oil, which it will be.	08:57am
And then Mother Nature is going to decide how much	08:57am
of the methane is going to go into the gas and how much of the	08:57AM
methane is going to go into the oil. In other words, it's going	08:57am
to leave the oil and go into the gas.	08:57AM
Likewise, ethane, some of the ethanes will go from	08:57am
the oil into the gas.	08:57AM
What will happen then is that that oil is going to	08:57AM
shrink because the gas is getting created. That determination	08:57AM
of how much gas stays as a result and how many of the molecules	08:57AM
go from the oil phase into the gas phase, that's what we call	08:57am
equilibrium thermodynamics. And it's just basically Mother	08:57am
Nature doing her thing.	08:57AM
Q How does that concept then of equilibrium fit into your	08:57am

assessing or recommending a separator process in this case? A Well, it plays a role because you're basically trying to do this thermodynamic equilibrium at each stage in those 130 stages 08:58AM of the seabed to the surface.

Q We've heard reference to a single stage versus a multi-stage. What is the difference between those two?

A Well, the separation process is going from reservoir to stock tank through one or more stages.

So, if it's a single stage, you've just got one stage straight to stock tank conditions. If it's a multi-stage, you have at least one or more intermediate stages before you get to stock tank conditions.

Q Is multiple phase and multiple stage the same concept?
A Multi-phase flow is something really completely different. Multi-phase flow is like you got gas and oil flowing together in a pipe or in a reservoir.

Multi-stage separation is what we've been talking about here. Q So, when we are talking about the separation process, is the correct terminology multi-stage rather than multi-phase? A That would be multi-stage separation, yeah. Q Based on the concept of equilibrium that you just described and the fact that these are these various single-stage, multi-stage separator processes, why did you choose to create a oceanic separator process in this case as the most accurate for
reflecting reservoir to stock tank barrels? Why did you think that one was the most accurate?

A Like I said, I'm just used to modeling real processes, and that was the real process. The reservoir fluid entered the seabed and went to the surface. That's what I do.

I just tried to take into account the thermodynamic equilibrium at all stages from seabed to surface. Q Look at D-23988.

Given that you recommended or proposed an ocean separator model, an oceanic separator model as the most realistic, can you, using this demonstrative, explain to the Court what your oceanic process shows with respect to the reservoir fluid that ultimately went to stock tank barrels. A This is the wellhead down here. So we know the pressure, and it's going to be -- the reservoir fluid's going to be two -phased when it hits the seabed. What's going to happen is that oil coming out of that exit point is going to see lots of water. Okay?

That oil's going to mix with the water. The gas will take -- it's showing going off here, and we we're taking the oil upwards. Now, at a higher elevation, there's lower pressure.

So now you've got oil from the exit point and water at a lower pressure. So, this thermogenic equilibrium, Mother Nature's going to say, Well, what's going to happen here?

08:59AM 08:59AM

Well, that oil is going to create a gas phase. 09:01Am There are going to be components from the oil that create that 09:01Am gas phase, mainly methane, ethane, and propane, the light oil is going to shrink because of that, because you're losing material.

In addition, Mother Nature is going to say, well, 09:01Am some much those components, mainly the light ones, are going to go into the water phase. That's just part of thermodynamic $00: 01 \mathrm{Am}$ equilibrium.

So, at the end of that equilibrium, at that stage 2, you've got some of the components that have formed the gas 09:01Am phase, some of the components have moved into the water.

Now we're at the end of the stage where we're going to remove everything but the oil. We are going to remove the gas and remove the water. And then that shrunken oil is going to go up to higher elevation, a new pressure, it will see new water, create a new equilibrium. We'll get a new gas phase. The oil will shrink accordingly again. You get components going into the water there. Take the gas away, the water goes away, and that oil goes up. And that process just keeps going on to the surface.
solubility.
A That's right.
Q Can you explain to the Court why your model includes the effects of solubility.

A Well, solubility is just the result of this thermodynamic equilibrium. Equilibrium is the law of nature. You mix the oil and the water together, bring it to equilibrium, you get a gas phase, an oil phase and a water phase. So that's the consequence of physics.

Q In your opinion, if you're going to use an oceanic separator model, you need to include the effect of the water? A Well, why model the oceanic process if you've got no water in the ocean? I don't know what you mean.

Q Was it important in order for you to have an accurate oceanic separator model to include the effect of solubility on the reservoir fluid as it's converted to stock tank barrels? A Well, yeah. Because when the oil mixes with the water, some of the components are going to go over into the water. So you need to include that effect.

Because you'll lose material, you will lose mass from the oil. The oil will shrink some because of that. So I don't know --

MS. KARIS: Now, if we can pull up TT.1828.1.
BY MS. KARIS:
Q And, again, this is Dr. Zick commenting on your oceanic

```
separator.
```

He was asked: And you agree that when hydrocarbons interact with the seawater, some of the hydrocarbons will dissolve into the seawater; correct?

He says: Yes; I think that's undeniable, but we don't know how long it would take.

Let's start with, is there any disagreement
between you and Dr. Zick as to whether solubility is a real effect, or, as he says, undeniable?

A No. We both know it's undeniable.
Q Now, how did you go about quantifying then what the effect of solubility was on your oceanic separator?

A Okay. So what we did was that we took this reservoir fluid through 130 stages of separation to the surface. That created a stock tank oil from that process.

That stock tank oil was then -- basically, we looked at that stock tank oil and we looked at the evidence published from samples of oil collected during the spill at different depths below the sea level, and we saw from that publication what components they claim dissolved completely or significantly into the ocean.

Those components were removed from that stock tank oil and recalculated its volume accordingly. That's all we did. It's a two-step process: The process to get the stock tank oil, and the second step was to remove those components that clearly
had been dissolved into the ocean.
09:06AM Q So the second part of Dr. Zick's comment was: We don't know how long it would take. Did you rely on published literature in order to inform you as to the length of time it would take for those components to dissolve?

A Well, there are a number of publications we read discussing this solubility in water. The Ryerson publication is in our report, and it quantifies specifically the degree of dissolution of individual components into the seawater from samples collected below the surface at different depths during the spill.

The interpretation of that data seemed to be very clear.

Q Let's look at TREX --
MS. ENGEL: Excuse me, Your Honor. Dr. Whitson did not quantify the time dependence, how long it would take for oil to dissolve in his reports. So I'm afraid we're going beyond the four corners a bit here.

MS. KARIS: The Ryerson publication and his reliance on it and what that told him about the amount of time is explicitly in his report.

MS. ENGEL: And I also asked him explicitly in his deposition whether he considered how long it would take for any of these components to dissolve, and he said no.

MS. KARIS: I think he can be crossed on that, Your

Honor. I think he'll explain exactly what he put in his report and what he discussed --

THE COURT: Where is that in his report?
MS. KARIS: I don't have his report.
BY MS. KARIS:
Q Dr. Whitson, you have your report up there. If you can point the Court to where you refer to the Ryerson publication.

MS. ENGEL: While they're looking for that, Your Honor, at his deposition, on page 278, starting at line 17, I asked: Does the analysis in your report take into account the amount of time it would take C1 through C5 to dissolve? Answer: No.

Does it take into account the amount of time it would take the aromatics in C7 through C12 to dissolve? No.

Did you try to estimate the amount of time that it would take for C1 though C5 and the aromatics to dissolve? No.

MS. KARIS: Your Honor, at page 31 of his report -and, to be clear, Dr. Whitson is not offering an opinion on how many hours or days it would take. I think his reference is, given the timing of when the Ryerson data was collected and his reliance on it, it expressly, at page 31, goes into what effect that data and those samples collected had.

I'm happy to rephrase, but this is expressly what he talked about in his report. He was questioned at length about what implications the Ryerson publication cited at footnote 14 of his report had in his ability to say 10 percent
plus or minus 3.
MS. ENGEL: In the course of that questioning, he specifically said he didn't consider how long it would take to dissolve.

MS. KARIS: Perhaps I can rephrase, Your Honor.
THE COURT: All right. I will sustain the objection. If you want to try it again, you can.

MS. KARIS: Sure.
MS. ENGEL: Thank you.
BY MS. KARIS:
Q First of all, did you reach an opinion, did you quantify the effect of solubility on your oceanic separator process? A Yes, we did.

Q What was your quantification as stated in your report?
A That oil, that stock tank oil that resulted from the 130-stage separation process shrunk by a factor of between 7 and 13 percent due to the solubility affect.

Q And did you rely on published literature cited in your report in order to quantify the effect of solubility on your oceanic separate process?

A Yes.
Q If we can look at 144128.1. Is this the Ryerson paper that you referenced?

A Yes, it is.
Q Tell the Court for what purpose you relied on this Ryerson

09:09AM

09:10AM

09:10AM

09:10AM

09:10AM

09:10AM

09:10AM

09:10AM

09:10AM
publication that's at 144128.1, please.
A Well, this paper's -- it's clearly addressing quantitatively
the effect of dissolution of these components in the ocean. In 09:10AM
the time period during the spill, samples were collected at
several locations close to the spill, at several depths, and the
samples all concluded the same thing as far as the components
that were completely or partially dissolved into the ocean.
This is just data. I mean, it's inclusive in that
regard.
MS. KARIS: And if we can look now at a chart published 09:11AM
in the Ryerson paper, 11574N.4.2.
BY MS. KARIS:
Q First of all, do you recognize this chart from the Ryerson
publication?
A Right.
Q And, to be clear, is this data reporting oil samples
collected from the Macondo reservoir?
A Yes, they are. Well, you can see the dates, June 10, June
8; various depths.
Q So were these samples collected while the spill was ongoing?
A Yes.
Q Using this chart, can you tell the Court what affect this
chart had on your oceanic separator process?
A Okay. The easiest way to understand this is look at the top 09:11Am
figure here on the right side, this red curve here. It says,
fraction dissolved.
What that means is that it's the fraction of that
component -- for example, methane is the first component -- a fraction of that component that was originally in the original reservoir fluid, stock tank oil, that dissolved into the ocean.

So, if the value is 1 , they're implicating that that component was totally dissolved in the ocean for the samples collected. So you've got 1 for values of methane, ethane, propane. Those are the first three hydrocarbons.

In our model, the one case that reduced 7 percent stock tank oil volume, reduction, was simply by taking our stock tank oil, 130-stage separator stock tank oil, and removing those three components. Resulted in the 7 percent reduction in the stock tank oil volume.

Q Let me stop you there. Why did you remove those three components?

A Because these, you see these things are --
Q C1 through C3?
A Yeah. I mean, C1 through C3 are these first three components here. You see that it says: Fraction dissolved. 100 percent is dissolved from methane, ethane, and propane. So that's why we did one case with that. Q Now, did you also calculate a middle case? A The middle case we said that additionally C4 and C5 dissolved completely, which is not the case. When you look at

C4 and C5, they're only partially dissolved. But we wanted to bracket in a sense the range of effect, and that's what we did.

So we did a second case. We included C4, which is 09:13AM butanes, and C5 which is pentanes. We are not saying that all of those were necessarily dissolved, but that was like the second case.

What we know is that, in addition to C1, C2, C3, there was partial dissolution of very many components. So we basically did three cases to try to quantify the effect on the stock tank oil volume.

Q And then did you have a third case?
A And the third case is including these. You see the fourth component here, Benzene, tolulene. The aromatics, the so-called light aromatics, I think there's four or five of them, those have a strong preference for dissolving in the ocean.

So, in the third case, we took methane through C5 and the light aromatics and let all of those dissolve as an upper limit case. That resulted in 13 percent reduction in stock tank oil volume.

So those were the bracketing of the -- given that you have varying solubility of all these components that we looked at, we looked at the, in a sense, the upper limit of effect on stock tank oil volume.

MS. KARIS: Now look at 11574.
THE COURT: Let me ask a very simple, basic question.

what you're saying?
THE WITNESS: Exactly in the same way that, when you 09:16AM release the gas, methane are no longer in the oil phase, they're in the gas phase. This is the exact same process. That's why the oil is shrinking, for two reasons.

THE COURT: Okay.
BY MS. KARIS:
Q So is the dissolution that you've just described comparable
09:16AM
to removing the gas that is coming out of the gas and oil coming 09:16AM from the reservoir?

A That's right. I mean, Mother Nature comes in and says, Some of you methane molecules got to go into gas, and some of you got to go in water. There's no choice. You're left with less methane molecules in the oil. And likewise for every other component. Q So, if you are determining the amount of reservoir fluid that is converted or should be converted to stock tank barrels, why, in your opinion, would you remove these dissolved components from that analysis?

A Well, because this data suggests that those components end 09:17am up being in the water phase. Just all that gas that evolves 09:17am $\begin{array}{ll}\text { shrinking the oil most, that gas ends up dissolving in the } & \text { 09:17AM }\end{array}$ water, too, eventually.

It first forms gas phase; but, eventually, most of it, if not all of it ends up dissolving in the water as well

```
over time.
09:17AM
Q And I apologize if I've asked this before, but are you
treating these components the same way you would be treating the
gas phase?
A That's what Dr. Zick said is undeniable. Mother Nature is
saying that methane has to go -- some of the methane has to go
in the water. It has no choice. So...
Q Now --
    THE COURT: That increases the volume of these
    chemicals as opposed to if it just went to the surface and
    separated in the normal method?
    THE WITNESS: Could you repeat that? I'm sorry.
    THE COURT: In other words, if this blowout hadn't
    occurred, the same oil at some point when it was produced would
    have been separated by some method?
    THE WITNESS: Okay, right.
    THE COURT: Gases would have been separated from the
    oil.
    THE WITNESS: That's right.
    THE COURT: Some of that would have been methane,
    propane, so forth.
    THE WITNESS: Yeah.
    THE COURT: So the effect of this --
        THE WITNESS: -- dissolving in the water.
        THE COURT: I'm trying to understand how or why it
``` increases the volume of the gases if it happens as it's going through the water as opposed to in a normal separation method. THE WITNESS: Well, the gases will form, regardless. 09:19AM But what happens is that you not only lose methane and ethane, propane, and so forth forming these gases, but also lose some of the methane, ethane, propane dissolving into the water phase.

If you went straight to the surface in some kind 09:19AM of a separation process, the amount of methane left in the stock tank oil would be different according to one stage, four stage, three stage, and up.

But the amount of methane in the stock tank oil 09:19AM and the amount of ethane in the stock tank oil for a normal process, for a normal surface process, will depend on how many stages, pressure and temperature of each stage.

It's controlled by this composite multi-stage separation process with thermodynamics only being gas and oil. When we add the water, it adds an extra degree of complexity to the situation, and you're losing more of the hydrocarbons than you would otherwise. Because the water can dissolve. Just like this water dissolves the air components. The ocean water dissolves the hydrocarbon components. It's just kind of the way it is. BY MS. KARIS appropriate then to account for solubility and remove these
```

components in doing this stock tank conversion?
A The water's there, and there's lot of it. And, relative to
the large amounts of oil and gas that went into the ocean,
there's just like so much more water.
So the solubility affect in the water obviously is
a real effect, and it's of some magnitude, so...
You can try to quantify that magnitude.
Q And did you seek to quantify that in the opinions that
you've rendered in this case?
A Yes, I did.
Q If we can now look at 11496.19.1. Is this the conclusion
that you reached with respect to quantifying the effect of the
water on the reservoir fluid when we convert it to stock tank
barrels?
A Yes.
Q Can you tell the Court then what your conclusion was with
respect to that quantification as stated in your report?
A Well, it basically says that if you assume the methane
through pentane case, which is the middle case, completely
dissolving into the ocean, then you have this 10 percent
reduction in stock tank oil. You end up with about 43 -- a
shrinkage factor of about 43.
If you take the lower case where you only take out
the methane and propane, then you end up with about 44 stock
tank barrels.

```

And if you take out the methane through pentane and the aromatics, goes down to 42 barrels, stock tank barrels.

So, he's giving a range, and this is just

Q So is your middle case then the 43 stock tank barrels?

Q And it says here in your report that PERA has calculated that the final stock tank oil volume will be approximately 10 percent less than the laboratory four-stage separator, reaching a final stock tank oil volume close to that of the single-stage process, which is approximately 43 stock tank barrels.

Tell us why you made that comparison to the single-stage process.

A Well, I mean, it was just it was the number -- it was the number closest -- you had the laboratory numbers, you had the differential liberation, you had the one-stage separation, you had the four-stage separation.

So we were just kind of pointing to that's the number that this was closest to was the 43 stock tank barrels. Had nothing to do with a single-stage process. It just happened to be that that's kind of where it was pointing to. Q Now, Dr. Zick testified that, in your conclusion there of 43 stock tank barrels, you had removed all of the light alkanes, the methane through pentane, and all the light aromatics up to C12; is that accurate?

A No. No. That was the case where you had 13 percent 09:23AM reduction. That would have brought it to 42 stock tank barrels shrinkage factor.

Q And so, the 10 percent that you suggest, is that removing only the components that the Ryerson data suggests that would completely dissolve or almost entirely dissolved?

A Methane through pentane only.
Q Just to wrap this up, you did review and respond to
Dr. Zick's initial report in which he recommended a four-stage process; correct?

A That's right.
Q Before he did the oceanic separator?
A Yes.
Q Now, Dr. Zick referenced the four-stage separator as an alternative option because he claims that's how the fluids would have been produced in normal fashion.

Do you agree with that statement?
A Well, I didn't read anything that suggests they were going to produce it with a four-stage separator, so I don't know where he got that.

Q And, if a four-stage separator process is used, what figure do you believe to be the most appropriate for the four-stage separator process?

A I believe in data. I mean, if you have measurements -you've got three laboratories, four samples -- you use the
laboratory data. The shrinkage factor, I think that number was 47.3 on average. The shrinkage factor for the four-stage separator.

MS. KARIS: Last demonstrative, D-23987-1A.1, please. 09:25AM BY MS. KARIS:

Q Can you tell the Court what this slide demonstrates as it pertains to your opinions in this case. A Okay. So we're taking the same reservoir fluid from initial conditions to stock tank conditions using different approaches. That's what this is showing.

Over there on the left it says differential liberation. That test was conducted in the laboratory by Pencor for two of the samples. It's a six-stage, multi-stage separation process. Each stage is at reservoir temperature. Pressure goes from reservoir down to stock tank conditions. That results in 30 to 33 shrinkage factor. That's at the low end.

At the upper end, we've got what's flagged as the Zick numbers of the shrinkage factor. The one on the right would represent his oceanic process of 50.7 I believe was his number. The one on the left is his prediction of the four-stage separator.

Now, we know that the equation of state by Dr. Zick is biased, overpredicting close to 5 percent. That's just a fact when you compare it against the four-stage separator test
data. If you correct those calculations by 4 and a half, 5
percent, you are going to put all of these calculations right in \(\begin{array}{ll}\text { the midst of all those measured four-stage separator test data. } & \text { 09:27AM }\end{array}\)

That's where they're all going to move if you take 09:27am away his bias in his equation of state. The four-stage separator data there varied basically from 46 -- I don't remember the exact numbers -- but the average was 47.3 was the average of the four laboratory test four-stage separator

So it's in there. You've got the four stage numbers in there.

Then, in the green here, we've got single-stage flash measurement lab data. That ranged from 42 to 44 . There, there. The oceanic process that I calculated, depending on how much solubility is allowed to occur, methane to propane is 44.

If you include methane to pentane, goes to 43. And, if you include also the aromatics, in addition to methane to pentane, you get 42.

So that summarizes basically the spread of all the numbers. Q Dr. Zick testified, quote: It's my opinion that the oceanic separation process is the most appropriate, because I believe that's how the fluids would be separated by the conditions they would encounter within the ocean.

First, do you agree with that statement? A Well, yes. If you leave the water in the ocean.
\begin{tabular}{|c|c|}
\hline Q And, if you want to use what even Dr. Zick called as the & 09:28AM \\
\hline most appropriate because of how the fluids are separated by the & 09:28AM \\
\hline conditions they encounter in the ocean, which of the figures on & 09:28AM \\
\hline demonstrative 23987-1A.1 is most representative of what actually & 09:28AM \\
\hline occurred in the ocean? & 09: 29AM \\
\hline A Well, I believe my numbers of the oceanic process are the & 09:29AM \\
\hline best description of what in reality happened. And you've got a & 09: 29am \\
\hline range from 42 to 44 shrinkage factor, depending on how the & 09: 29AM \\
\hline solubility is treated. & 09: 29AM \\
\hline Q And is that the same figure, coincidentally as you said, as & 09:29AM \\
\hline the single-stage flash data? & 09:298M \\
\hline A It's a pure coincidence, but that is correct. & 09:298M \\
\hline MS. KARIS: I have no further questions. & 09:29AM \\
\hline THE COURT: Put that mic up as high as you can. You'll & 09:31AM \\
\hline have to speak up a little more forcefully. & 09:31AM \\
\hline CROSS EXAMINATION & 09:30AM \\
\hline BY MS. ENGEL: & 09:30am \\
\hline Q Bethany Engel for the United States. Good morning, & 09:31AM \\
\hline Dr. Whitson. & 09:31AM \\
\hline A Good morning. & 09:31AM \\
\hline Q So I wanted to start briefly about talking a little bit & 09:31AM \\
\hline about your equation of state model. The software you used to & 09:31AM \\
\hline developed your equation of state is called Phasecom; correct? & 09:31AM \\
\hline A Yes, it is. & 09:31AM \\
\hline Q And Phasecom was written and developed by the United States' & 09:31am \\
\hline
\end{tabular}
```

expert Dr. Zick; right?
A Yes.
Q And Dr. Zick's company, Zick Technologies, owns Phasecom;
right?
A Yes.
Q And Phasecom is your software of choice for building
equation of state fluid characterizations computations; isn't
it?
A Absolutely.
Q Now, Dr. Zick has done work for your company PERA in the
past; correct?
A Yes. For the most part, writing computer programs.
Q And, as you said on direct, before the Macondo blowout, a
number of fluid samples were taken from the Macondo reservoir;
right?
A Yes.
Q And then, after the blowout, the three labs, Pencor,
Schlumberger, and Intertek, ran a number of tests on four of
those samples; right?
A Yes.
Q And those tests included both a four-stage separator test
and a single-stage flash test on those four samples; correct?
A That's correct.
Q You would agree that generally speaking a multi-stage
separator test like the four-stage test run by the labs produces

```
more stock tank oil than a single-stage flash; right? more stock oil than the single-stage flash test; right?percent difference between the four-stage test and thesingle-stage test when you simulated those using your equation
of state; right?equation of state model; right?model, you tuned it to the shrinkage
multi-stage separator tests; right?

A That's correct.

Q And, in fact, one of the three main things that you focused on when doing that tuning was the final stock tank oil volumes from those labs, those four stage lab tests; right?

A That's correct.
Q And the data from that multi-stage flash -- and I think you even said this on direct -- was important, because then your equation of state would then be better tuned to predicting the total stock tank oil volume; right?

A If you use another process than the laboratory processes or you don't know, you don't have measured data, then you would expect a well-tuned equation of state that predicts accurately the laboratory shrinkage factors to be more reliable in predicting shrinkage factors for some other unknown process. That's what I meant, and I think that's what I said. Q And that's why you focused on that multi-stage separator test, and particularly the fourth stage of that multi-stage test in tuning your own equation of state; right?

A That's our standard practice, not just this one. Q And one of the reasons is because the four-stage separator test is specifically designed to come up with an accurate measure of the shrinkage from reservoir barrels to stock tank barrels; right?

A That's correct.
Q And then, by contrast, you considered the single-stage shrinkage factors from those lab tests less important than the
multi-stage shrinkage factors; right?
A Well, we still predicted it within 0.2 percent of the measured data. So I'd say whether we weighted specifically or state model does a good job on the single stage as well. Q But, in tuning your model, you didn't give the same weight to those single-stage shrinkage factors as the multi-stage shrinkage factors; right?

A In all honesty, I don't remember the exact weight factors I used in March of 2012.

Q You're not changing your deposition testimony?
A No, I'm not.
Q Switching gears slightly, in addition to simulating the single-stage and multi-stage separation, you've discussed this oceanic separation process that you also simulated; correct? A Yes, ma'am. Q And, prior to your work in this case, you've never simulated how oil and gas separate in the ocean; have you? A Not in the ocean. But I would like to comment that the calculation of this gas, oil, and, water equilibrium, the thermodynamic equilibrium, gas or water systems, is a very standard process that is done day-in day and day-out in petroleum operations where there is gas, oil, and water being separated in the separator unit. So there's nothing -- there's no new science here when it comes to that.

Q Isn't it your position that it would be speculation by you to state one way or another how gas and oil actually evolved in the ocean?

A I don't really understand what you're asking.
Q Sure. We can show you your deposition to refresh you. It's 412, starting at line 13, please. If you'd go line 13 to 22.

And so, at your deposition, I asked: Is that by speculation by you because you don't have expertise in that area, Dr. Whitson?

And your response was: Well, it would be speculation by me to state one way or another as to how the gas and oil actually evolved within the ocean.

Question: Because you don't have expertise in that area; correct?

Yes, that's correct.
Did I read that right?
A Well, it's obviously right. But the question is, how you 09:37AM mean evolve. If you're talking about the three dimensional evolution of how the gas plume and the oil plume and the bubbles and the drops and the interaction physically with the water and all of those processes, I'm not an expert.

I don't think anybody, including Dr. Zick, looked at that part of it, the evolution of the physical three-dimensional movement of the gas and oil. Certainly not. I assume that's what \(I\) was referring to.
```

But if I was talking about the thermodynamic 09:38AM equilibrium of a gas, oil, water system, and I said something 09:38AM like that, then $I$ don't understand. Because I know what goes on 09:38AM in the thermodynamic equilibrium of the gas, oil, and water flowing from this spill. That, I think I know very well.
So I'm not sure exactly what we were talking about here.
Q Okay. So you're not changing your deposition testimony?
A I am not, no.
MS. ENGEL: Could we actually look at a demonstrative that BP put up? It's D-23988. We actually don't have a copy of it. So, if you all could do it for me, that would be great. BY MS. ENGEL:
Q Dr. Whitson, you described this on direct. Is this an accurate depiction of your proposed oceanic separation process? A Well, it's an accurate cartoon, if you will. It doesn't show all the very detail calculations. But, yes, it's a correct depiction.
Q So what we're looking at here on the right-hand side is your gas stream coming out of the well; right?
A Yes.
Q Okay. And then on the left-hand side is your oil stream; is that right?
A That's correct.
Q And, here, at the different stages, the different pressures

```
and temperatures it encounters in the ocean, the oil stream, you allow gas to evolve off; correct?

A Yes.
Q You don't allow oil to evolve off on this side, on your gas screen; do you?

A That's correct.
Q So your oceanic separation process also assumes that oil and gas move to the surface in two separate circles; right? A That's right. Primarily, and really only taking into consideration the oil evolving and basically doing nothing with the gas that evolves from stage two and upwards. Totally out of the problem.

Q So in other words --
A But --
Q I'm sorry, go ahead.
A But, the one stream from the wellhead at the exit point, the one gas stream from the wellhead at the exit point, we did the calculation that resulted in a slight amount of extra oil, okay, at the surface conditions.

Because the temperature at that point was unknown. The higher the temperature, the more of the heavier components could be carried in that gas. So, in a sense, we erred on the high side of the oil volume by doing this.

Q So you actually take this gas stream on the right-hand side all the way to the surface, from the seafloor to the surface,

09:39AM \(09: 39 \mathrm{AM}\)
\(09: 39 \mathrm{AM}\)

09:39AM

09:39AM

09:39AM

09:39AM

09:39AM

09: 40AM

09:40AM

09:40AM

09: 40AM

09:40AM

09:40AM

09:41AM

09:41AM
```

and then do the equivalent of a single-stage flash on that gas;
right?
A Yes.
Q And that condenses out, like you said, a small amount of the
liquid?
A That's right.
Q Which you then add to your final stock tank barrels?
A That's right.
Q And you do that as a simplifying assumption in your mind;
correct?
A Well, actually, it's not a simplifying assumption, because
the normal multi-stage separator process in the industry, okay,
takes gas off of each stage and immediately assumes that's going
to remain gas.
They never make calculations or measurements about
the potential condensate that might result from those gases.
Ever.
For example, in all of the multi-stage, four-stage
separation processes the laboratory conducted, they didn't
quantify or measure condensate coming off of all of those four 09:41AM
stages of gas.
Dr. Zick, when he simulated those four-stage
separators, did not try to add condensate that he calculated for
those four gases that evolved.
When I did the four stage calculation of the

```
```

separator test, those four gases, I did not calculate the condensate that was evolving from those gases.
And that is industry standard, okay?
So, in this case, the fact that $I$ included that condensate from that first gas phase was complicating; and, in fact, it was erring on the high side. And the reason I did it was very simple. If that temperature was as high as 200 Farenheit or 210 Fahrenheit, then I wanted to quantify what amount of condensate it might carry with it.
I knew that, at normal lower temperatures of the sea, that it wouldn't carry any significant amount. I wanted to check the calculation, so I included it. It added more oil. Q And, again, my question was actually much simpler. Which is, just in doing this, making this assumption that the gas goes from this seafloor directly to the surface and only then encounters a single-stage flash, you did that as a simplifying assumption in your modeling; right?
A Well, it was what I included. You can call it whatever you want. It's just what I did.
Q Well, you called it a simplifying assumption in your deposition.
A All right.
Q You're not changing your testimony on that; right?
A No. Not at all. I'll give it -- any label I gave it then is fine.

```

MS. ENGEL: Could we have TREX-114 --
09: 43AM
THE COURT: Let me interrupt and ask the witness something.

Dr. Whitson, one of the things that occurs to me that makes the calculation of stock tank barrels in this case difficult and unusual probably is that we don't have an oil spill -- typically, an oil spill occurs from the surface, like from a ship or something.

THE WITNESS: Yes, sir.
THE COURT: Or from a pipeline.
Here, it occurred from the ocean floor.
THE WITNESS: Right.
THE COURT: I'm just trying to understand, if someone

THE WITNESS: Well, certainly, there are a number of methods you could use. So that's a bit the problem here. If you just want to get to a stock tank oil volume, you could do it in a single flash. Just take it straight to stock tank conditions.

THE COURT: Is this sort of what those lab tests did? THE WITNESS: Yes.

THE COURT: Those different lab tests?

THE WITNESS: Yes. So the simplest way is just to take
what comes out of the wellhead, which is the same as what's in the reservoir, straight to the surface and get the stock tank oil volume. That's the simplest way to do it. And, obviously, that's not what I chose to do.

THE COURT: And then the question would be, what method would you use to do that? What process of separation?

THE WITNESS: Single-stage flash, if you want to go straight from the wellhead to the surface, ignoring the ocean. THE COURT: Okay. Why would you use single-stage flash?

THE WITNESS: Well --
THE COURT: As opposed to -- what was the other, four stage?

THE WITNESS: Four stage.
I'm not saying I would; I'm just saying that's how you could do it. Four stage is arbitrary. It just happened to 09:46AM be conducted in the laboratory. One stage in a sense is arbitrary as well. I mean, it's equally arbitrary.

That's why I tried to simulate what actually happened, so it wouldn't be arbitrary. That's why I did what I did.

THE COURT: I guess what I'm trying to understand is, 09:46Am are we supposed to be -- am I to measure the volume that entered the water? When it entered the water in this case, it entered 09:46AM the water at the wellhead, not at the surface.

THE WITNESS: Yes.

THE COURT: And then figure out how to convert that to stock tank barrels.

THE WITNESS: That's really what all this discussion is about, yeah. That's right.

THE COURT: But the methodology, you know, I understand what you did and what Dr. Zick did in terms of trying to model, quote, what actually occurred as it went up the streams, the oil and gas went up through 5,000 feet of ocean.

THE WITNESS: Right.
THE COURT: But the fact is, the oil entered the ocean 5,000 feet down, not gradually at the top.

THE WITNESS: No. But I think that the first stage of 09:47AM both oceanic processes is in a sense that stage you're talking 09:47Am about, the entering stage. So they both used the same stage at the wellhead as the first stage.

THE COURT: All right. Go ahead, Ms. Engel. BY MS. ENGEL:

Q Sure. And just as to follow-up on Judge Barbier's questions, you're not actually recommending single-stage flash as the process that you would use to do this conversion. You're
\begin{tabular}{|c|c|}
\hline imply saying that, if you were to take the oil from wellhead & 09: 48AM \\
\hline directly to surface, that would be the equivalent of a & 09: 48AM \\
\hline single-stage flash; right? & 09:48AM \\
\hline A That's what I was saying, yes. & 09:48AM \\
\hline MS. ENGEL: Can we now look at TREX-11496, please. Go & 09:48AM \\
\hline to call-out .18.1. & 09: 48AM \\
\hline BY MS. ENGEL: & 09:48AM \\
\hline Q And, Dr. Whitson, do you recognize this language and table & 09:48AM \\
\hline from your expert report? & 09:48AM \\
\hline A Yes, I do. & 09:48AM \\
\hline Q This table reports the stock tank barrels of oil associated & 09:48AM \\
\hline with three different separation processes you evaluated; & 09: 48AM \\
\hline correct? & 09:48AM \\
\hline A That's correct. & 09:48AM \\
\hline Q And it's single-stage flash you are saying gets you 43.3 & 09:48AM \\
\hline barrels of stock tank barrels of oil per 100 reservoir barrels. & 09: 48AM \\
\hline For your oceanic separator, you say it's between 46.7 and 48 & 09:48AM \\
\hline barrels. And, for four-stage separation, you say it's 47.9 & 09:49AM \\
\hline barrels; right? & 09:49AM \\
\hline A Can I make a comment? & 09:49AM \\
\hline Q Sure. & 09: 49am \\
\hline A Okay. & 09:49AM \\
\hline So, 2 and 3 are the barrels that resulted from & 09:49AM \\
\hline this step one of my oceanic process. We took it through the 130 & 09:49AM \\
\hline stages to the surface to stock tank conditions and ended up with & 09: 49AM \\
\hline
\end{tabular}
```

a volume that was approximately, as you see, close to the (09:49Am four-stage separation volume.
That was then corrected using the solubility term. 09:49AM In other words, removing the methane, ethane, and propane and $09: 49 \mathrm{Am}$ finding an adjustment due to the removing of those components 09:49Am that were shown to dissolve by Ryerson.
So this is the intermediate volumes that were calculated after the 130 -stage separation process, that's correct.
Q So, in other words, this shows your shrinkage factors without taking into account the dissolution analysis that you then did?
A This is the ocean without water.
Q So you don't list differential liberation here; do you?
A No.
Q And that's because you would not have actually run that test on this fluid if you were in charge of the lab program; would you?
A That's true.
THE COURT: What do you mean the -- tell me about the ocean without water. You mean without -- but it's actually -but would it also be the ocean at the bottom of the ocean as opposed to traveling 5,000 feet?
THE WITNESS: What I mean by the ocean without water is, if you ignore the laws of nature that this oil is
interacting with large amounts of water, and the fact, as both Dr. Zick and I agree, that components will move from the oil into the water. That's what I'm talking about.

If you ignore solubility, you're ignoring its impact on the shrinkage of the oil. That's what I mean by no water. BY MS. ENGEL:

Q So, again, these are the shrinkage factors before you take into account your solubility or dissolution analysis; right? A Before I take into account the equilibrium thermodynamics of oil/water systems.

Q So, on direct, you were talking about --
A If I could just make one comment, a bit of clarification: The thermodynamic calculation itself is gas, oil, and water. The rigorous thermodynamic calculation of gas, oil, and water would have been the preferred method of calculation.

But we did not have software that would do 130 stages of three phase gas, oil, water calculation to make that calculation at the time $I$ wrote the report.

But I have done subsequent to that.
Q And that subsequent work was not in your report; correct?
A No. It was done subsequent to the rebuttal report of Dr. Zick.

Q So we are not going to talk about that today.
A No.

```
Q So you said on direct that Dr. Zick's shrinkage, his EOS overpredicted the shrinkage factors by approximately 4 to 5 percent; right?
A It's closer to 5 than 4.
Q But, in your report, you actually say it's between 3 and 5 percent; don't you?
A You have to show me.
Q Sure.
MS. ENGEL: Let's go to 11496.23, please. Blow up that paragraph 6.
BY MS. ENGEL:
Q Here, you're discussing the comparison or your EOS to that of Dr. Zick's; correct?
A Yes. Let me read this here.
Q Sure. I just want to focus your attention on that last bullet that says: 3 to 5 percent overestimation of the stock tank oil volume for all samples using the laboratories four-stage separation.
So this is the 3 to 5 you stated in your report, as opposed to the 4 to 5 you stated on direct.
A If you look at table 1, which is the foundation for the statement. That's on page 20.
Q Why don't you just explain it without going to the table.
A I think it would become clearer if we go to the table. I mean, it's so easy to see the numbers there in all their
```

clarity.
Q My question is very simple. Which is just, in your report, you said 3 to 5 percent overestimation.

A It should have been written 4.9 percent on average, is what it should have said there.

Q So you're changing what your report says?
A Well, no. This is indicating, for individual samples, that range might have been 3 to 5. For individual samples. But the average on whole for the four samples is 4.9 percent given in table 1.

Q Sure.
So if you look all four of the lab samples, all 09:54AM four of the lab's data, you get a range of 3 to 5 percent if you don't average them.

A Yeah. I think actually it's larger than the 3 to 5 percent if you actually look at the individual numbers. If we go to table 1, we can actually make those calculations for each sample and see that the range is actually larger than that.

So it would be --
Q I don't think we need to belabor the point any further, Dr. Whitson.

Let's talk about your analysis of dissolution, or, as you call it, solubility. So, after you calculate those stock tank oil volumes that we just looked at a moment ago in that table in your report for the single stage, the oceanic, and the
four stage, you then assume an average 10 percent reduction
based on dissolving light hydrocarbons and aromatics; right?
A There are three cases. We removed, in the first case,
methane through propane, and saw that the altered stock tank oil composition resulted in a 7 percent reduced volume relative to the unaffected.

Q So your mid-case or your average --
A In the mid-case where I removed --
Q -- was about 10 percent.
A Well, in your question, you said methane to pentane and all these aromatics. And I'm trying to say that was not the middle case.

The middle case, which gave 10 percent reduction in stock tank oil volume, removed the alkanes, methane through pentane. They did not remove the aromatics, as was in your question. That's why I'm trying to clarify, so we don't get confused here.

So, in the third case where we calculated a 13 percent reduction in the stock tank oil volume, there, as you stated correctly, methane through pentane and the aromatics were removed. So that's I think -Q Thank you.

So those hydrocarbon components in that low case and mid-case and the high case, even that you assumed dissolved, include things like methane, ethane, benzene, butane; correct?

09:55AM

09:55AM

09:55AM

09:55AM

09: 55AM

09: 55AM

09:55AM

09: 55AM

09: 55AM

09:55AM

09: 55AM

09:55AM

09:55AM

09:55AM

09:55AM

09: 55AM

09:55AM

09:55AM

09:56AM

09:56AM

09:56AM

09:56AM

09:56AM

A Okay. Again, there is some confusion here. In the first case, it's only methane, ethane, and propane. Those are all alkanes. There are no aromatics.

An aromatic is a grain compound benzene and so forth. So it's a different animal.

In the first case, it's all C1, C2, C3, the three lightest alkanes.

In the second case, which gives the 10 percent reduction, it's the alkanes from C1 to C5. Again, not including any of the benzenes, aromatics that you're referring to.

Only the third case are those compounds, the aromatic compounds you're referring to, included. Q So you said you relied on this article by Tom Ryerson to determine which hydrocarbon components would have dissolved; right?

A Well, from the figures we showed, they don't say might have dissolved; they give a chart that says, dissolved fraction. Okay? That's what it says on the figure, dissolved fraction.

And one -- I mean, I don't think you have to be a scientist -- means that all of it was dissolved. So what they say is that the dissolved fraction for methane, ethane, propane was 1.0. That means it was all dissolved. As well as for benzene, I think. And tolulene also had 100 percent dissolution.

So it wasn't like they suggested it might be.

They actually gave tables, figures, that showed it was in the samples they collected.

Q Okay. So let's look at the Ryerson article then.
MS. ENGEL: It's 11574N. And go to figure 4, which is call-out .6.1.

BY MS. ENGEL:
Q So you recognize this figure from the Ryerson article that you relied on as well?

A Yes. We used the figure 4C.
Q Okay. So just to orient the Court a little bit, on the right-hand side of this figure 4, it shows the places from which the samples were being taken; correct?

So they took an evaporated sample; right? A surface slick sample? A deep plume sample; correct? A Yes.

Q And you're saying you're relying on this graph C that's on the bottom left here?

A I think we didn't -- I mean, we showed it here today because of what it says on that figure $C$. It's hard to read it. Q Sure. We can blow that up. It's call-out .6.2.

It lists along the x axis here the various components of the hydrocarbons; right? And it starts with things like: Methane, ethane, benzene, propane, toluene, and goes all the way up to these heavier components on the right-hand side; right?

09:58AM 09:58AM

```
A Right.
 Okay. And so doesn't this graph illustrate that Dr. Ryerson
 and his team found these components, methane, ethane, benzene,
 propane, toluene, dissolved in the -- detected in the subsurface
 plumes that they sampled in the Gulf?
```

    A Well, the text says primarily soluble mixture detected in
    subsurface plumes, approximately 35 percent of the leaking mass.
    Leaking mass, the grey dark line, is the original amounts
    So the interpretation of this figure was that
    these components, as in the previous figure, were those
    components that were primarily dissolving in the water.
    Now, in reality, figure 4C, if you look in the
    text, it is not referenced at all with text. Okay? There's not
    a single reference to this particular part of the diagram that
    clarifies what they're talking about.
    The only text is in this in the red here, which is corresponding. That is our interpretation of that slide. Q So your interpretation is that what shows up in red on the graph, the methane, ethane, benzene, and so on, are from the samples that Ryerson and his team took from the deep subsurface plumes; right?

A Well, like I said, there's no text directly linked to it. But, if you compare that figure with the previous figure, I believe it was 2 --

Q Right.

09:59AM

09:59AM

09:59AM

09: 59AM

09:59AM

09:59AM

10:00AM
$10: 00 \mathrm{AM}$

10:00AM

10:00AM

10:00AM

10:00AM

10:00AM

10: 00AM
$10: 00 \mathrm{AM}$
$10: 00 \mathrm{AM}$

10:00AM
$10: 01 \mathrm{AM}$
$10: 01 \mathrm{AM}$

10:01AM
$10: 01 \mathrm{AM}$

10:01AM
$10: 01 \mathrm{AM}$
$10: 01 \mathrm{AM}$
$10: 01 \mathrm{AM}$

```
A -- which calls dissolved fraction, and is clearly indicating
```

those components, the fraction of which they believe was
dissolved in the ocean water.
There's a consistency, a clear consistency,
between that interpretation of this figure and that figure.
That's what I'm saying.
The same components they show as being partially
or totally being dissolved are also highlighted here in the same
manner.
Q Okay, thank you.
MS. ENGEL: Just to wrap up here, let's go to another
demonstrative that BP used on direct. It's D-23987-1A. If you
all could pull that up for me, I'd appreciate it.
BY MS. ENGEL:
Q And so this is what you used to wrap up your direct
testimony; right? It shows the shrinkage factor from 100
barrels of reservoir fluid; is that right?
A Yes, ma'am.
Q And so what you list here as in the middle in the green
section is the Whitson ocean separator, that takes into account
your dissolved fraction; right?
A Yes. The numbers would be about 42 to 44 , depending on
which case we look at, 43 being the 10 percent C1 to C5 case.
Q And, if you don't take dissolution into account, your
numbers for the oceanic separation are more like 46.7 to 48
based on that table we looked at in your report; right? A Well, that would be the step one part of the oceanic separation process that we talked about, that volume. Q Right. Prior to dissolution. So those numbers would fall right here in this orange range that's on a the right-hand side, the four-stage test data; right?

A That's correct.
MS. ENGEL: I don't have any further questions. THE COURT: Redirect?

MS. KARIS: No further redirect, Your Honor. THE COURT: All right. It's almost five after 10:00. Let's take a 15 minute morning recess.
(Proceedings in recess.)
THE COURT: Call your next witness.
MS. KARIS: Your Honor, just before that, I realized, $\begin{array}{ll}\text { although we'd referenced } \operatorname{Dr} \text {. Whitson' report, we did not offer } & \text { 10:26AM }\end{array}$ it into evidence. So, at this time, I would move Exhibit 11496, Dr. Whitson's, report into evidence.

MS. ENGEL: No objection.
THE COURT: All right. That's admitted.
(Exhibit admitted.)
MR. BROCK: Your Honor, at this point, we're going to play a short videotape, it's only around 3 minutes, of Jamie Loos, who is the director of project management for Weatherford
Laboratories.
analysis by W
Macondo well.

I think that's probably all I need to say.
THE COURT: All right.
MR. BROCK: And I have the transcript and the thumb drive that I'll pass up now as well.
(Videotape Played.)
MR. BROCK: Your Honor, our next witness is Dr. Zimmerman, who is here and can come up.

ROBERT W. ZIMMERMAN, being first duly sworn,
testified as follows:
THE CLERK: Take a seat. State and spell your name for the record.

THE WITNESS: Yes, my name is Robert W. Zimmerman.
THE COURT: Spell your name for us, please.
THE WITNESS: R-O-B-E-R-T, middle name is Wayne,
$W-A-Y-N-E$, surname is Zimmerman, $Z-I-M-M-E-R-M-A-N$.
THE COURT: Let me just announce, so everybody can be aware of it, we will break right at noon today. Okay? So wherever we are in the testimony. Okay?

MR. FIELDS: Thank you, Your Honor.
THE COURT: For our lunch recess.
MR. FIELDS: Your Honor, my name is Barry Fields, and I
will be conducting the direct examination of Professor Robert

```
Zimmerman on behalf of both BP and Anadarko.
 DIRECT EXAMINATION
BY MR. FIELDS:
Q Dr. Zimmerman, would you please introduce yourself to the
Court.
A I'm Professor Robert Zimmerman.
Q Where are you currently employed or what do you do for a
living?
A I'm processor of rock mechanics at Imperial College in
England.
Q Would you please describe at a high level what you were
 asked to do by BP and Anadarko as part of your retention in this
case.
A I was asked to look at and evaluate various pieces of data
that were collected on rocks from the Macondo reservoir, and it
was collected by Weatherford Laboratories.
 I was asked to analyze that data and bring to bear
 my knowledge of the subject of pore volume compressibility for
 the purposes of coming up with an estimate of the pore volume
 compressibility of the Macondo reservoir.
 Q Before getting into the details of your opinions and the
 reasons for your opinions, let's discuss a little bit about your
 background.
 MR. FIELDS: Would you please display D-23661.
 BY MR. FIELDS:
```

Q Professor Zimmerman, would you please provide the Court with	10:32AM
an overview of your educational background since high school.	10:32AM
A Well, I received a Bachelors of Science degree in mechanical	10:32AM
engineering from Columbia University, and then received a Master	10:32AM
of Science degree in mechanical engineering, also from Columbia	10:32AM
University.	10:32AM
In 1984 I received a Ph. D. in the field of solid	10:32AM
mechanics from the department of mechanical engineering at the	10:32AM
University of California at Berkley.	10:33AM
And the title of my Ph.D. thesis was the effect of	10:33AM
pore structure on the pore and bulk compressibilities of	10:33AM
consolidated sandstones.	10:33AM
Q Now, I wanted to focus briefly on your Ph.D. in solid	10:33AM
mechanics that you received from the University of California,	10:33AM
Berkeley.	10:33AM
First of all, what is solid mechanics, and how	10:33AM
does that differ, if at all, from rock mechanics?	10:33AM
A Well, mechanics, most generally, is the field that studies	10:33AM
the way that physical and material bodies change their shape or	10:33AM
size, deform and possibly break when they're acted upon by	10:33AM
various forces, pressures, and stresses. So, at the highest	10:33AM
level, that's what mechanics is.	10:33AM
There two subfields of mechanics, solid and fluid	10:33AM
mechanics. Referring as the names imply, whether one is	10:33AM
focusing on solid or fluid materials.	10:33AM

Rock mechanics can be thought of as a subfield of solid mechanics. So it is the field that studies how rocks 10:33Am change their size, shape, and possibly break when they are acted upon by different pressures and stresses and forces. Q Let's look at D-23662. Using this demonstrative, can you walk us through your academic and work experience since obtaining your Ph.D. from the University of California at Berkeley.

A Immediately after receiving my Ph.D., I became assistant 10:34AM research engineer in the petroleum engineering laboratory at 10:34AM Berkeley. That's essentially what people would call a post-doctoral position. For two years I did research in that laboratory.

From 1986 to through 1988 I was a lecturer in the department of mechanical engineering at the University of California at Berkeley teaching courses such as rock mechanics, fluid mechanics, applied mathematics, and other such courses.

Starting in 1987 and through 1995 in a full-time 10:35AM capacity, I was a scientist at the Lawrence Berkeley National Laboratory. That's a U.S. national laboratory that's affiliated with the University of California, but functions under the auspices of the U.S. Department of Energy. I have also continued there part time for several years thereafter.

But, in terms of my full-time job, in 1995, I
moved to Imperial College in London, England, where I initially
was appointed as the governor's lecturer in rock mechanics and petroleum engineering. The lecturer title in the UK is roughly equivalent to what Americans would call assistant professor.

In 1998 I was promoted to the position of reader in rock mechanics. Again, the reader position in the British university is roughly equivalent to associate professor in the American context.

In 2004 I move to the Royal Institute of Technologies in Stockholm, Sweden. That is, I think, generally thought of as the premier technical university, engineering university, in Scandinavia.

I was the professor of engineering and geology and the head of the division of engineering geology and geophysics for a little bit over three years, 2004 until the end of 2007 . 10:36AM

In January of 2008, I returned to Imperial College in London, where I was promoted to my current position, which is professor of rock mechanics.

MR. FIELDS: Would you display D-3663? BY MR. FIELDS:

Q You've obviously been a professor or assistant or associate
10:36AM professor for a number of years. Are these the types of courses that you have taught over the years?

A This is a list of some of the courses that $I$ have taught either at Berkeley, at Imperial College, or in the Royal Institute of Technology at Stockholm.

As you see, for example, courses -- and these are pretty much exactly the actual titles of the courses: Rock mechanics, rock physics, fluid flow through porous media, et cetera, as one can see on the slide.

Q We heard from Professor Blunt, I believe, and perhaps others, that the Macondo reservoir rock is like sandstone. Have you taught about sandstones and the compressibility of the sandstones?

A Yes. The specific topic of compressibility of sandstones would appear in my course on rock mechanics and would appear in my course on rock physics. It would appear in a course that I have taught on fluid flow and porous media.

So, yes, this does appear in several of the courses that I've taught over the years. Q Now, in addition to the courses you've taught, have you also been involved in research in the area of rock mechanics over the years?

A Yes. I have been involved in research during the period of my Ph.D. and subsequent to that essentially continuously. It's always been a large part of all of my job functions, and I've conducted research primarily in the area, in various areas of rock mechanics.

I would point out that rock mechanics, as I mentioned earlier, it's in general the field that studies the mechanical behavior and deformation and motion of rocks. It has
specific applications to the petroleum industry in topics, such as pore volume compressibility, wellbore stability, hydraulic fracturing, et cetera.

So this has been -- rock mechanics in general has $10: 38 \mathrm{AM}$ been a major theme of my research for the past 30 years. Q One of the earlier slides that we looked at had a bullet point that talked about the fact that you had over 200 papers. Are those all peer-reviewed papers?

A No. That's a total number of my published papers. I would say somewhere over 90 of them have been published in peer-reviewed scientific journals. Another 90 or so papers have appeared in -- generally, in sort of proceedings of conferences, such as SPE. About 13 or 14 of them I believe appeared as part of SPE conferences.

So, the other papers, essentially what scholars would call conference proceedings papers. But over 90 of them have appeared in the peer-reviewed scientific literature. MR. FIELDS: Would you display D-23665. BY MR. FIELDS:

Q Are these images of books that you have written about rock mechanics or rock compressibility? A Well, yes. The book on the left is entitled, Compressibility of the Sandstones. I published that in 1991. It was published by Elsevier Scientific Publishers, which I believe is the world's largest scientific publishing company.

It was published as part of a series called developments in petroleum science. It was volume 29 in that series, and this book deals exclusively with the issue of compressibility of sandstones.

On the right is a copy of a fourth edition of the book Fundamentals of Rock Mechanics. I'm the co-author of that, along with JC Jeager and Cook.

That fourth edition was published in 2004, 2007 -excuse me, published by Wylie Blackwell, and it's generally and essentially universally regarded as the most sort of authoritative and complete book in the field of rock mechanics. Q There was also on the prior slide a reference to citations. Approximately how many times have your papers or books been cited by other engineers or scientists?

A Well, the Institute of Scientific Information keeps track of citations to published works that appear within -- whereby the citations appear within peer-reviewed scientific journals.

According to the Institute of Scientific Information, my books and papers have been cited about 3,000 times.

There's also an index, a widely used index, called 10:41AM Google Scholar. Google Scholar counts citations that appear in 10:41AM other sources other than scientific peer-reviewed journals, such as, for example, Google Scholar would count citations that appear within SPE conference papers. According to Google

Scholar, my books and papers have been cited about 5,000 times. MR. FIELDS: Can we pull up D-23666, please. $10: 41 \mathrm{Am}$

BY MR. FIELDS:
Q Will you please tell us about the editorial positions that you hold on various journals.

A Well, yes. Since 2006, I have a been the editor in chief of the International Journal of Rock Mechanics and Mining Sciences, which is the leading journal in the field of rock mechanics. That's the journal that you see on the right of that screen.

Since the late 1990s, I have been on the editorial
board of a journal called Transport in Porous Media, which is a journal that focuses on flow of fluids through media and porous materials.

And for the last four years or so, I believe, I've been on the editorial board of the International Journal of Engineering Science.

MR. FIELDS: Please display 23667.
BY MR. FIELDS:
Q Are these a sample of the various professional national organizations to which you belong?

A Yes. I've been a member of the SPE, I believe, for a little bit over 30 years now.

I am a member of both the American Society of Mechanical Engineers and the American Society of Civil Engineers.
$10: 41 \mathrm{AM}$

10: 41AM

10: 41AM
$10: 41 \mathrm{AM}$
$10: 42 \mathrm{AM}$
$10: 42 \mathrm{AM}$
$10: 42 \mathrm{AM}$

10: 42AM
$10: 42 \mathrm{AM}$
$10: 42 \mathrm{AM}$

10: 42AM

10: 42AM
$10: 42 \mathrm{AM}$

10: 42AM
$10: 42 \mathrm{AM}$

various areas of rock mechanics as they apply to petroleum engineering. Tries to organize special sessions within larger 10:44AM conferences. It was in the process of trying to organize some 10:44AM special publications devoted on specific issues of rock 10:44AM mechanics applications to the petroleum industry.

MR. FIELDS: Please display 23668.
BY MR. FIELDS:
Q Let's focus for a minute on one of the awards that you've received in the rock mechanics area. Will you tell us briefly about the Biot medal that you received?

A Yes. In 2010, I have received a Maurice A. Biot medal from the American Society of Civil Engineers. That's a medal that's awarded annually to researchers anywhere in the world, not necessarily restricted to the members of the ASCE, for lifetime research contributions in the field of mechanics and the mechanical behavior of the porous materials. And, as the citation mentions, a quote here on the screen from the citation points out that I've had a major -- according to the ASCE, I've had a major impact on rock mechanics and the theory of poroelasticity.

Q So two questions on this slide.
One, there is a reference to porous materials. Do
you see that?
A Yes.
Q What are the porous materials? And, more specifically, is a
sandstone a porous material?
A Yes. A porous material is a material which is not
$10: 45 \mathrm{AM}$ completely solid. I.e., if one thought about for example a piece of steel and looked at a piece steel under a microscope, you would just see more steel. You wouldn't see any void space, any pores in it.

Porous materials, on the other hand, are materials 10:45AM that have void spaces within them. Typically those void spaces are interconnected to each other, and typically they are filled with fluids.

So possibly the most typical and common type of porous material would be a reservoir type rock. Soils are also porous materials. Biological materials such as human bone is actually porous material.

So it's a wide range of materials, but certainly reservoir sandstones are a type of porous material. Q There is a reference also from the ASCE citation that talks about the theory of poroelasticity. What in general is poroelasticity?

A Well, the how solid bodies change their size and shape when they are acted upon by various forces and stresses.

That might sound like the same definition I gave before for mechanics, but elasticity would be sort of a subset of mechanics that doesn't necessarily look at materials

breaking, but looks at their behavior prior to breaking, so to	10:47AM
speak.	10: 47AM
Poroelasticity is the specific type of elasticity	10:47AM
that's relevant to porous materials. I wouldn't say in this	10:47AM
case it's a subset of elasticity. It's actually a somewhat more	10:47AM
complicated and generalized theory. Because in the theory of	10:47AM
poroelasticity, one has to account for the fact that materials	10:47AM
are porous and the fact that the fluid in the pores has a pore	10:47AM
pressure.	10:47AM
So it's sort of an extension of the classical	10:47AM
theory of elasticity to apply to porous materials such as	10:47AM
sandstones.	10:47AM
MR. FIELDS: Would you display D-23671.	10:47AM
BY MR. FIELDS:	10:47AM
Q In addition to your academic work, have you provided	10:47AM
consulting services on rock mechanics related issues in the	10:47AM
past?	10:47AM
A Yes. I've occasionally functioned as a consultant or expert	10:47AM
witness.	10:47AM
For example, a couple of examples here on the	10:48AM
screen. In the late 1980s, I served as a consultant and expert	10:48AM
witness on the topic of pore volume compressibility of	10:48AM
unconsolidated sands. That was done for the California Bureau	10: 48AM
of State Lands as part of the Long Beach oil field reservoir	10:48AM
equity arbitration case.	10:48AM



MR. FIELDS: Would you please display TREX-11497.1. BY MR. FIELDS:

Q Professor Zimmerman, is this the cover page from the report 10: 49AM that you prepared in this litigation?

A Yes, it is.
MR. FIELDS: Your Honor, we have offer Professor Zimmerman's report, which is TREX-011497, into evidence.

THE COURT: All right. Any objection?
Without objection, it's admitted.
(Exhibit admitted.)
BY MR. FIELDS:
Q Look at D-23672.
At a very high level, would you please tell the Court your opinions about the Macondo reservoir rock's compressibility or level of compressibility. A Well, the main conclusion of my report was that my estimate of the average compressibility of the reservoir rocks in the Macondo reservoir was 6.35 microsips.

Microsips is a unit that is used commonly in the oil industry to quantify and measure the level of compressibility.

This conclusion was based on my analysis, from various pieces of data from the reports submitted by Weatherford's Lab. In particular, this numerical value was obtained from my analysis of the Weatherford Laboratory tests
done on measuring the uniaxial pore volume compressibility off three cores from the Macondo reservoir.

These tests were, I believe, conducted using standard rock mechanics testing procedures. My estimate of the UPVC -- and I will abbreviate it as such occasionally in my testimony -- my estimate of the UPVC value of 6.35 microsips was also sort of bolstered and confirmed by my analysis of other laboratory data measurements of different properties that are closely related to pore volume compressibility of different experiments that were conducted by Weatherford Laboratories. Q Before getting into the details of your opinions, we've been talking about this concept of compressibility. Can you explain the concept of compressibility and how it relates to materials. A Well, in the most general sense, the compressibility is the parameter that quantifies how easy it is for a body to change its size and shape When it's acted upon by pressures.

So, very specifically, the compressibility is defined as the fractional change in the volume of a body divided by the pressure that is applied to that body.

All materials are compressible to one degree or another, even though it might not appear that way to the human eye. So even a material such as steel, which we generally think of as being very rigid, has a nonzero compressibility. It's actually about 0.04 microsips.

At the other extreme, a loaf of bread, for
example, actually has a compressibility of roughly about a million microsips.

So all materials are compressible to one degree or 10:52AM another. Of course, my testimony in this case will focus on the pore compressibility of the sandstones.

MR. FIELDS: Would you display D-24650.
BY MR. FIELDS:
Q We've repeatedly heard in this litigation and we heard earlier from you about a term called microsip. So what is a microsip?

A Well, like I said, since compressibility is defined as the fractional change in volume divided by the implied pressure, it has sort of units of one divided by pressure or one divided by psi.

In order to not always talk about numbers with large or small exponents, it's common to use the units of microsips. Specifically, micro means 10 to the minus 6 power, or one part in a million. So a microsip specifically is 10 to the minus 6 power divided by psi.

So micro is just the typical scientific word for 10 to the minus 6 power. Sip, at one point someone tried to cleverly come up with way of coming up with a word that indicated one divided by psi, and that how became S-I-P. So that's sort of the term that's used in the oil industry, microsip.
 psi.

MR. FIELDS: Let's display D-23674.
BY MR. FIELDS:
Q And, Professor Zimmerman, can you explain to us what this diagram depicts?

A Well, on the left, there's sort of a picture of a sandstone. And, that small region, sort of the outline in the yellow square, is sort of blown up on the right. So one could imagine that on the right represents that a small piece of that sandstone viewed under a microscope on a very larger scale.

We see that the sandstone essentially consists of two main components: It consists of minerals, and in this particular image the mineral grains are indicated in that sort of mottled brown coloring. I think one of the grains is indicated by the arrow up on the -- in the upper left corner there.

But also, the grains do not completely occupy all of the space. There is void space or pore space between these grains. Those pores are shown in the image in the darker brown color in the reservoir. Those pores would be filled with some mixture of hydrocarbons and water.

Q Now, let's specifically focus on the compressibility of reservoir rocks such as sandstones. Can you take a look at D-23719.
$10: 54 \mathrm{AM}$

10:54AM

10:54AM

10:54AM

10:54AM

10:54AM
$10: 54 \mathrm{AM}$
$10: 54 \mathrm{AM}$

10:54AM

10:54AM

10:54AM
$10: 54 \mathrm{AM}$
$10: 54 \mathrm{AM}$
$10: 54 \mathrm{AM}$
$10: 54 \mathrm{AM}$
$10: 55 \mathrm{AM}$
$10: 55 \mathrm{AM}$

10:55AM
$10: 55 \mathrm{AM}$

10:55AM

10:55AM
$10: 55 \mathrm{AM}$
$10: 55 \mathrm{AM}$
$10: 55 \mathrm{AM}$

10:55AM


```
A This large square region represents sort of a blowup. So, 10:57Am sort of under a microscope, so to speak, of a small piece of the rock in a generic reservoir. That rock is acted upon in the (10:57AM reservoir by different stresses or pressures.
I should point out that, for the context of what I will be discussing today, there really isn't a distinction between the word stresses and pressures. I might be using both of those terms interchangeably.
So this rock is acted upon -- I'll mention first this vertical stress or vertical pressure which is sometimes called the overburden confining pressure. It's essentially due to the weight of the rock that's lying above the reservoir
So at that weight of all the rock lying above the it in the vertical direction.
There are also stresses that act laterally or in confining pressures. In general, these two pressures are not equal to each other in a reservoir.
Q Let's take a look at D-23675. What is the relationship or 10:58AM the interaction between these confining pressures that you 10:58AM previously identified and the pore pressure? A Well, as I mentioned, there are confining pressures that act both in the vertical and horizontal direction.
If somehow those confining pressures, for example,
```

would increase, that would have the effect of compressing the
pore and making it smaller.
But there's another factor that comes into play
with porous material such as sandstones. The fluid in the pore
space is pressurized, and that fluid is typically under some
high pressure. That pressure is known as the pore pressure or
the pore fluid pressure.
That pressure exerts a pressure outwards from the
pore space into the mineral grains. So, as wh wh see from this
decrease. If the pore pressure decreases, the pore volume will
decrease according to this pore volume compressible effect.
If the pore volume has decreased, there is
obviously less volume available in the reservoir for the fluids,
and those fluids that can no longer be stored in the reservoir
must leave through the well.
So the pore volume compressibility is a very
important parameter for quantifying how much fluid can be stored
in a reservoir or how much fluid is stored in a reservoir under
various conditions.
Q Now, in your report you talk about two types of pore volume
compressibility. The first type you talk about is the

```
would change those stresses by equal amounts. In such a test, 11:01Am
vertical stresses and the horizontal stresses are continuing to
change by equal amounts.
If one then measures how much the pore volume changes during that test, one can calculate something called a hydrostatic pore volume compressibility.
As I'll mention in a second, that's not exactly 11:02AM the mode of deformation that takes place in a reservoir, but it is sort of a starting point of the theory of porous materials and pore compressibility.
Q Now, what is pore volume -- sorry -- what is uniaxial pore volume compressibility?
A Well, when the rocks deform in the reservoir, they don't deform under conditions where all of the stresses are changing by equal amounts.
In general, they undergo a type of deformation that's called uniaxial deformation, meaning that the rock actually only compresses in the vertical direction. So, uni, meaning one axis. The rock compresses along one axis; in this case, a vertical axis.
MR. FIELDS: Can we pull up D-23678?
BY MR. FIELDS:
Q That might help.
A Yes.
So here we see an example of uniaxial
```

compressibility where the rock is compressing in a vertical direction but is not compressing in the lateral direction.
Reason that this happens in the reservoir is that direction but is not compressing in the lateral direction.
Reason that this happens in the reservoir is that the lateral size of the reservoir are bounded by essentially almost infinite expanse of other rock which essentially prevents the reservoir from expanding in the lateral direction.

That's not the case in the vertical direction because the surface can subside. And so the rock is allowed to compact or compress in the vertical direction.

So, specifically, to get back to your question, uniaxial pore volume compressibility would be the compressibility of the pore volume measured under a situation in which the rock was deforming only in the vertical direction. Q Now, Dr. Blunt has performed something called the material 11:03AM balance analysis. For the material balance analysis, which type uniaxial?

A As I mentioned, in the reservoir, the rock deforms in the uniaxial mode. And so the type of compressibility that would be most relevant to a material balance calculation would be the uniaxial pore volume compressibility. Q Let's switch briefly to another topic. Let's talk about rock consolidation.

As part of your work in this case, did you consider the degree or level of consolidation of the Macondo


11:03AMwhich the rock was deforming only in the vertical direction.

11:03AM
reservoir rock?
A Well, that's one of the issues that I thought about in the process of preparing my report, in preparing my testimony, yes. Q Now, what is the concept of rock consolidation? What does that mean? I think you have the core that Dr. Blunt used. That's D-23958.

A I'll start by saying that sandstone, many millions of years ago, began as essentially as a loose collection of sand grains. So sands in the reservoir start out as loose sand grains, as you would see at the bottom of $a$ beach or the bottom of a lake.

Over geological time, over millions of years, these sand grains get buried under more sand grains. They then get compacted under increasingly higher pressures and also higher temperatures. This process tends to cause the sand grains to get compacted and consolidated together, and you can think of it almost to some extent sort of welded together.

So there's sort of a gradual process that goes on over geological time that transforms the rock from its initial state as a loose collection of unconsolidated sand grains to something that more and more sort of we think of as a solid body.

That sort of process is the process of consolidation, and it can proceed to varying degrees and varying rates. Some sandstones are consolidated to the point where there's hardly any porosity left at all, almost a solid body
with 2 or 3 percent porosity
So there's a spectrum of consolidation that 11:06AM essentially refers to essentially how solidified the rock is. To some extent, it also correlates with loss of porosity. So unconsolidated sands would have a very high porosity, close to 40 percent; and, as the consolidation process proceeds, the porosity generally decreases.

Q Now, did you arrive at any conclusions about the Macondo sandstones' level of consolidation?

A Yes, I did.
Q And what is that?
A Well, I should point out that, as I said, in some sense, there's a spectrum, as I've mentioned. But the main sort of distinction that one can draw is between unconsolidated and consolidated sandstones. It's a question of whether the sand essentially functions as a loose collection of grains or whether it has some sort of solidity to it, like this. This would be an example of a consolidated sandstone.

Based on various pieces of data that I've seen from the Weatehrford Laboratories, my conclusion is that the Macondo rocks are what one would call weakly consolidated. They are in the consolidated category. They are actually as consolidated as this rock is. They're weakly, but they are consolidated. They are consolidated.

Q Now, are you aware of literature that provides general
correlations between, for example, a rock's level of consolidation and pore volume compressibility?

A There have been attempts in the past to sort of collect large amounts of data on the pore volume compressibility of different rocks, to plot those as a function of the porosity of that rock, and to try to group them into different categories such as consolidated or unconsolidated.

If one does that and if one looks at any of these data sets, one sees a very large scatter. So it is true that some people have tried to develop correlations. The correlation co-efficients are usually very weak, by which I mean that although it is always possible to draw some line through a data set. In most cases, these data sets are really clouds of data that have a huge range.

So I think your question was, can one develop correlations? People have attempted to do that. But even those people that have attempted to do that point out that they cannot be used to predict for volume compressibility very accurately, because the range of sort of outlying data is just much too large.

Q As an expert in rock mechanics, what is your opinion about the best way to determine the pore volume compressibility of reservoir rock?

A Well, since pore volume compressibility will vary from one reservoir to the next, and as I've just sort of mentioned or
implied, even if one looks at other rocks that have exactly the same porosity as the rocks that you're interested in, that information alone cannot really give you an accurate estimate of the pore volume compressibility.

So the only reliable way or the most reliable way to estimate the pore volume compressibility would be to take cores from that reservoir, bring them to the laboratory, and conduct pore volume compressibility measurements on those cores. Q As part of your work in this case and in the formulation of your opinions about the Macondo reservoir's pore volume compressibility, did you evaluate data from lab measurements of samples taken from the reservoir?

A Yes. I looked at several sets of data from measurements made by Weatherford Laboratories and different cores taken from the Macondo reservoir.

Q Let's turn to discuss the rock samples that were collected from the Macondo well reservoir. What types of samples were collected in the reservoir?

A The cores that were collected are something called rotary sidewall cores.

MR. FIELDS: Would you please show D-23685.
BY MR. FIELDS:
Q Can you explain to the Court and us what a rotary sidewall core is?

A Well, this slide shows a schematic diagram of the reservoir;
this white vertical column represents the borehole. In a rotary cycle coring, a tool would be dropped down the borehole, and a rotary device would be projected out laterally to the side of that device.

It would drill by a rotary action drill into the 11:11AM reservoir horizontally away from the well. Essentially, as we 11:11AM see here in this schematic and in this what was an animation a 11:11AM minute ago, as it rotates, essentially pulling out a small cylindrical core out of the reservoir.

That coring bit would then be pulled back into the 11:11AM coring device and eventually brought back up to the surface |11:11AM where that core could be tested in the laboratory.

So, just to summarize, the rotary refers to the $11: 11 \mathrm{Am}$ fact that the coring is drilled out in a rotary drilling action. 11:11AM Sidewall refers to the fact that the coring is taken from the 11:11AM sidewall of the borehole, not from the borehole itself. |11:11AM Q Are there other types of cores that can be extracted from a 11:11AM reservoir?

A Yes, There are.
Q What are examples of other types of cores that can be extracted or collected from the reservoir?

A There's something called a percussion sidewall core. That's a core that was also be taken off to the side of the borehole. That's done by sort of essentially shooting a hollow cylinder into the reservoir that then essentially cuts out a cylindrical

```
core.
```

So it would be another way of obtaining a cylindrical core from the sidewall of the reservoir, by essentially a shooting action, not rotary action.

There's also conventional cores. Conventional cores are rock cores taken from the rock that used to occupy the place that's now occupied by the borehole. So conventional cores are taken -- in the case of a vertical well, such as one at Macondo, the conventional core would be taken out vertically out of the borehole.

It would then be brought back to the surface to $11: 13 \mathrm{Am}$ the laboratory where a small plug would be taken out of it, and then again one would take that small plug and do laboratory tests on the plug.
So, yes.

Q Now, how many rotary sidewall core samples were collected from the Macondo well reservoir?

A I believe a total of 44 rotary sidewall corings were collected from the Macondo reservoir.

Q And, of those 44 cores that were collected from the reservoir, how many of them were tested for rock properties that you used in your work? A Well, a total of nine of them were tested for the type of rock properties that $I$ used in my analysis. In one of those cases, specifically referring to the ultrasonic or the acoustic

```
velocity tests, the data was only complete on two of those three 11:13AM
cores.
 So I actually used data from nine different cores
in order to inform my opinion.
Q Well --
A I'm sorry, I used eight different course.
Q So, with respect to the other 36 or so cores, why didn't you
use data from those cores?
A Well, in some of the cores, no tests at all were performed.
On other cores, tests were performed to measure different rock
properties that are not directly relevant to the issue of pore
volume compressibility.
 So, for example, other cores were used to measure
permeability, or I believe electrical resistivity, and those
properties are not closely related to pore volume
compressibility.
 So that data would not have been relevant to my 11:14AM
calculations or my determination.
 MR. FIELDS: Would you please display D-23684.
 BY MR. FIELDS:
 Q Professor Zimmerman, what does D-23684 show?
 A Well, this is a schematic diagram that shows the locations
 where these eight cores were taken. These eight cores,
 specifically referring to the eight cores, the data from which I
 used to reach my conclusions about the uniaxial pore volume
```

```
compressibility.
```

So, in this image here, the reservoir sandstone 11:15AM
layers were D layer, E layer, and the F sandstone layer are shown in this sort of darker brown color.

Again, this vertical sort of grey region schematically represents the borehole. These small white numbers represent the depths at the top and the bottoms of the different sandstone layers.

These yellow numbers represent the depths at which these particular cores were taken. So, for example, core 3-6R was taken from the depth of 18,074.9 feet, et cetera.

So we see these are the depths roughly to scale at which these eight cores that I have referred to previously were taken from the reservoir.

Q You talked about rotary sidewall core samples. Were there any conventional cores that were collected from the Macondo reservoir?

A No. As far as I understand, there were no conventional -there was no conventional core retrieved from the Macondo reservoir.

Q Is it common to have compressibility testing performed on $11: 16 \mathrm{AM}$ rotary sidewall cores?

A It is commonly done within the oil industry, yes. It's not a rare or uncommon practice.

Q Now, if we take a look at D-23686. We'll talk about some of
these tests in some detail; but, in general, what type of laboratory tests did you evaluate or did you review in reaching your opinions in this case?

A The primary test that I relied upon was something called the uniaxial compression test. The three different cores were subjected to that test, and I used the data on the three cores in the uniaxial compression test to arrive at my conclusion of 6.35 microsips as my estimate of the uniaxial pore volume compressibility of the Macondo reservoir.

I also looked at data from two other tests. One 11:17AM was called the hydrostatic stairstep porosity test, which is a test in which porosity was measured as a function in changes in hydrostatic pressure.

I also looked at some data from ultrasonic velocity tests, which are tests in which the speeds of the two different types of ultrasonic waves, the $Q$ wave and the $S$ wave, were measured in the laboratory.

So I used data from these two latter tests as sort 11:17am of a consistency check and a way of ascertaining whether or not there seemed to be anything anomalous or peculiar about the numbers that came out from the uniaxial compression test. Q Let's first focus on the uniaxial compression test. Is that the test -- you were here when the video of Ms. Loos was played. Is that the test that she was talking about?

A Yes. I believe it was, yes.

Q So let's talk about the uniaxial compression test. If you'd pull up D-23720, which is a basic demonstrative, to help us understand the fundamentals of this test. Can you sort of walk us through how this test works in general.

A In the uniaxial compression test, the schematic shows a cylindrical core that would be in the rock testing machine. The top and the bottom, you have these generally steel platens that apply the axial pressure or the axial stress.

There's also, although it's not shown here, generally a fluid outside of the rock that applies the lateral horizontal confining pressures. Schematically, there are pressure gauges here. So this pressure gauge in the middle represents sort of a measurement of the pore pressure or the pressure of the fluid inside the pore space of the rock.

This pressure gauge represents the pressure of the overburden, vertical overburden pressure.

And this pressure gauge represents the pressure of the lateral confining pressure.

During the uniaxial tests, the overburden pressure is maintained constant. As I mentioned earlier, that pressure is essentially due to the weight of the rock that lies above the reservoir, and that does not change during the depletion of the reservoir.

What does in the first instance change is the pore 11:19am pressure. So, in these tests, the pore pressure would be
$11: 18 \mathrm{AM}$
$11: 18 \mathrm{AM}$
$11: 18 \mathrm{AM}$ 11: 18AM

11:18AM
$11: 18 \mathrm{AM}$

11:18AM

11 : 18AM

11: 18AM

11:18AM

11: 19AM

11:19AM

11:19AM

11:19AM

11:19AM

11: 19AM

11:19AM

11:19AM

11:19AM

11:19AM

11:19AM

11:19AM

11:19AM

11: 19AM
decreased at a certain rate to represent depletion of the
reservoir due to fluids leaving the reservoir.

$$
\text { The key point about these uniaxial compression }
$$

tests is that, in order to maintain the state of uniaxial
deformation, the lateral confining pressure is constantly
adjusted so as to prevent the rock from expanding or compressing in the lateral direction.

So I think, if the animation can begin now, one sees that the overburden pressure should stay the same. Pore pressure decreases much and the lateral confining pressure decreases. They don't decrease at this same rate.

The lateral confining pressure decreases -- in the laboratory, it is purposefully decreased at exactly the right rate to maintain state of uniaxial deformation.

So I think, in the test conducted by Weatherford, the pore pressure was deleted down to a pore pressure of 3800 psi, which I believe was initially expected to be the final sort of -- the final pressure at the end of the depletion life of this reservoir. And the lateral confining pressure decreased down this value.

So, during these tests -- should I continue? Q Yes. A -- what is actually measured is the compression, the bulk compression of the core. In other words, what's actually measured is how much this core gets shorter. Again, it's not a
large amount, so it's hard to really envision visually that during this test the core will get shorter. That is what is measured. So, in a sense, one is actually measuring the bulk volume compressibility.

One then converts that to the pore volume compressibility using known and well accepted mathematical relations.

Q And how many cores did Weatherford Laboratories test for uniaxial compressibility?

A Three different cores were tested for uniaxial pore volume compressibility.

MR. FIELDS: Can we display TREX-9067.2.1.
BY MR. FIELDS:
Q Dr. Zimmerman, is this some of the raw data from the Weatherford uniaxial compression test results that you relied upon in determining your estimate of the reservoir's uniaxial pore volume compressibility?

A Yes, it is. This is the data from sample from 3-6R. And one sees, for example, the columns representing time, representing the axial stress, which I've been referring to as the axial overburden stress or overburden pressure.

This column presents the pore pressure. And this column represents this lateral confining pressure that we were discussing earlier.
Q I think you mentioned this in response to my earlier
question, but just to be clear, did the Weatherford uniaxial compression test actually measure uniaxial pore volume compressibility?

A Well, no. They directly measured the bulk volume compressibility, yes.

MR. FIELDS: Now, will you please display D-24651. BY MR. FIELDS:

Q Since we were interested in this case in the uniaxial pore volume compressibility, will you tell the Court how you went about calculating UPVC based on the Weatherford lab tests based on the three core samples.

A Well, as $I$ just mentioned, the test directly measures the change in bulk volume or the compressibility of the bulk volume of the rock.

As I'd mentioned earlier, the bulk volume of the rock essentially has two components. It has the component of the mineral grains or the sand grains, but also the pore space component.

We are interested only in the compressibility of 11:23AM the pore space. They have directly measured the overall total 11:23AM compressibility, so one must subtract out or somehow account for the compression that took place within the sand grains themselves.

As it turns out for this particular type of rock, very much the largest amount of compression occurs in the pore
space, but there is a small amount of compression that actually occurs in the sand grains. That is a term that's easy to account for on mathematically known equations.

That's sort of a correction, if you will, that one needs to do to convert the raw data measured by Weatherford into a uniaxial pore volume compressibility.

11:24AM
Q Are there formulas that you used in order to convert the

## MR. FIELDS: If you could put that back up.

 BY MR. FIELDS:MR. F
BY MR. FIELDS: had a different level of pore volume compressibility. How did you take that information to come up with your estimate of the reservoir's pore volume compressibility? A Well, yes, there were three core samples. The cores were $3-6 R, 3-16 R$, and $3-22 R$. As one can see on this panel in the middle of the slide, each one had a somewhat different pore volume compressibility as measured from the laboratory data.

$$
\text { Those three values were } 8.57,4.34 \text {, and } 6.14 \text { in }
$$

units of microsips. Pore volume compressibility is essentially an additive property, so the proper way to average them is just to take a simple arithmetic average, which I did using the only three data values that available to me from these three cores, and that leads to an average value of 6.35 microsips. Q Now, if you look at it, and it may be hard to see, but for example, if we look at D-24651 and we look at this little chart 11:26AM for core $3-22 R$, it appears that at different pressure values the level of compressibility of the rock changes.

Is that the case?
A Yes. As is typically the case for a sandstone or a reservoir, particularly sandstones, the compressibility isn't just a single number. It varies with the level of stress. So at different stresses one would have a different level of compressibility.

The value that I calculated here was my estimate 11:26Am of the average value over the pressure range from 11800 psi down 11:26Am to 10400 psi, which I understand to be pressures at the beginning and the end of the leakage period. Q Now, the tests that were performed by Weatherford used a pressure range from 11800 to down around 3800 psi? A Yes. The tests went down to a much lower pressure. I assume that would have been the pressure that initially the operators were expecting to complete the reservoir down to that lower pressure of 3800 .

cracks get close in the rock and grain boundaries in the rock get pressed more tightly together.

So anyway, to make a long story short, to my mind, this initial period of a couple hundred psi where the pore volume compressibility actually looked very low and was increasing, I interpreted that as an experimental artifact. I think that's very commonly done. It's been known for decades that one often has what are generically referred to as experimental artifacts at the beginning of a compressibility test.

It's generally thought to be related to friction $11: 29 \mathrm{AM}$ between the rock and the platens. So those data points actually indicated lower values, and I think --

Q What would have happened if you had actually included the data points from that couple hundred psi range? What impact would that have on the pore volume compressibility estimate? A If I had included that, I would have gotten a much lower value. In fact, I think certainly with my glasses I can see that this number here is actually 3.73.

So there were some data points that actually showed much lower values. As I said, my feeling very strongly is that I did not believe that these accurately reflected what was going on in the reservoir, so I neglected the first few data points corresponding to the first couple of hundred psi.

Removing those data points, the entire curve from
then down on to 3800 looked like a compressibility curve that I would expect based on my experience.

Q So, based on your evaluation of the data from Weatherford $11: 30 \mathrm{Am}$ Laboratories' uniaxial compression test, what is your estimation of the reservoir's pore volume compressibility?

A Based on my analysis of this data and as reported in my report, my estimate was 6.35 microsips.

Q Now, as part of your work in this case, did you review the Weatherford compression test procedures?

A Yes, I did. I did read -- those procedures and protocols were described in the Weatherford report, and I did read them. Q And do you believe that the procedures that were performed by Weatherford were appropriate?

A Yes, I do.
Q You're aware that there is some criticism that Weatherford ran the test at room temperature rather than at reservoir temperature? Are you aware of that criticism?

MR. GLADSTEIN: Objection, Your Honor. This gets into the surrebuttal. There was a list of ten areas that was a deposition exhibit, and one of those areas, No. 6, is temperature effect.

MR. FIELDS: Your Honor, a couple of things, if I may be heard.

There are a couple of ways to approach this, including his prior experience. I think the biggest issue that

11 : 30AM
$11: 30 \mathrm{AM}$
$11: 30 \mathrm{AM}$

11: 30AM

11:30AM
$11: 30 \mathrm{AM}$

11:31AM
$11: 31 \mathrm{AM}$

11:31AM

11: 31AM
$11: 31 \mathrm{AM}$

11:31AM
$11: 31 \mathrm{AM}$

11: 31AM

11:31AM

11:31AM

11: 31AM

11:31AM

11:31AM
$11: 31 \mathrm{AM}$
$11: 31 \mathrm{AM}$
$11: 31 \mathrm{AM}$

11:31AM
we raised with Judge Shushan and we raised with Your Honor, is one of the issues in this case was the pore volume compressibility of this reservoir.

THE COURT: Wait. Simple question: Is this part of his rebuttal report, what you're asking now?

MR. FIELDS: As far as whether or not the temperature was taken into consideration, that is not in his original report.

THE COURT: Okay. So I sustain the objection.
FIELDS: Your Honor, can we be heard on this issue? THE COURT: You just were.

BY MR. FIELDS:
Q During the uniaxial compression test, what type of fluid did Weatherford Laboratories use to fill the core sample's pores? A They have used kerosene.

Q In your experience, have you seen kerosene used as a saturant to fill the pores of rock samples tested for compressibility?

MR. GLADSTEIN: Your Honor, I believe, again, this is beyond his initial report. He's responding here to a criticism that was raised by our rebuttal experts, which was that they did, the test with kerosene, instead of in situ conditions of brine.

MR. FIELDS: Your Honor, the question $I$ want to ask him is mbased on his experience, has he seen kerosene used? Has he
seen brine used? That's what I'd like to ask him
THE COURT: But you can't get around the rebuttal issue
by saying I'm going to ask him, the witness, based on his experience.

I sustain the objection.
MR. GLADSTEIN: Thank you, Your Honor.
MR. FIELDS: At some point, Your Honor, would we be able to make an offer of proof for the record?

THE COURT: Sure. Sure.
MR. FIELDS: I'd like to ask a question, Your Honor,
which is: Do any of the criticisms he's heard change his opinions about the level of compressibility of the reservoir. Yes or no answer.

MR. GLADSTEIN: Objection, Your Honor.
THE COURT: Sustain the objection.
BY Mr. FIELDS:
Q You've talked about the results of the uniaxial compression test data by itself in giving you the estimate of 6.35 microsips.

Why did you look at data from the two other tests if you already came up with the 6.35?

A There were two other tests. As I mentioned, they were the hydrostatic stair-step porosity test, and the ultrasonic velocity test. These two tests measure properties that are closely related to pore volume compressibility. I looked at

He COURT: Sure. Sure.
CHE COURT: Sustain
this data to try to basically provide bolstering evidence. I didn't use this data directly as part of my $\quad$ 11:34AM quantitative numerical calculation of the UPVC, but I used it to convince myself whether or not the data from the UPV tests seemed to be reasonable and plausible. So to check whether or not it was roughly in agreement with the values that one would obtain from these other two tests. Q Just before we move on to the other tests, do you agree that the method used by Weatherford and the procedures that were used by Weatherford were standard and accepted or standard and accepted approaches to measuring uniaxial pore volume compressibility?
A Yes, I do. I have reviewed their procedures. I was fully aware at the time of writing my report what procedures they used, what pore fluids they used, and I determined that that was an appropriate and proper and accepted procedure.

Q Let's turn to the second test that you analyzed in arriving at your opinions in this case regarding the reservoir's pore volume compressibility. That's the hydrostatic stair-step test. How many samples were tested in that particular test? A Three different core samples were tested in the hydrostatic stair-step porosity test, and those were different core samples than the three that were tested in the uniaxial pore compressibility test.

Q And who performed the hydrostatic stair-step test on these
three different core samples?
A These tests were also performed by Weatherford Laboratories in Texas.

MR. FIELDS: Would you please display D-23721. BY MR. FIELDS:

Q Can you use this demonstrative exhibit to sort of explain to the Court what a hydrostatic stair-step porosity test is and how it works.

A Well, this slide shows two different images. The image on the left is intended to represent the beginning of the test. As I mentioned earlier, a hydrostatic state of stress is a situation in which the vertical overburden stress and the lateral horizontal confining stress are equal.

These three gauges, again, represent the vertical stress, the lateral horizontal confining stress, and the pore pressure.

In this particular test, the pore pressure was held constant and the lateral confining pressure and the vertical overburden pressure were increased at exactly the same rate to represent the hydrostatic state of stress.

On the right, this represents the result of one of these steps. So this was done in a stair-step manner by increasing the hydrostatic confining pressure by a fairly large amount, I think increments of 500 or 1000 psi. So the external confining pressure would be increased. What was measured was
the porosity of the core.
So what was directly measured is the change in the 11:38AM porosity of the core as a function of the change in the hydrostatic stress. I believe they carried out about eight stages in the stair-step to both decrease and then increase -increasing the pressures.

Q So, with respect to D-23721, this is just a representation of one of the steps that would have been carried out as part of several steps?

11:38AM
A That's right. The second panel represents sort of the first 11:38AM step, if you will, where the pressures were increased a little 11:38AM bit, the rock compresses, the porosity would be measured, and this process is repeated, you know, by a certain number of times.

Q What type of information does the hydrostatic stair-step test give you about a sample's uniaxial pore volume compressibility?

A Well, in the most direct sense, this test tells you how the porosity changes. If there are well-known equations, such as appear in my book Compressibility of Sandstones, that will relate the change in porosity as a function of stress to hydrostatic pore volume compressibility.

So one can use those known equations to convert this raw data into a hydrostatic pore volume compressibility. One can then use other known equations that can be found in
various scientific papers and books to convert the hydrostatic pore volume compressibility to a uniaxial pore volume compressibility.

Q Let's take a look at D-23701.
Can you explain to the Court how you went about converting the measured data from Weatherford, from the hydrostatic stair-step test, to a UPVC value?

A Well, this first column here shows what's called a differential pressure, which in this context refers to the difference between the confining pressure and the pore pressure.

As I said, the tests were conducted at various discrete values of this differential pressure. The second column shows the hydrostatic pore volume compressibility, and I directly compute from that porosity as a function of pressure data.

So the second column shows two different volumes of 13.3 microsips at a differential pressure of 1600 psi; 7.96 microsips and a differential pressure of 3000 psi. So one then needs to convert that into uniaxial pore volume compressibility.

I should point out that the rule of thumb in the industry is generally that that conversion is accomplished by multiplying of a factor of about . 5 or . 6 .

I used what I believed to be a more precise convection, which I said is from an equation that can be found in numerous scientific papers and books. The result of that
conversion is shown in these two columns here.
There is one more point that needs to be 11:41AM mentioned. In order to carry out this conversion, one needs to $11: 41 \mathrm{AM}$ know the numerical values of several different parameters, one of which is the porosity and one is something called the Poisson ratio. The Poisson ratio, there were two pieces of laboratory 11:41AM data from Weatherford Laboratories on the Poisson ratio on two 11:41AM different cores. The Poisson ratio measured by Weatherford Laboratory was 0.13 and 0.18 . Based on those data and my experience and knowledge of sandstone compressibility and sandstone stone mechanical properties, I did my calculations using a somewhat broader range of 0.1 and 0.2 Poisson ratio, which I felt represented sort of a range that I might reasonably expect to find in such a sandstone.

When doing that calculation for the Poisson ratio, is it's actually represented by a Greek letter, but it looks in this font very much like a V.

Using the Poisson ratio of .1 and .2 , I came up 11:42AM with either these values or those values in the third and fourth column.

The last part of the calculation is as follows. 11:42AM As I mentioned before and as is clear from this table, pore 11:42AM volume compressibility varies as a function of pressure. We are 11:42AM really interested in the pore volume compressibility at the $\quad$ 11:42AM average differential pressure that existed in the Macondo
reservoir during the period of the spill and the leakage
That value was 2372 psi. And so, since the tests 11:42AM only give us values at 16000 and 3000 , the last step in this calculation is essentially to interpolate between the values at 1600 and the values at 3000 to find the values at 2372.

As you see, even looking at this fairly wide range of potential values of Poisson ratio, this method leads to a prediction of about a UPVC value of roughly 5 microsips.

I interpreted that as being sufficiently close to my previously estimated value that was estimated from the direct measurements, which was 6.35 .

My conclusion from this was there was nothing at all from this data to leads me to think that there was anything grossly erroneous or incorrect about the values that I calculated previously. Q So, just to be clear, when evaluating the data from the hydrostatic stair-step test, what was your estimate of the reservoir's uniaxial pore volume compressibility? A My estimate on this test alone would imply a value somewhere between 4.56 and 5.47 . Q And how did that assist you in determining or evaluating what was an appropriate estimate of the reservoir's uniaxial pore volume compressibility? A Well, as I said, what my conclusion was, that this value was sufficiently close to the value I'd calculated previously,

```
bearing in mind that this data was taken was based on -- this 11:44AM
calculation was based on data from three different cores. 11:44AM
 We know there's going to be slight variations of 11:44AM
compressibility from one core to the next, even within the same 11:44AM
reservoir. So the main thing that I used this data for was as 11:44AM
evidence that helped convince me or substantiated in my mind 11:44AM
that there was nothing out of the ordinary about or improper or 11:45AM
nothing about the value of 6.35 that one obtains from the
uniaxial tests that would seem to be on the surface incorrect or
erroneous or startling.
Q Let's turn to the acoustic velocity test.
 THE COURT: Mr. Fields, let me just ask you where you 11:45AM
are in your exam. How much more do you think you have, time 11:45AM
wise?
 MR. FIELDS: Your Honor, I probably have about another
 25 minutes or so.
 THE COURT: All right. You're moving to another topic
now; right?
 MR. FIELDS: Yes, Your Honor.
 THE COURT: Okay. Let's go ahead and we're going to 11:45AM
 recess a little bit early for lunch. We'll come back at -- 11:45AM
 let's take a little bit longer lunch than normal. Come back at 11:45AM
 1:15.
 (11:45 a.m., proceedings concluded.)
```

 Susan A. Zielie, FCRR

		2393:5, 2397:1	$\mathbf{3}$   $\mathbf{3}_{[14]}-2334: 20$,   $2335: 12,2335: 14$,   $2347: 1,2373: 23$,   $2376: 5,2376: 16$,   $2376: 19,2377: 3$,   $2377: 8,2377: 13$,   $2377: 15,2383: 24$,   $2409: 1$	$2330: 13,2330: 16$,   $2335: 17$   $4.9[2]-2377: 4$,   $2377: 9$   $40[2]-2324: 22$,   $2409: 6$   $412[1]-2365: 6$   $42[6]-2356: 2$,   $2357: 2,2359: 12$,   $2359: 17,2360: 8$,   $2382: 22$   $42.4[1]-2327: 6$   $43[8]-2355: 21$,   $2355: 22,2356: 5$,   $2356: 11,2356: 19$,   $2356: 22,2359: 15$,   $2382: 23$   $43.3[1]-2373: 15$   $43.4[4]-2327: 15$,   $2327: 19,2327: 25$,   $2328: 1$   $44[8]-2327: 7$,   $2355: 24,2359: 12$,   $2359: 14,2360: 8$,   $2382: 22,2413: 18$,   $2413: 20$   $44.5[2]-2328: 13$,   $2328: 21$   $46[1]-2359: 6$   $46.7[2]-2373: 17$,   $2382: 25$   $47.3[3]-2329: 15$,   $2358: 2,2359: 7$   $47.9[2]-2329: 18$,   $2373: 18$   $48[2]-2373: 17$,   $2382: 25$   $49.9[1]-2329: 23$   $4 C_{[2]}-2380: 9$,   $2381: 12$
'78 [1] - 2305:18		$\begin{aligned} & 1995 \text { [2] - 2387:18, } \\ & 2387: 24 \end{aligned}$		
1		$\begin{aligned} & \text { 1998 }{ }_{[1]}-2388: 4 \\ & \text { 19th }{ }_{[1]}-2320: 12 \end{aligned}$	$\begin{aligned} & \text { 2347:1, 2373:23, } \\ & \text { 2376:5, 2376:16, } \end{aligned}$	
/S [1] - 2435:8				
		1:15[1] - 2434:23	2376:19, 2377:3,   2377:8, 2377:13,   2377.15, 2383.24	
0		2	2377:15, 2383:24,   2409:1	
0.04 [1] - 2399:24		2 [9] - 2324:17	3,000 [1] - 2391:19	
0.1 [1]-2432:12		2324:23, 2325:5,	3-16R [1] - 2421:22	
0.13[1]-2432:9		2327:19, 2342:12,	$\begin{aligned} & 3-22 R \text { [2] - } 2421: 22, \\ & 2422: 8 \end{aligned}$	
0.18[1] - 2432:9		2373:23, 2381:24,		$\begin{aligned} & \text { 2355:22, 2356:5, } \\ & \text { 2356:11, 2356:19, } \end{aligned}$
0.2 [2]-2364:2,		2409:1, 2432:18	$\begin{gathered} 3-6 R[3]-2415: 10 \\ 2419: 18,2421: 22 \end{gathered}$	
2432:12		2.8 [1]-2328:19		$\begin{aligned} & \text { 2356:11, 2356:19, } \\ & \text { 2356:22, 2359:15, } \end{aligned}$
		$\begin{aligned} & 20[3]-2294: 6, \\ & 2309: 16,2376: 22 \end{aligned}$	$\begin{gathered} \text { 2419:18, 2421:22 } \\ 3.73[1]-2424: 19 \end{gathered}$	2382:23
1			$\begin{aligned} & 30 \text { [6]-2302:20, } \\ & 2309: 6,2310: 21, \end{aligned}$	$\begin{aligned} & 43.3[1]-2373: 15 \\ & 43.4[4]-2327: 15 \end{aligned}$
1 [7]-2324:23,		$200 \text { [2] - 2369:7, }$		$\begin{aligned} & \text { 43.4[4]-2327:15, } \\ & \text { 2327:19, 2327:25, } \end{aligned}$
2349:6, 2349:8,		20004[1] - 2297:24	2392:22	$2328: 1$
2376:21, 2377:10,		20005[1] - 2297:20	$\text { 30(b)(6 }{ }_{[1]}-2384: 1$	$44 \text { [8] - 2327:7, }$
2377:17, 2432:18		20006 [1] - 2299:14	$300[1]-2297: 12$	2355:24, 2359:12,
1.0 [1]-2379:22		2004 [3] - 2388:8,	$3000 \text { [3] - 2431:18, }$	2382:22, 2413:18,
1.1[3]-2328:18,		2388:14, 2391:8	2433:3, 2433:5	
2328:19, 2328:23		20044 [2] - 2296:15,	31 [2]-2346:16,	
$1.3{ }_{[1]}-2329: 18$		2296:24	2346:20	$44.5 \text { [2] - 2328:13, }$
10 [19]-2346:25,		2006 [2]-2307:2,		$\begin{gathered} 2328: 21 \\ 46[1]-2359: 6 \end{gathered}$
2348:18, 2355:20,		2392:6	31:53 [1] - 2302:19	
2356:8, 2357:4,		2007 [2]-2388:14,	32502[1]-2295:5	$\begin{aligned} & 46.7[2]-2373: 17, \\ & 2382: 25 \end{aligned}$
2362:4, 2362:7,		2391:8	$33_{[1]}-2358: 16$	
2362:12, 2362:18,		2008 [1] - 2388:15	333 [1]-2297:15	$\begin{gathered} 47.3[3]-2329: 15 \\ 2358: 2,2359: 7 \end{gathered}$
2362:19, 2378:1,		2009 [1] - 2393:13	335[1] - 2298:16	
2378:9, 2378:13,		2010[2]-2294:6,	$\begin{aligned} & 35[3]-2306: 21, \\ & 2307: 12,2381: 7 \end{aligned}$	$47.9 \text { [2] - 2329:18, }$
2379:8, 2382:23,		2394:11		
2400:17, 2400:18,		2011 [1]-2312:5	35TH [1] - 2298:16	$\begin{gathered} 2373: 18 \\ 48[2]-2373: 17, \end{gathered}$
2400:21, $2401: 1$		2012[1] - 2364:10		$\begin{aligned} & 48[2]-2373: 17, \\ & 2382: 25 \end{aligned}$
10-CV-2771 [1] - 2294:8		2013[2]-2294:6,	36 [1] - 2414:7 $36130[1]-2295: 23$	$49.9{ }^{[1]}-2329: 23$
10-CV-4536		2301:2	$3668[1]-2294: 25$	$\begin{gathered} \text { 4C [2] - 2380:9, } \\ 2381: 12 \end{gathered}$
$10-\mathrm{CV}-4536$ 2294:11		2020 [1] - 2299:14	$\begin{aligned} & 3700 \text { [2] - 2298:7, } \\ & 2298: 10 \end{aligned}$	
100 [7]-2311:11,		210 [1]-2369:8		$5$
2321:15, 2327:12,		$\begin{aligned} & \mathbf{2 2}[1]-2365: 6 \\ & \mathbf{2 2 1 6}[1]-2295: 11 \end{aligned}$	$\begin{aligned} & 2298: 10 \\ & 3800[4]-2418: 16, \end{aligned}$	
2349:21, 2373:16,		2303 [1] - 2300:3	2422:21, 2422:25,	$5_{[18]}-2325: 21$, 2330:5, 2330:13, 2335:17, 2358:24,
2379:23, 2382:16		$2306[1]-2300: 4$$23667[1]-2392: 17$	39201 [1] - 2295:19	
1000 $10003_{[1] ~}^{[1]}$ - $2429295: 8$				
10003 [1] - 2295:8 1001 [1] - 2298:10		$23668{ }_{[1]}$ - 2394:6	4	
10400 [3] - 2422:18,		$\begin{aligned} & 2372[2]-2433: 2, \\ & 2433: 5 \end{aligned}$		
2423:7, 2423:12			4 [9]-2325:21,	
10:00 [1] - 2383:12		$2384[1]-2300: 5$	$\begin{aligned} & \text { 2335:14, 2335:17, } \\ & \text { 2359:1, 2376:2, } \end{aligned}$	
10th [1] - 2320:3		2385[1]-2300:6	2376:4, 2376:20	
$1100\left[{ }_{[1]}-2298: 7\right.$		$\begin{aligned} & \text { 23987-1A. } 1 \text { [1] - } \\ & 2360: 4 \end{aligned}$	2380:4, 2380:11	
11496 [2]-2312:25,		$2360: 4$243 [1] 2317:1	$4.34[1]-2421: 25$	$\begin{gathered} \text { 5,000[4]-2372:13, } \\ \text { 2372:16, 2374:23, } \end{gathered}$
2383:18				
11496.180.1 [1] -		$\begin{gathered} 25[2]-2307: 1, \\ 2434: 16 \end{gathered}$	$\begin{aligned} & 4.4[4]-2329: 24, \\ & 2330: 12,2330: 16, \end{aligned}$	
2311:23		$278 \text { [1] - 2346:9 }$	2330:12, 2330:16,	$5.47 \text { [1] - 2433:20 }$
11496.19.1 [1] -			4.5 [1] - 2325:21	50.7 [1] - 2358:20   500 [4]-2294:24, 2295:23, 2299:18,
2355:11		$29[1]-2391: 2$	$4.5[1]-2325: 21$ $4.56[1]-2433: 20$	
11496.23 [1]-2376:9				


429:24	820 [1] - 2294:21	ac	98:9, 2398:10	92:23, 2392:24
5000 [1]-2297:6	8583[1]-2319:15	23:21, 2324:9,	adopt [1] - 2329:1	2393:1, 2393:3,
501 [1]-2295:15	8583.1.1 [1]-2319:25	324:20, 2325:5,	advanced [3] - 2307:5	2393:6, 2394:1
504[1]-2299:19	8584.3 [1]-2319:19	2337:1	2307:19, 2309:23	Americans [1]
54 [1] - 2302:20	8:00 [1] - 2301:5	accurate [1	advised [1] - 2302:3	2388:3
$556[1]-2294: 24$		2313:10, 2314	affect [3]-2347:17,	amount [17] - 23
589-7781 [1]-2299:19	9	2322:14, 2324:8,	2348:22, 2355	2345:20, 2346:
6	$\begin{aligned} & 9[2]-2294: 15, \\ & 2362: 16 \\ & 90[3]-2390: 10, \\ & 2390: 11,2390: 16 \\ & 90071[2]-2297: 16, \\ & 2298: 16 \\ & 94005[1]-2296: 6 \\ & 97[1]-2320: 11 \\ & 9734.20[1]-2320: 17 \end{aligned}$	$\begin{aligned} & 2337: 14,2340: 25, \\ & 2341: 2,2343: 14, \end{aligned}$	affiliated [1] - 2387:20 afraid $[2]-23386$	$\begin{aligned} & \text { 2352:16, 2354:8, } \\ & \text { 2354:11, 2354:12, } \end{aligned}$
$\begin{aligned} & 6[7]-2376: 10, \\ & 2400: 17,2400: 19, \\ & 2400: 21,2401: 1, \\ & 2425: 20,2431: 22 \end{aligned}$		$\begin{aligned} & \text { 2356:25, 2363:20, } \\ & \text { 2366:15, 2366:16 } \end{aligned}$	2345:17	$\begin{aligned} & \text { 2367:18, 2368:4, } \\ & \text { 2369:9, 2369:11, } \end{aligned}$
		$\begin{aligned} & \text { 2366:15, 2366:16, } \\ & 2411: 3 \end{aligned}$	afternoon [1]	$\begin{aligned} & 2419: 1,2420: 25, \\ & 2421: 1,2429: 24 \end{aligned}$
		accurately [12] -	afterwards [1]	
6.1 [1]-2380:5		$\begin{aligned} & 2308: 2,2308: 22, \\ & 2313: 11,2313: 24, \end{aligned}$	2331:21	amounts [12] -
$6.14[1]$ - 2421:25			ago [6] - 2307:1	2313:12, 2314:23, 2315:9, 2321:12,
6.2 [1]-2380:20		2313:11, 2313:24,   2314:12, 2315:20,	$\begin{aligned} & \text { 2335:20, 2377:24, } \\ & \text { 2397:6, 2408:8, } \end{aligned}$	$\begin{aligned} & 2315: 9,2321: 12, \\ & 2351: 21,2355: 3, \end{aligned}$
$\begin{gathered} 6.35[9]-2398: 18, \\ 2399: 6,2416: 8, \end{gathered}$	A	2323:16, 2324:4,	$\begin{aligned} & \text { 2397:6, 2408:8, } \\ & \text { 2412:8 } \end{aligned}$	$\begin{aligned} & \text { 2351:21, 2355:3, } \\ & \text { 2375:1, 2381:8, } \end{aligned}$
22:5, 2425:7,		2335:13, 2363:11, 2410:18, $2424: 22$	$\begin{gathered} \text { agree }[7]-2335: 1, \\ 2344: 2,2357: 17, \end{gathered}$	2406:1, 2406:3,2406:15, 2410:4
27:18, 2427:21,	a.m [1] - 243	achieving [1] - 2325:5		
2433:11, 2434:8	A.M ${ }_{[1]}$ - 2301	acknowledge [1] -   2338:14	$\begin{aligned} & \text { 2344:2, 2357:17, } \\ & \text { 2359:24, 2361:24 } \end{aligned}$	$\begin{gathered} \text { Anadarko [3] - 2385:1, } \\ \text { 2385:12, 2397:11 } \end{gathered}$
60 [2]-2316:23,	abbreviate [1]		2375:2, 2428:8	
17:2	2399:5	$\begin{aligned} & \text { acoustic }[2] \text { - } \\ & 2413: 25,2434: 11 \end{aligned}$		ANADARKO [2] -2299:7, 2299:8
600 [1] - 2295:4	ability [3]-2313:16		2428:6	
6000 [1] - 2335:9	2317:14, 2346:25	acronym [1] - 2314:18	ahead [5]-2326:23,	analogy [1] - 2351:24
60654 [1] - 2297:12	able [5] - 23	act [2]-2403:16,	2333:11, 2367:15,2372:21, 2434:20	analyses [1]-2313:1
6500 [2] - 2321:11,	7:20, 2324:19	2403:23		analysis [22] -
31:13	8:1, 2427:	acted [6] - 2386:20	$\begin{gathered} \text { AIME }_{[1]}-2312: 8 \\ \text { air }[3]-2351: 14, \\ 2351: 23,2354: 20 \end{gathered}$	2318:2, 2324:15, 2334:14, 2339:2,
655[1]-2297:20	absolutely [1]	2387:3, 2395:21		
	2361:9	$\begin{aligned} & \text { 2399:16, 2403:3, } \\ & \text { 2403:9 } \end{aligned}$		
7	academic [2]-2387:6,		$\begin{aligned} & \text { AL [3] - 2294:9, } \\ & 2294: 13,2295: 23 \end{aligned}$	2346:10, 2351:18,
		acting [1] - 2404:13		2351:19, 2352:19,
$\begin{aligned} & 7 \text { [5] - 2302:18, } \\ & 2347: 16,2349: 10, \end{aligned}$	$\begin{gathered} \text { accept }[3]-2312: 15, \\ 2330: 20,2397: 20 \end{gathered}$	$\begin{gathered} \text { action }[4]-2412: 5, \\ 2412: 14,2413: 4 \end{gathered}$		$\begin{aligned} & 377: 22,2384: 2, \\ & 398: 22,2398: 25, \end{aligned}$
2349:13, 2378:5	acceptab	actual [4]-2331:18,	$\begin{aligned} & 2295: 21 \\ & \text { ALAN }{ }_{[1]}-2299: 3 \end{aligned}$	
7.96 [1] - 2431:17	35:16, 2335:18	2334:3, 2336:14,		2399:7, 2407:15,
700 [1] - 2295:8	accepted [4]-2419:6,	2389:2	alkanes [5] - 2356:23,	$\begin{aligned} & \text { 2413:24, 2423:11, } \\ & 2105: 6 \end{aligned}$
701 [2]-2296:10	8:10, 2428:11,	ad [1] - 2421:13add $[3]-2354: 17$	$\begin{aligned} & 2378: 14,2379: 3, \\ & 2379: 7,2379: 9 \end{aligned}$	
297:6	28			analyze [1] - 2385:17   analyzed [2] - 2397:8,
70112 [1]-2299:10	accommod	2368:7, 2368:23	ALLAN [1] - 2296:9	
70113[1]-2294:21	:13	added [1] - 2369:12	ALLEN [1] - 2298:15	analyzed [2] - 2397:8, $2428: 17$
$\begin{gathered} 70130[3]-2295: 12, \\ 2296: 10.2299: 19 \end{gathered}$	accommodating ${ }_{[1]}$ 2302.25	$\begin{aligned} & \text { addition [9] - 2307:3, } \\ & 2309: 8,2311: 5, \end{aligned}$	$\begin{aligned} & \text { allow }[2]-2367: 2, \\ & 2367: 4 \end{aligned}$	$\begin{aligned} & \text { AND [2] - 2294:8, } \\ & 2298: 4 \end{aligned}$
70139 [1] - 2297:7	acc	2342:7, 2350:7,	allowed [3] - 2359:14,2397:18, 2407:8	ANDREW [1] - 2297:9
70163 [1] - 2298:7	2431:2			ANGELES [2] -
$70502{ }_{[1]}$ - 2294:25	according	2359:16, 2364:13, 2389:15, 2396:15	almost [6] - 2328:2,	$\begin{gathered} \text { 2297:16, 2298:16 } \\ \text { animal [1] - 2379:5 } \end{gathered}$
70601 [1]-2295:15	2302:17, 2354:9,	additionally [1] -2349:24	2357:6, 2383:12,	
70804 [1] - 2296:6	1:18, 2391:25,		2407:5, 2408:16,	animation [2] -2412:7, 2418:8
$75270{ }_{[1]}$ - 2298:23	94:18, 2405:2	additive [1] - 2422:2   address [1] - 2304:5	2408:25	
7611 [1]-2296:24	acc		$\begin{aligned} & \text { alone }[2]-2411: 3 \text {, } \\ & 2433: 19 \end{aligned}$	ANNA [1] - 2296:21
$77002\left[{ }_{[1]}-2298: 11\right.$	2:19, 2344:23	address [1] - 2304:5   addressing [1] -		announce [1] -
77010 [1] - 2299:5	account	$2348: 2$   adds [1] - 2354:17	altered [1] - 2378:4	$\text { annually }[1]-2394: 13$
777 [1]-2295:18			$\begin{aligned} & \text { alternative [3] - } \\ & 2326: 11,2330: 8, \end{aligned}$	
		adds [1] - 2354:17   adjusted [1] - 2418:6 adjustment ${ }_{\text {[1] }}$		annually [1] - 2394:13 anomalous [1] -
8	11,		2357:15	2416:20
		2374:5   admitted [6] - $\begin{aligned} & \text { 2301:16, 2301:17, } \\ & \text { 2383:21, 2383:22, } \end{aligned}$	$\begin{aligned} & \text { AMERICA }[3]- \\ & \text { 2294:11, 2296:13, } \\ & \text { 2297:4 } \\ & \text { American }[7]-2388: 7 \text {, } \end{aligned}$	answer [1] - 2427:13
8 [1] - 2348:19	2:20, 2382:24,			Answer [1] - 2346:11
8.57 [1]-2421:25	2420:21,			Anthony [1] - 2312:4
80 [1] - 2324:22	2421:3			ANTHONY ${ }_{[1]}$ -


	```2350:13, 2350:14, 2350:17, 2356:2, 2356:24, 2359:16, 2378:2, 2378:11, 2378:15, 2378:20, 2379:3, 2379:10 arrive [2]-2409:8, 2416:7 arrived [1] - 2306:19 arriving [1] - 2428:17 arrow [2]-2401:16, 2402:9 article [3] - 2379:13, 2380:3, 2380:7 artifact [1] - 2424:6 artifacts [1] - 2424:9 ASBILL [1] - 2298:9 ASCE [3] - 2394:14, 2394:18, 2395:17 ascertaining \({ }_{[1]}\) - 2416:19 assessing [1] - 2340:1 ASSET [1] - 2294:9 assist [1] - 2433:21 assistant [3] - 2387:9, 2388:3, 2388:20 associate [2] - 2388:6, 2388:20 associated [1] - 2373:11 Association [2] - 2393:4, 2393:6 assume [5] - 2332:8, 2355:18, 2365:25, 2378:1, 2422:23 assumed [1] - 2378:24 assumes [2]-2367:7, 2368:13 assumption [6] - 2317:20, 2368:9, 2368:11, 2369:14, 2369:17, 2369:20 attached [1] - 2305:13 attempted [2] - 2410:16, 2410:17 attempts [1] - 2410:3 attention [2]-2324:9, 2376:15 ATTORNEY [2] - 2295:21, 2296:5 auspices [1] - 2387:22 author [1] - 2391:6 authoritative [1] - 2391:11 authors [1] - 2311:1 available [2] - 2405:4, 2422:4 AVENUE [4] - 2294:21, 2295:23, 2297:23, 2298:16```	$\begin{gathered} \text { average [37] - } \\ \text { 2325:20, 2327:14, } \\ \text { 2327:18, 2327:24, } \\ \text { 2328:1, 2328:2, } \\ \text { 2328:5, 2328:8, } \\ \text { 2328:10, 2328:13, } \\ \text { 2328:17, 2328:23, } \\ \text { 2329:14, 2329:18, } \\ \text { 2329:20, 2329:21, } \\ \text { 2329:22, 2330:3, } \\ \text { 2330:9, 2330:20, } \\ \text { 2331:2, 2358:2, } \\ \text { 2359:7, 2359:8, } \\ \text { 2362:6, 2377:4, } \\ \text { 2377:9, 2377:14, } \\ \text { 2378:1, 2378:7, } \\ \text { 2398:17, 2422:2, } \\ \text { 2422:3, 2422:5, } \\ \text { 2422:17, 2432:25 } \\ \text { award }[3]-2312: 7, \\ 2312: 9 \\ \text { awarded }[1]-2394: 13 \\ \text { awards }[4]-2311: 19, \\ 2311: 22,2312: 1, \\ 2394: 8 \\ \text { aware }[6]-2325: 6, \\ 2384: 20,2409: 25, \\ 2425: 15,2425: 17, \\ 2428: 14 \\ \text { axial }[4]-2417: 8, \\ 2419: 20,2419: 21 \\ \text { axis }[6]-2316: 15, \\ 2316: 25,2380: 21, \\ 2406: 19,2406: 20 \\ \hline \end{gathered}$	```2356:23, 2357:2, 2363:21, 2363:22, 2368:7, 2370:5, 2370:18, 2372:7, 2373:11, 2373:16, 2373:18, 2373:19, 2373:23, 2382:17 Barry [1] - 2384:24 BARRY [1] - 2297:11 based [20]-2314:8, 2317:24, 2330:10, 2333:7, 2340:22, 2354:24, 2378:2, 2383:1, 2397:4, 2398:22, 2409:19, 2420:10, 2425:2, 2425:3, 2425:6, 2427:3, 2432:9, 2434:1, 2434:2 basic [3]-2314:15, 2350:25, 2417:2 BATON [1] - 2296:6 BAYLEN [1] - 2295:4 beach [1] - 2408:10 Beach [1] - 2396:24 bear [1] - 2385:17 bearing [1] - 2434:1 became [2] - 2387:9, 2400:23 become [3]-2318:10, 2318:11, 2376:24 BEFORE [1] - 2294:16 began [2]-2408:8, 2423:17 begin [3]-2304:12, 2312:19, 2418:8 beginning \([3]\) - 2422:19, 2424:9, 2429:10 behalf [2]-2303:17, 2385:1 Behavior [2] - 2306:14, 2310:10 behavior [13]-2307:6, 2309:23, 2310:16, 2310:25, 2311:3, 2311:15, 2311:21, 2312:11, 2314:12, 2334:17, 2389:25, 2394:16, 2396:1 belabor [1] - 2377:20 belong [1] - 2392:20 below [4]-2321:13, 2344:19, 2345:10, 2423:7 \\ BENSON [1] - 2296:19 \\ Benzene [1] - 2350:13 benzene [6] - 2378:25, 2379:4, 2379:23, 2380:23, 2381:3,```	


category [1] - 2409:22
caution [1] - 2333:16
CENTRE ${ }_{[1]}$ - 2298:6
CERNICH [1] -
2296:20
certain [3]-2418:1,
2421:11, 2430:13
certainly [5] - 2309:6, 2365:24, 2370:21, 2395:15, 2424:18
CERTIFICATE ${ }_{[1]}$ 2435:3
CERTIFIED [1] 2299:17
certify [1]-2435:6
cetera [3]-2389:4,
2390:3, 2415:11
CHAKERES [1] 2296:21
change [19]-2316:1, 2316:6, 2317:4, 2386:19, 2387:3, 2395:21, 2399:15, 2399:18, 2400:12, 2404:21, 2406:1, 2406:3, 2417:22, 2417:24, 2420:13, 2427:11, 2430:2, 2430:3, 2430:21 changes [7]-2302:7,
2402:2, 2404:21, 2406:5, 2416:12, 2422:9, 2430:19
changing [6]-2336:4,
2364:11, 2366:8, 2369:23, 2377:6, 2406:14
characterization [2] -
2309:24, 2314:15
characterizations [2] 2307:6, 2361:7
charge [1] - 2374:17
CHARLES [1] 2295:15
chart [6] - 2348:10,
2348:13, 2348:22, 2348:23, 2379:17, 2422:7
check [5] - 2331:9, 2369:12, 2416:19, 2423:2, 2428:5
Chemical [1] -
2305:20
chemical [1]-2351:8
chemicals [1] -
2353:10
CHICAGO [1] -
2297:12
chief $[1]$ - 2392:6
choice [3]-2352:13,

2353:7, 2361:6
choose [1] - 2340:24
chose [1] - 2371:8
chromatographic [1] 2351:19
circles [2]-2317:11,
2367:8
circulated [1] -
2301:12
citation [3]-2394:17, 2395:17
citations [5] -
2391:12, 2391:16,
2391:17, 2391:22,
2391:24
cited [5] - 2346:24,
2347:18, 2391:14, 2391:19, 2392:1
CITY [1] - 2295:8
City [1] - 2397:5
CIVIL [1] - 2296:14
Civil [2]-2392:24, 2394:12
claim [1] - 2344:20
claims [1] - 2357:15 clarification [1] 2375:13 clarifies [1] - 2381:15 clarify ${ }_{[1]}$ - 2378:16 clarity ${ }_{[1]}$ - 2377:1 classical ${ }_{[1]}-2396: 10$ clear [10]-2317:23,
2318:23, 2345:13, 2346:17, 2348:16, 2382:4, 2404:12, 2420:1, 2432:22, 2433:16
clearer [1] - 2376:24
clearly [4]-2344:25,
2348:2, 2382:1, 2423:14
CLERK [1] - 2384:13 cleverly [1] - 2400:22 client [1] - 2335:19 clients [3]-2308:14, 2308:23, 2309:12 close [11]-2319:13, 2330:4, 2335:9, 2348:5, 2356:10, 2358:24, 2374:1, 2409:5, 2424:1, 2433:9, 2433:25 closely [3]-2399:9, 2414:15, 2427:25 closer [3] - 2330:13, 2335:9, 2376:4 closest [2]-2356:15, 2356:19 clouds [1] - 2410:13 co [2]-2391:6,

2410:11
co-author [1]-2391:6 co-efficients [1] 2410:11
CO2 [3]-2351:15, 2351:16, 2351:20 coincidence [1] 2360:12
coincidentally ${ }_{[1]}$ 2360:10 cold [2]-2303:4, 2306:4
collect [1] - 2410:3 collected [30] 2317:8, 2317:24, 2317:25, 2318:24, 2318:25, 2319:1, 2319:7, 2319:13, 2319:14, 2319:23, 2320:8, 2344:18, 2345:10, 2346:19, 2346:21, 2348:4, 2348:17, 2348:20, 2349:8, 2380:2, 2385:15, 2385:16, 2411:16, 2411:18, 2411:19, 2412:21, 2413:16, 2413:19, 2413:20, 2415:16 collection [3] -
2408:8, 2408:19, 2409:16
College [4]-2385:9, 2387:25, 2388:15, 2388:24
COLLIER [1] 2297:10
color [2] - 2401:21, 2415:4
coloring [1] - 2401:15
Columbia [2]-2386:4,
2386:5
column [7]-2412:1, 2419:22, 2419:23,
2431:8, 2431:13, 2431:16, 2432:20 columns [2] -
2419:19, 2432:1 coming [10] - 2321:18, 2323:20, 2339:8, 2341:17, 2352:9, 2366:20, 2368:20, 2385:19, 2400:22 comment [6] -
2330:24, 2335:1, 2345:2, 2364:19, 2373:20, 2375:13 commenting [1] 2343:25 commission [8] -

2393:14, 2393:15, 2393:16, 2393:18, 2393:19, 2393:21, 2393:22, 2393:25 commissions [1] 2393:11 commitments [1] 2393:17 common [3] 2395:11, 2400:16, 2415:21
commonly [3] -
2398:19, 2415:23, 2424:7
compact [1] - 2407:9 compacted [2] 2408:13, 2408:15 companies [9] 2307:4, 2308:10, 2308:17, 2308:18, 2308:19, 2309:1, 2309:16, 2309:18, 2330:18 companion [1] 2326:17 COMPANY [2] 2297:4, 2299:8 company [15] 2306:25, 2307:1, 2307:2, 2307:23, 2309:15, 2309:19, 2322:21, 2325:24, 2332:9, 2361:3, 2361:10, 2390:25, 2397:3, 2397:4, 2397:7
company's ${ }_{[1]}$ 2324:18 comparable [2] 2310:3, 2352:8
compare [9] -
2323:14, 2324:11,
2324:25, 2325:9,
2326:13, 2329:12,
2329:13, 2358:25,
2381:23
compared [3] -
2325:15, 2327:2, 2328:5
compares [2] -
2334:15, 2335:4
comparison [3] -
2329:25, 2356:12, 2376:12
COMPLAINT ${ }_{[1]}$ 2294:8
complete [3] -
2391:11, 2414:1, 2422:24
completely [10] -

2305:16, 2333:4, 2340:14, 2344:20, 2348:7, 2349:25, 2355:19, 2357:6, 2395:3, 2401:18 complex [1] - 2308:9 complexity ${ }_{[1]}$ 2354:17 complicated [2] 2315:18, 2396:6 complicating [1] 2369:5
component [8] 2349:3, 2349:4, 2349:7, 2350:13, 2352:15, 2420:16, 2420:18
components [41] 2342:2, 2342:4, 2342:8, 2342:12, 2342:13, 2342:19, 2343:18, 2344:20, 2344:22, 2344:25, 2345:5, 2345:9, 2345:24, 2348:3, 2348:6, 2349:13, 2349:16, 2349:20, 2350:8, 2350:21, 2352:19, 2352:20, 2353:3, 2354:20, 2354:21, 2355:1, 2357:5, 2367:21, 2374:5, 2375:2, 2378:23, 2379:14, 2380:22, 2380:24, 2381:3, 2381:10,
2381:11, 2382:2,
2382:7, 2401:13,
2420:16
composite [1] -
2354:15
composition [7] -
2316:6, 2320:20,
2321:8, 2321:20,
2329:21, 2329:22, 2378:5
compositions [1] -
2323:5
compound [1] -
2379:4
compounds [2] -
2379:11, 2379:12
compress [1] - 2407:9
compresses [3] -
2406:18, 2406:19, 2430:12
compressibilities [1] -
2386:11
Compressibility [2] -
2390:23, 2430:20

```compressibility \({ }_{[111]}\) - 2385:18, 2385:20, 2389:7, 2389:9, 2390:2, 2390:21, 2391:4, 2396:22, 2397:2, 2397:9, 2397:13, 2398:15, 2398:17, 2398:21, 2399:1, 2399:9, 2399:12, 2399:13, 2399:14, 2399:17, 2399:23, 2400:1, 2400:5, 2400:11, 2401:23, 2402:23, 2404:17, 2404:19, 2404:20, 2405:7, 2405:12, 2405:13, 2405:14, 2405:16, 2405:25, 2406:6, 2406:10, 2406:12, 2407:1, 2407:11, 2407:12, 2407:16, 2407:19, 2407:21, 2410:2, 2410:4, 2410:18, 2410:22, 2410:24, 2411:4, 2411:6, 2411:8, 2411:11, 2414:12, 2414:16, 2415:1, 2415:21, 2416:9, 2419:4, 2419:6, 2419:9, 2419:11, 2419:17, 2420:3, 2420:5, 2420:9, 2420:13, 2420:19, 2420:21, 2421:6, 2421:9, 2421:18, 2421:20, 2421:24, 2422:1, 2422:9, 2422:12, 2422:15, 2423:4, 2423:5, 2423:6, 2423:8, 2423:18, 2423:19, 2423:24, 2424:5, 2424:9, 2424:16, 2425:1, 2425:5, 2426:3, 2426:18, 2427:12, 2427:25, 2428:12, 2428:19, 2428:24, 2430:17, 2430:22, 2430:24, 2431:2, 2431:3, 2431:13, 2431:19, 2432:10, 2432:23, 2432:24, 2433:18, 2433:23, 2434:4 compressible [3] - 2399:20, 2400:3, 2405:2 compressing [4] - 2404:1, 2407:1,```	```2407:2, 2418:6 compression [18] - 2416:5, 2416:7, 2416:21, 2416:22, 2417:1, 2417:5, 2418:3, 2418:23, 2418:24, 2419:15, 2420:2, 2420:22, 2420:25, 2421:1, 2425:4, 2425:9, 2426:13, 2427:17 computations [1] - 2361:7 compute [1] - 2431:14 COMPUTER [1] - 2299:23 computer [1] - 2361:12 concept [8] - 2314:17, 2339:2, 2339:25, 2340:13, 2340:22, 2399:12, 2399:13, 2408:4 concepts [1] - 2314:15 conclude [1] - 2324:25 concluded [2] - 2348:6, 2434:24 conclusion [9]- 2355:11, 2355:16, 2356:22, 2398:16, 2398:22, 2409:20, 2416:7, 2433:12, 2433:24 conclusions [2] - 2409:8, 2414:25 condensate [7]- 2309:25, 2368:16, 2368:20, 2368:23, 2369:2, 2369:5, 2369:9 condenses [1] - 2368:4 conditions [27] - 2315:24, 2316:22, 2322:17, 2322:22, 2327:13, 2329:12, 2333:5, 2336:3, 2336:23, 2336:24, 2337:2, 2339:5, 2340:10, 2340:12, 2358:9, 2358:15, 2359:22, 2360:3, 2367:19, 2370:19, 2370:25, 2373:25, 2405:10, 2406:14, 2426:22 conduct [4]-2310:23, 2311:2, 2322:12,```		```2409:18, 2409:21, 2409:22, 2409:23, 2409:24, 2410:7 consolidation [8] - 2407:23, 2407:25, 2408:4, 2408:23, 2409:2, 2409:6, 2409:9, 2410:2 constant [4] - 2320:19, 2321:8, 2417:20, 2429:18 constantly [1] - 2418:5 constituent [1] - 2393:7 constructed [1] - 2325:6 constructing [1] - 2314:11 consultant [6] - 2306:23, 2306:24, 2396:18, 2396:21, 2397:1, 2397:7 consulting [5] - 2306:25, 2307:22, 2309:3, 2396:16, 2397:6 contain [1] - 2312:25 contains [1]-2312:22 context [5] - 2388:7, 2393:23, 2402:17, 2403:5, 2431:9 continue [1] - 2418:21 CONTINUED [5] - 2295:1, 2296:1, 2297:1, 2298:1, 2299:1 continued [1] - 2387:23 continuing [1] - 2406:2 continuously [2] - 2328:21, 2389:19 contrast [1] - 2363:24 contribution [1] - 2312:2 contributions [2] - 2311:20, 2394:15 controlled [1] - 2354:15 convection [1] - 2431:24 conventional [7] - 2413:5, 2413:7, 2413:9, 2415:16, 2415:18, 2415:19 conversion [9] - 2305:1, 2336:7, 2336:25, 2355:1, 2370:14, 2372:25,```	



```decisions [1] - 2313:20 decrease [6] - 2405:1, 2405:2, 2418:11, 2423:6, 2423:24, 2430:5 decreased [4] - 2405:3, 2418:1, 2418:13, 2418:19 decreases [5] - 2405:1, 2409:7, 2418:10, 2418:11, 2418:12 decreasing [1] - 2423:21 deem [1]-2335:18 deep [2]-2380:14, 2381:20 DEEPWATER \({ }_{[3]}\) - 2294:5, 2298:4, 2298:5 defined [5] - 2307:20, 2317:4, 2339:8, 2399:18, 2400:11 definition [2] - 2395:23, 2402:16 deform [3] - 2386:20, 2406:13, 2406:14 deformation [6] - 2389:25, 2406:8, 2406:16, 2406:17, 2418:5, 2418:14 deforming [1] - 2407:13 deforms [1]-2407:18 degree [10]-2305:9, 2305:17, 2305:19, 2345:8, 2354:17, 2386:3, 2386:5, 2399:20, 2400:3, 2407:25 degrees [2] - 2316:23, 2408:23 deleted [1] - 2418:16 Delicious [1] - 2329:13 deliver [2] - 2324:19, 2325:24 delivered [1] - 2319:6 demonstrated [1] - 2334:12 demonstrates [1] - 2358:6 demonstrating [2]- 2327:3, 2327:19 demonstrative [14] - 2308:2, 2308:22, 2316:10, 2326:9, 2326:15, 2327:2, 2341:11, 2358:4,```	```2360:4, 2366:10, 2382:12, 2387:5, 2417:2, 2429:6 demonstratives [1] - 2301:11 DENNY [1] - 2298:15 densities [4] - 2317:11, 2318:3, 2321:9, 2321:11 density [2]-2314:23, 2315:8 department [3] - 2306:20, 2386:8, 2387:15 Department [1] - 2387:22 DEPARTMENT [2] - 2296:13, 2296:17 dependence [1] - 2345:16 depiction [2] - 2366:15, 2366:18 depicts [3]-2313:11, 2314:12, 2401:6 depletes [2]- 2404:22, 2404:23 depletion[7] - 2417:22, 2418:1, 2418:18, 2423:6, 2423:16, 2423:25 deposition [8] - 2345:23, 2346:9, 2364:11, 2365:5, 2365:7, 2366:8, 2369:21, 2425:20 depth [1]-2415:11 depths [8]-2319:13, 2344:19, 2345:10, 2348:5, 2348:19, 2415:7, 2415:9, 2415:12 derived [1] - 2324:3 describe [7] - 2304:17, 2304:25, 2305:16, 2308:2, 2308:8, 2336:12, 2385:11 described [4] - 2340:22, 2352:8, 2366:14, 2425:11 description [2]- 2313:9, 2360:7 designed [3] - 2316:11, 2322:25, 2363:20 detail [2] - 2366:17, 2416:1 details [4]-2326:6, 2334:17, 2385:21, 2399:11```		```2410:6, 2411:14, 2414:3, 2414:6, 2414:10, 2415:8, 2416:5, 2416:16, 2419:10, 2421:18, 2421:23, 2422:8, 2422:14, 2428:21, 2428:22, 2429:1, 2429:9, 2431:16, 2432:4, 2432:8, 2434:2 differential [9]- 2332:16, 2356:16, 2358:11, 2374:14, 2431:9, 2431:12, 2431:17, 2431:18, 2432:25 differentiate [1] - 2315:21 difficult \([1]\) - 2370:6 diluted [1] - 2351:9 dimensional [2] - 2365:18, 2365:24 Direct [1] - 2300:3 DIRECT [3]-2303:14, 2304:10, 2385:2 direct [13]-2300:6, 2303:17, 2361:13, 2363:6, 2366:14, 2375:12, 2376:1, 2376:20, 2382:12, 2382:15, 2384:25, 2430:18, 2433:10 direction [12] - 2403:15, 2403:17, 2403:24, 2404:11, 2406:18, 2407:2, 2407:6, 2407:7, 2407:9, 2407:13, 2418:7 directions [1] - 2404:13 directly [10] - 2369:15, 2373:2, 2381:22, 2414:11, 2420:4, 2420:12, 2420:20, 2428:2, 2430:2, 2431:14 director [1] - 2383:25 disagreement \({ }_{[1]}\) - 2344:7 discover [2] - 2322:16, 2323:25 discrete [1] - 2431:12 discuss [6] - 2307:15, 2308:6, 2312:18, 2314:15, 2385:22, 2411:16 discussed [5] - 2305:3, 2326:2,```	```2342:23, 2346:2, 2364:14 discussing [6] - 2314:2, 2345:6, 2376:12, 2402:1, 2403:6, 2419:24 discussion [1] - 2372:8 display [13]-2385:24, 2388:18, 2390:18, 2392:17, 2394:6, 2396:13, 2398:1, 2400:6, 2401:3, 2414:19, 2419:12, 2420:6, 2429:4 dissolution [11] - 2303:21, 2345:8, 2348:3, 2350:8, 2352:8, 2374:11, 2375:9, 2377:22, 2379:24, 2382:24, 2383:4 dissolve [14] - 2344:4, 2345:5, 2345:17, 2345:24, 2346:11, 2346:13, 2346:15, 2347:4, 2350:17, 2351:2, 2351:7, 2354:19, 2357:6, 2374:6 dissolved [29] - 2344:20, 2345:1, 2348:7, 2349:1, 2349:5, 2349:7, 2349:20, 2349:21, 2349:25, 2350:1, 2350:5, 2351:1, 2351:17, 2351:21, 2352:18, 2357:6, 2378:24, 2379:14, 2379:17, 2379:18, 2379:20, 2379:21, 2379:22, 2381:4, 2382:1, 2382:3, 2382:8, 2382:21 dissolves [2] - 2354:20, 2354:21 dissolving [8]- 2350:15, 2352:22, 2352:25, 2353:24, 2354:6, 2355:20, 2378:2, 2381:11 distinction [2] - 2403:6, 2409:14 DISTRICT [3] - 2294:2, 2294:2, 2294:16 divided [6] - 2399:18, 2400:12, 2400:13, 2400:19, 2400:23 DIVISION \({ }_{[2]}\) -```


2396:24, 2405:18	fine [1] - 2369:25	2309:24, 2311:15,	2387:4, 2395:22,	2373:18, 2374:2,
$\begin{aligned} & \text { fields [2] - 2323:23, } \\ & 2434: 12 \end{aligned}$	$\begin{aligned} & \text { finish [2]-2301:22, } \\ & 2303: 2 \end{aligned}$	$\begin{aligned} & \text { 2312:11, 2313:9, } \\ & 2313 \cdot 25 \text { 2314.12 } \end{aligned}$	2404:10 foregoing [1]-2435:6	$\begin{aligned} & \text { 2376:18, 2377:9, } \\ & \text { 2377:12, 2377:13, } \end{aligned}$
$\begin{aligned} & \text { FIELDS [52] - 2297:11, } \\ & \text { 2384:22, 2384:24, } \end{aligned}$	$\begin{aligned} & \text { finished [2] - 2306:17, } \\ & \text { 2319:5 } \end{aligned}$	$\begin{aligned} & \text { 2314:13, 2315:22, } \\ & \text { 2315:24, 2315:25, } \end{aligned}$	$\begin{gathered} \text { form [3] - 2315:11, } \\ 2342: 4,2354: 3 \end{gathered}$	$\begin{aligned} & \text { 2378:1, 2383:6, } \\ & \text { 2392:14 } \end{aligned}$
2385:3, 2385:24,	FIRM [1] - 2295:10	2316:1, 2321:9,	formed [1] - 2342:12	four-stage [31] -
2385:25, 2388:18,	first [40]-2303:8,	2321:20, 2327:13, $2328: 8,2328: 9$	forming [1]-2354:5	$\begin{aligned} & 2321: 21,2322: 4, \\ & 2322: 23,2329: 23, \end{aligned}$
$\begin{aligned} & \text { 2388:19, 2390:18, } \\ & \text { 2390:19, 2392:2, } \end{aligned}$	$\begin{aligned} & \text { 2304:20, 2305:11, } \\ & \text { 2307:10, 2309:6, } \end{aligned}$	$\begin{aligned} & \text { 2328:8, 2328:9, } \\ & \text { 2328:13, 2334:18, } \end{aligned}$	forms [1] - 2352:24 formulas [2]-2421	$\begin{aligned} & \text { 2322:23, 2329:23, } \\ & \text { 2331:1, 2331:4, } \end{aligned}$
2392:3, 2392:17,	3:8, 2314:2,	2336:8, 2337:1,	$2421: 10$	332:13, 2356:9
2392:18, 2394:6,	2314:10, 2314:17,	2341:4, 2341:13,	formulation [1] -	2356:17, 2357:9,
$\begin{aligned} & \text { 2394:7, 2396:13, } \\ & \text { 2396:14, 2397:11, } \end{aligned}$	$\begin{aligned} & \text { 2325:17, 2335:3, } \\ & \text { 2335:5, 2336:14, } \end{aligned}$	$\begin{aligned} & \text { 2343:16, 2344:13, } \\ & \text { 2349:5, 2352:16, } \end{aligned}$	$\begin{array}{r} 2411: 9 \\ \text { forth } 51 \end{array}$	$\begin{aligned} & \text { 2357:14, 2357:19, } \\ & \text { 2357:21, 2357:22, } \end{aligned}$
2397:21, 2398:1,	石:25, 2347:11,	2355:13, 2358:8	$2353: 21,2354: 4$	58:2, 2358:21,
2398:2, 2398:6,	48:13, 2349:3,	61:7, 2361:1	2379:5, 2397:23	58:25, 2359:3
2398:11, 2400:6,	2349:9, 2349:19,	2362:3, 2374:1	foundation [1] -	59:5, 2359:8,
2400:7, 2401:3,	352:24, 2359:24,	2382:17, 2386:23,	6:21	61:21, 2361:25,
2401:4, 2406:21,	2369:5, 2372:17,	2386:25, 2387:17	founded [1] - 2393:5	62:8, 2362:18
2406:22, 2411:21,	2372:20, 2378:3,	2389:3, 2389:12,	four [97]-2318:2,	2363:19, 2368:18,
2411:22, 2414:19, 2414:20, 2419:12,	2379:1, 2379:6,	$\begin{aligned} & \text { 2396:8, 2402:7, } \\ & \text { 2404:4, 2404:5, } \end{aligned}$	2319:14, 2320:22,	$\begin{aligned} & \text { 2368:22, 2373:18, } \\ & \text { 2374:2, 2376:18, } \end{aligned}$
$\begin{aligned} & \text { 2414:20, 2419:12, } \\ & \text { 2419:13, 2420:6, } \end{aligned}$	$\begin{aligned} & \text { 2384:11, 2386:16, } \\ & \text { 2393:15, 2402:8, } \end{aligned}$	2404:4, 2404:5, 2404:7, 2404:23,	$2320: 23,2321: 5 \text {, }$	$\begin{aligned} & \text { 2374:2, 2376:18, } \\ & \text { 2383:6 } \end{aligned}$
2420:7, 2421:15,	03:9, 2405:12	2405:8, 2405:9	21:21, 2322:4,	fourth [5]-2350:12,
2421:16, 2425:22,	2405:15, 2416:22,	17:10, 2417:14,	,	2363:16, 2391:5,
2426:6, 2426:10,	17:24, 2424:23	2423:9, 2426:13	2325:17, 2326:18,	2391:8, 2432:19
2426:12, 2426:24,	2424:24, 2430:10,	fluid's [1] - 2341:15	2327:4, 2327:15,	fraction [10]-2349:1,
2427:7, 2427:10,	2431:8	fluid-filled [1] - 2402:7	2327:21, 2327:22,	2349:2, 2349:4,
2427:16, 2429:4,	fit [2]-2339:2	fluids [13]-2304:18,	7:24, 2328:	2349:20, 2379:17,
2429:5, 2434:15,	2339:25	08:8, 2328:10,	$328: 2,2328: 10,$	79:18, 2379:2
2434:19	FITCH [1] - 2299:13	2336:2, 2357:15,	2328:16, 2328:25,	2382:1, 2382:2,
$\begin{aligned} & \text { Fields [2] - 2300:6, } \\ & 2384: 24 \end{aligned}$	five [4]-2307:4,	$\begin{aligned} & \text { 2359:22, 2360:2, } \\ & \text { 2392:12, 2395:10, } \end{aligned}$	2329:6, 2329:10,	$\begin{aligned} & \text { 2382:21 } \\ & \text { fractional [2] - } \end{aligned}$
$\begin{aligned} & \text { FIFTEENTH }[1] \text { - } \\ & 2297: 20 \end{aligned}$	$2383: 12$	$\begin{aligned} & 2405: 4,2405: 5 \\ & 2418: 2,2428: 15 \end{aligned}$	2329:15, 2329:17,	$\begin{gathered} \text { 2399:18, 2400:12 } \\ \text { fracturing [1] }-2390 \end{gathered}$
figure [17] - 2348:25,	flagged [1] - 2358:18	Fluids [1] - 2306:15	30:1, 2330:6,	frame [2]-2304:8,
2357:21, 2360:10,	flash [19]-2321:19,	FLYNN [1] - 2296:14	2330:9, 2331:1,	2304:14
2372:6, 2379:18,	28:13, 2331:1,	focus [6]-2376:15,	31:4, 2331:17,	FRANK [1] - 2295:18
2380:4, 2380:7,	2331:4, 2331:5,	2386:13, 2394:8,	2331:23, 2332:3,	friction [1] - 2424:11
2380:9, 2380:11,	59:12, 2360:11,	00:4, 2401:23,	2332:4, 2332:5,	Friday [3]-2301:23,
2380:19, 2381:9,	2361:22, 2362:1,	2416:22	2332:13, 2332:18,	2302:5, 2303:1
2381:10, 2381:12,	62:5, 2363:5,	focused [2]-2363:1,	333:9, 2333:17,	FRILOT [1] - 2298:5
2381:23, 2382:5	68:1, 2369:16,	63:15	2334:4, 2334:11,	full [2] - 2387:18,
$\begin{gathered} \text { figures }[3]-2360: 3, \\ 2379: 16,2380: 1 \end{gathered}$	$\begin{aligned} & \text { 2370:24, 2371:11, } \\ & \text { 2371:14, 2372:24, } \end{aligned}$	focuses [1] - 2392:12 focusing [1] - 2386:25	$\begin{aligned} & 2337: 25,2345: 18, \\ & 2350: 14,2354: 9 \end{aligned}$	$\begin{aligned} & 2387: 24 \\ & \text { full-time }[2]-2387 \end{aligned}$
filed [1] - 2338:4	2373:3, 2373:15	follow [2]-2333:15,	2356:9, 2356:17,	2387:24
fill [2]-2426:14,	flaws [1] - 2313:16	2372:23	2357:9, 2357:14,	fully [1] - 2428:13
2426:17	FLEMING ${ }_{[1]}$ -	follow-up [2] -	2357:19, 2357:21,	function [7] - 2410:5,
filled [4]-2351:12,	2298:22	2333:15, 2372:23	2357:22, 2357:25,	2416:12, 2423:24,
2395:9, 2401:21,	floor [2]-2370:11,	follows [3]-2303:9,	2358:2, 2358:21,	130:3, 2430:21,
2402:7	2370:16	2384:12, 2432:21	2358:25, 2359:3,	2431:14, 2432:23
filling ${ }_{[1]}$ - 2317:22	FLOOR ${ }_{[1]}$ - 2298:16	font [1] - 2432:17	59:5, 2359:8,	functioned [1] -
fills [1] - 2351:14	Flow [1] - 2306:15	footnote [1] - 2346:25	2359:9, 2361:18,	2396:18
$\begin{array}{r} \text { final }[8]-2313: 23, \\ 2320: 15,2356: 8, \end{array}$	flow [5]-2340:14,	FOR [8]-2294:20,	$\begin{aligned} & \text { 2361:21, 2361:22, } \\ & \text { 2361:25, 2362:8, } \end{aligned}$	functions [3]- $2387 \cdot 21,2389 \cdot 20$,
$\begin{aligned} & 2320: 15,2356: 8, \\ & 2356: 10,2363: 2, \end{aligned}$	$\begin{aligned} & \text { 2340:15, 2389:3, } \\ & \text { 2389:12, 2392:12 } \end{aligned}$	2295:21, 2296:3,	$\begin{aligned} & 2361: 25,2362: 8, \\ & 2362: 18,2363: 3, \end{aligned}$	$\begin{aligned} & \text { 2387:21, 2389:20, } \\ & \text { 2409:16 } \end{aligned}$
2368:7, 2418:17,	flowed [1] - 23	:3, 2298:1	63:19, 2368:18,	Fundamentals [1] -
2418:18	flowing [2]-2340:15,	2299:7	68:20, 2368:22,	2391:6
$\begin{array}{r} \text { finally }[4]-2304: 24, \\ 2311: 19,2320: 11, \end{array}$	2366:5	forcefully [1] -	$\begin{aligned} & 2368: 24,2368: 25, \\ & 2369: 1,2371: 16, \end{aligned}$	fundamentals $[1]$ 2417:3
2320:15	$\begin{aligned} & \text { fluid [53] - 2305:1, } \\ & \text { 2307:6, 2308:9, } \end{aligned}$	forces [4] - 2386:21,	2371:18, 2371:20,	

391:15	2363:25, 2371:1,	Lands [1] - 2396:24	2388:1, 2388:2	uid [1] - $2368: 5$
Kelkar [1] - 2301:11	2371:3, 2374:1	LANGAN [1] - 2297:9	led [1] - 2314	LISKOW [1] - 2297:4
kerosene [4] -	2377:12, 2411:11,	language [1]-2373:8	left [12]-2302:11	list [5] - 2301:10,
$\begin{aligned} & \text { 2426:15, 2426:16, } \\ & 2426: 22,2426: 25 \end{aligned}$	2420:10, 2421:8 Lab [3] - 2318:21,	large [11] - 2336:4,	2352:13, 2354:8, 2358:11, 2358:21,	$\begin{aligned} & \text { 2374:14, 2382:19, } \\ & \text { 2388:23, 2425:19 } \end{aligned}$
KERRY [1] - 2298	2319:16, 2398	20, 240	86:22, 2380	ted [1] - 2311:6
key [2]-2324:5,	's [1] - 2377:13	403:1, 2410:4	390:22, 2401:7	listen [1] - 2303:2
2418:3	label [2] - 2329:20	410:9, 2410:2	01:16, 2408:2	lists [2]-2301:12,
kind [20]-2305	2369:24	2419:1, 2429:2	2429:1	2380:21
2308:11, 2310:1,	Laboratories [9] 2384:1, 2385:16, 2399:10, 2409:20, 2411:14, 2419:8, 2426:14, 2429:2, 2432:7	$\begin{gathered} \text { larger }[5]-2308: 18, \\ 2377: 15,2377: 18, \\ 2394: 2,2401: 11 \\ \text { largest }[2]-2390: 25, \end{gathered}$	left-hand ${ }_{[1]}$ - 2366:22 legal [1] - 2304:2	literally [1] - 2317:7 literature [4]-2345:3,
$\begin{aligned} & 2312: 7,2315: 18 \\ & 2315: 24,2319: 20 \end{aligned}$				
21:4, 2322:17			$2345: 4,2346: 23,$	2409:25
33:23, 2324:19		420	2402:	tigation [2] - 2398:4
2328:10, 2330:20,		LASALLE [1]	less [8] - 2324:7	2400:8
2331:11, 2331:12,	laboratories [12] 2313:18, 2317:9,	$\begin{aligned} & \text { 2297:12 } \\ & \text { last }[12]-2302: 7, \end{aligned}$		litmus [2] - 2317:18,$2323: 20$
2337:20, 2354:7,			2338:2, 2352:13,	
$\begin{aligned} & \text { 2354:21, 2356:18, } \\ & \text { 2356:21 } \end{aligned}$	$\begin{aligned} & \text { 2313:18, 2317:9, } \\ & \text { 2317:12, 2318:1, } \end{aligned}$	$\begin{aligned} & \text { 2302:18, 2318:10, } \\ & \text { 2320:11, 2320:17, } \end{aligned}$	$\begin{aligned} & 2356: 9,2363: 25, \\ & 2405: 4 \end{aligned}$	$\begin{aligned} & \text { living }{ }_{[1]}-2385: 8 \\ & \text { LLC }_{[1]}-2298: 3 \end{aligned}$
KING [1] - 2301:9	$\begin{aligned} & 2318: 4,2319: 4 \\ & \text { 2321:7, 2321:14 } \end{aligned}$	$\begin{aligned} & \text { 2320:11, 2320:17 } \\ & \text { 2326:21, 2330:1, } \end{aligned}$	letter [1] - 2432:16	$\begin{aligned} & \text { LLC }_{[1]}-2298: 3 \\ & \text { loaf }[1]-2399: 25 \\ & \text { locations [2] - 2348:5, } \\ & 2414: 22 \end{aligned}$
King [1] - 2301:9	$\begin{aligned} & 2321: 7,2321: 14, \\ & 2324: 2,2329: 11, \\ & 2357: 25,2376: 17 \end{aligned}$	$\begin{aligned} & \text { 2358:4, 2376:15, } \\ & \text { 2392:14, 2432:21, } \end{aligned}$	letters [1] - 2314:20	
KIRBY ${ }_{[1]}$ - 2299:13			level [16] - 2307:19,	
KIRKLAND [3] -	Laboratories' [1] -	$\begin{aligned} & \text { 2392:14, 2432:21, } \\ & 2433: 3 \end{aligned}$	$\begin{aligned} & \text { 2313:6, 2344:19, } \\ & \text { 2385:11, 2386:22, } \end{aligned}$	logically [1] - 2332:22 London [2] - 2387:25,
97:9, 2297:14	laboratory [35] -	late [4]-2306:22,		
2297:18		$\begin{aligned} & \text { 2392:10, 2393:5, } \\ & 2396: 21 \end{aligned}$	$\begin{aligned} & \text { 2385:11, 2386:22, } \\ & 2398: 13,2398: 15, \end{aligned}$	$\begin{aligned} & \text { London [2] - 2387:25, } \\ & \text { 2388:16 } \end{aligned}$
Kleenex [1] - 2302:24	$\begin{aligned} & \text { 2317:10, 2318:2, } \\ & \text { 2327:5, 2327:11, } \end{aligned}$		$\begin{aligned} & \text { 2398:20, 2407:25, } \\ & 2409: 9,2410: 1, \end{aligned}$	look [48] - 2307:25, 2308:20, 2310:12,
knowledge [2] -		lateral [15] - 2403:17,		
2385:18, 2432:10	$\begin{aligned} & \text { 2327:5, 2327:11, } \\ & \text { 2328:2, 2329:15, } \end{aligned}$	2407:2, 2407:4,	2421:18, 2422:9,	$\begin{aligned} & \text { 2308:20, 2310:12, } \\ & \text { 2311:23, 2313:4, } \end{aligned}$
known [12]-2397:4,	$\begin{aligned} & 2328: 2,2329: 15, \\ & 2329: 17,2330: 7, \end{aligned}$	$\begin{aligned} & 2407: 6,2417: 10, \\ & 2417: 18,2418: 5, \end{aligned}$	$\begin{aligned} & \text { 2421:18, 2422:9, } \\ & \text { 2422:13, 2422:14, } \end{aligned}$	$\begin{aligned} & \text { 2311:23, 2313:4, } \\ & \text { 2316:8, 2318:18, } \end{aligned}$
03:17, 2404:6,	2331:9, 2333:21,		2427:12	2316:8, 2318:18, 2319:12, 2319:19,
9:6, 2421:3,	$\begin{aligned} & \text { 2331:9, 2333:21, } \\ & \text { 2337:8, 2356:9, } \end{aligned}$	$\begin{aligned} & \text { 2417:18, 2418:5, } \\ & \text { 2418:7, 2418:10, } \end{aligned}$	leveling [1] - 2423:20 levied [2] - 2336:22,	$2319: 20,2321: 2,$
21:10, 2421:12,	2356:15, 2358:1,	$\begin{aligned} & \text { 2418:7, 2418:10, } \\ & \text { 2418:12, 2418:19, } \end{aligned}$		2325:12, 2328:15,
11:13, 2424:7,	2362:6, 2363:9,	2418:12, 2418:19, 2419:23, 2429:13,	levied [2] - 2336:22, 2336:23	2329:2, 2330:1,
2430:19, 2430:23,		2419:23, 2429:13, 2429:15, 2429:18	LEVIN ${ }_{\text {[1] }}$ - 2295:3	2330:23, 2333:13,2333:15, 2341:8,
2430:25	$\begin{aligned} & \text { 2363:12, 2368:19, } \\ & \text { 2371:21, 2387:10, } \end{aligned}$	$\begin{aligned} & \text { laterally [2]-2403:16, } \\ & 2412: 3 \end{aligned}$	LEWIS [3]-2297:4,2298:19, 2299:3	
knows [1] - 2334:8				$\begin{aligned} & \text { 2333:15, 2341:8, } \\ & \text { 2345:14, 2347:22, } \end{aligned}$
KRAUS [1] - 2296:9	2387:13, 2387:20,	latter [1] - 2416:18	$\mathbf{L I}_{[1]}-2298: 14$	2348:10, 2348:24,
KUCHLER [2] -	$\begin{aligned} & \text { 2397:2, 2399:8, } \\ & \text { 2411:7, 2412:12, } \end{aligned}$	$\begin{aligned} & \text { LAW }_{[1]}-2295: 10 \\ & \text { law }[1]-2343: 6 \end{aligned}$	liberation [4]-2322:1,2356:16, $2358: 12$,	$\begin{aligned} & 2349: 25,2350: 24, \\ & \text { 2355:11, 2366:10, } \end{aligned}$
2299:8, 2299:9				
KY [1] - 2299:13	2416:2, 2416:17,	Lawrence [1] 2387:19	2374:1	$\begin{aligned} & \text { 2373:5, 2376:21, } \\ & \text { 2377:12, 2377:16, } \end{aligned}$
			lies [1] - 2417	
L	2418:13, 2421:24,	2387:19		2380:3, 2381:12,
LA	Laboratory [3] -	layer [3] - 2415:3 layers [2]-2415:3	18:1	$\begin{aligned} & \text { 2382:23, 2385:14, } \\ & 0287.5 \text { ग205:25 } \end{aligned}$
2294:21, 2294:25,	$\begin{aligned} & \text { 2387:20, 2398:25, } \\ & 2432: 9 \end{aligned}$	2415:8	$\begin{aligned} & \text { light }[7]-2342: 3, \\ & 2342: 8,2350: 14 \end{aligned}$	398:12, 2401:24,
2295:12, 2295:15,		leading [1] - 2392:8 leads [3] - 2422:5		2402:24, 2403:20,
$\begin{aligned} & \text { 2296:6, 2296:10, } \\ & \text { 2297:7, 2298:7, } \end{aligned}$	$\begin{aligned} & \text { laboratory's }[1] \text { - } \\ & 2362: 15 \end{aligned}$		2342:8, 2350:14, 2350:17, 2356:23,	$\begin{aligned} & \text { 2422:6, 2422:7, } \\ & 2427: 20.2431: 4 \end{aligned}$
2299:10, 2299:19	labs [11]-2317:25,	leads [3] - 2422:5, 2433:7, 2433:13	$\begin{aligned} & 2350: 17,2356: 2 \\ & 2356: 24,2378: 2 \end{aligned}$	
lab [30]-2318:16	$\begin{aligned} & \text { 2321:4, 2321:17, } \\ & \text { 2321:25, 2331:24, } \end{aligned}$	$\begin{aligned} & \text { leakage }[3]-2404: 24, \\ & 2422: 19,2433: 1 \end{aligned}$	lightest ${ }_{[1]}$ - 2379:7 likewise [2] - 2339:17	looked [21]-2301:19,
2319:22, 2320:8,		leaking [3]-2381:7,	$2352: 14$	
2320:11, 2322:10,	2332:1, 2332:3,	$\begin{gathered} \text { 2381:8, 2423:9 } \\ \text { LEASING [1] - 2294:9 } \end{gathered}$	$\begin{aligned} & \text { limine }[2]-2304: 5, \\ & 2304: 8 \end{aligned}$	$\begin{aligned} & \text { 2303:24, 2320:22, } \\ & \text { 2321:5, 2322:25, } \end{aligned}$
2322:12, 2322:19,	2361:17, 2361:25, 2362:3, 2363:3			2344:17, 2350:22,
2325:10, 2325:16,		$\begin{aligned} & \text { least }[5]-2304: 7, \\ & 2320: 22,2322: 20, \end{aligned}$	limit [2] - 2350:18,	2365:22, 2377:24,
2327:2, 2328:5,	LAFAYETTE2294:$[1]$			$\begin{aligned} & \text { 2383:1, 2390:6, } \\ & \text { 2395:4, 2411:13, } \end{aligned}$
2328:9, 2328:17,		2334:19, 2340:11	line [8] - 2302:14	
2328:18, 2329:22,	$\begin{aligned} & \text { lake [1] - 2408:10 } \\ & \text { Lake [1] - 2397:5 } \end{aligned}$	$\begin{gathered} \text { leave }[3]-2339: 16, \\ 2359: 25,2405: 6 \end{gathered}$	2308:11, 2335:13,	2416:10, 2416:14,
2330:2, 2330:10,				$\begin{aligned} & \text { 2423:1, 2424:5, } \\ & \text { 2425:1, 2427:25 } \end{aligned}$
2332:16, 2333:7,	LAKE [1] - 2295:15	leaving [1] - 2418:2 lecturer [3]-2387:14,	2381:8, 2410:12	
2359:12, 2363:3,	LAMAR [1] - 2299:4		linked [1] - 2381:22	looking [6]-2319:15,


				```2394:19, 2395:24, 2395:25, 2396:16, 2397:4, 2397:13, 2399:4, 2405:18, 2410:21, 2421:12 Medal [1] - 2312:5 medal [3] - 2394:10, 2394:11, 2394:12 media [3] - 2389:3, 2389:12, 2392:12 Media [1] - 2392:11 member [9] - 2392:21, 2392:23, 2393:1, 2393:3, 2393:4, 2393:8, 2393:18, 2393:19 members [1] - 2394:14 mention [3]-2301:19, 2403:9, 2406:7 mentioned [15] - 2307:22, 2389:24, 2402:5, 2403:23, 2407:18, 2409:13, 2410:25, 2417:20, 2419:25, 2420:12, 2420:15, 2427:22, 2429:11, 2432:3, 2432:22 mentions [1] - 2394:17 MERIT [1] - 2299:18 Merrill \({ }_{[1]}\) - 2302:14 methane [36] - 2339:14, 2339:15, 2342:3, 2349:3, 2349:8, 2349:21, 2350:16, 2352:3, 2352:12, 2352:14, 2353:6, 2353:20, 2354:4, 2354:6, 2354:8, 2354:11, 2355:18, 2355:24, 2356:1, 2356:24, 2357:7, 2359:14, 2359:15, 2359:16, 2374:4, 2378:4, 2378:10, 2378:14, 2378:20, 2378:25, 2379:2, 2379:21, 2380:23, 2381:3, 2381:19 method [13]-2318:11, 2332:13, 2332:22, 2332:25, 2353:11, 2353:15, 2354:2, 2370:19, 2370:20, 2371:9, 2375:16, 2428:9, 2433:7 methodology [2] -```


2370:17, 2372:10	Mining [1] - 2392:7	moment [1] - 2377:24	2302:11, 2302:16,	$2346: 16,2347: 2,$
methods [4] -	minus [5] - 2347:1,	money [2]-2330:18,	2303:2, 2383:23,	2347:5, 2347:8,
$\begin{aligned} & 2310: 22,2323: 8, \\ & 2332: 2,2370: 22 \end{aligned}$	$\begin{aligned} & \text { 2400:17, 2400:19, } \\ & \text { 2400:21, 2401:1 } \end{aligned}$	$2335: 16$	2384:6, 2384:9,   2384:22, 2384:24,	$\begin{aligned} & \text { 2347:9, 2347:10, } \\ & \text { 2348:10, 2348:12, } \end{aligned}$
MEXICO [1] - 2294:6	minute [3] - 2383:13,	310:1	2385:3, 2385:24,	2350:24, 2352:7,
mic [1]-2360:14	394:8, 2412:8	monograph [2]	2385:25, 2388:18,	2354:23, 2358:4
MICHAEL ${ }_{[1]}$ -	minutes [5] - 2302:18,	2310:17, 2310:19	2388:19, 2390:18,	2358:5, 2360:13
2298:13	2302:19, 2302:20,	MONTGOMERY ${ }_{[1]}$ -	2390:19, 2392:2,	2360:17, 2366:10,
micro [2]-2400:17,	2383:24, 2434:16	295:23	2392:3, 2392:17	2366:13, 2370:1,
2400:20	MITCHELL [1]	months [1] - 2318:15	2392:18, 2394:6,	2372:22, 2373:5,
microscope [3] -	2295:3	moot [1] - 2326:22	2394:7, 2396:13,	2373:7, 2375:7,
2395:4, 2401:11,	mix [2] - 2341:19,	MORGAN [2]	2396:14, 2397:11,	2376:9, 2376:11,
2403:2	2343:6	295:17	2397:14, 2397:21,	2380:4, 2380:6,
$\begin{gathered} \text { microsip [4] - 2400:9, } \\ \text { 2400:10, 2400:18, } \end{gathered}$	mixes [1] - 2343:17   mixture [3] - 2381:6	MORNING [1] -   2294:15	$\begin{aligned} & \text { 2398:1, 2398:2, } \\ & \text { 2398:6, 2398:11, } \end{aligned}$	$\begin{aligned} & \text { 2382:11, 2382:14, } \\ & \text { 2383:9, 2383:11, } \end{aligned}$
$2400: 25$	2401:22, 2402:6	morning [10]	2400:6, 2400:7,	2383:16, 2383:20
microsips [14] -	mode [2]-2406:8,	301:18, 2301:23,	2401:3, 2401:4,	multi [25]-2322:12, 2324:6, 2336:19
2398:18, 2398:19, 2399:6, 2399:24,	$\begin{aligned} & \text { 2407:19 } \\ & \text { model }[60]-2304: 17, \end{aligned}$	$\begin{aligned} & \text { 2303:16, 2304:12, } \\ & 2326: 20,2337: 5 \end{aligned}$	$\begin{aligned} & \text { 2406:21, 2406:22, } \\ & \text { 2411:21, 2411:22, } \end{aligned}$	$\begin{aligned} & \text { 2324:6, 2336:19, } \\ & \text { 2340:6, 2340:10, } \end{aligned}$
$\begin{aligned} & 2399: 6,2399: 2 \\ & 2400: 2,2400: 1 \end{aligned}$	$\begin{array}{r} \text { model [60] - } 230 \\ 2304: 18,2304 \end{array}$	326:20, 2337:5,	2414:19, 2414:20,	2340:14, 2340:15,
2416:8, 2422:1,	2308:11, 2313:8,	2383:13	2419:12, 2419:13,	40:17, 2340:20,
2422:5, 2425:7,	2313:15, 2313:23,	most [29] - 2309:19,	2420:6, 2420:7,	340:21, 2340:24,
2427:19, 2431:17,	2314:3, 2314:4,	2309:23, 2311:11,	2421:15, 2421:16,	2354:15, 2358:13,
2431:18, 2433:8	2314:6, 2314:9	319:5, 2323:24,	2425:18, 2425:22, 2426:6, 2426:12,	2361:24, 2362:4, 2362:24, 2363:5,
$\begin{gathered} \text { mid }[3]-2378: 7, \\ 2378: 8,2378: 2 \end{gathered}$	2314:11, 2315:17,	2324:3, 2324:17,	$\begin{aligned} & \text { 2426:6, 2426:12, } \\ & \text { 2426:19, 2426:24, } \end{aligned}$	$\begin{aligned} & \text { 2362:24, 2363:5, } \\ & \text { 2363:15, 2363:16, } \end{aligned}$
\%id-case [3]-2378:7,	2317:16, 2318:13	$336: 7,2336: 1$	2427:6, 2427:7,	364:1, 2364:7,
2378:8, 2378:24	20:24, 2323:13,	340:25, 2341:2,	2427:10, 2427:14,	364:14, 2368:12,
Middle [1] - 2397:9	2323:14, 2323:22,	341:10, 2352:22,	2429:4, 2429:5	68:18
middle [14] - 2319:6,	324:12, 2324:13,	52:24, 2357:22,	2434:15, 2434:19	multi-phase [3] -
2320:5, 2320:14,	2324:25, 2325:1,	59:21, 2360:2,	MS [93] - 2295:19,	2340:14, 2340:15,
2349:23, 2349:24,	25:2, 2325:7,	60:4, 2361:12,	2301:9, 2302:22,	2340:20
2355:19, 2356:4,	2325:9, 2325:15,	2386:18, 2391:10,	$\begin{aligned} & 2302: 24,2303: 6, \\ & 2303: 15,2304: 4, \end{aligned}$	multi-stage [22] - 2322:12, 2324:6,
$\begin{aligned} & \text { 2356:5, 2378:11, } \\ & \text { 2378:13, 2382:19, } \end{aligned}$	$\begin{aligned} & \text { 2328:5, 2331:3, } \\ & \text { 2331:4, 2335:19 } \end{aligned}$	2395:11, 2399:14,	2303:15, 2304:4, 2304:11, 2304:14,	$\begin{aligned} & \text { 2322:12, 2324:6, } \\ & \text { 2336:19, 2340:6, } \end{aligned}$
2384:17, 2417:12,	336:1, 2336:10,	411:5, 2430:18	2304:16, 2307:25,	340:10, 2340:17,
2421:23	2336:12, 2336:14,	Mother [7] - 2339:11,	$\begin{aligned} & \text { 2308:1, 2308:20, } \\ & \text { 2308:21, 2310:12, } \end{aligned}$	$\begin{aligned} & 2340: 20,2340: 21, \\ & 2340: 24,2354: 15, \end{aligned}$
midst [1] - 2359:3   might [14]-2333:4	$\begin{aligned} & \text { 2337:4, 2337:15, } \\ & \text { 2337:17, 2337:20 } \end{aligned}$	$\begin{aligned} & \text { 2339:13, 2339:23, } \\ & \text { 2341:25. 2342:7. } \end{aligned}$	$\begin{aligned} & \text { 2308:21, 2310:12, } \\ & \text { 2310:13, 2311:23, } \end{aligned}$	$\begin{aligned} & \text { 2340:24, 2354:15, } \\ & \text { 2358:13, 2361:24, } \end{aligned}$
2333:5, 2334:4,	2338:16, 2341:10,	$352: 11,2353:$	2311:24, 2312:10,	62:4, 2362:24,
2368:16, 2369:9,	2342:25, 2343:3,	motion [6]-2303:20,	2312:13, 2312:16,	363:5, 2363:15,
2377:8, 2379:16,	2343:11, 2343:12,	304:5, 2304:8,	2312:17, 2313:4	363:16, 2364:1,
2379:25, 2395:23,	2343:15, 2349:10,	3338:4, 2389:25	2313:5, 2316:8	2364:7, 2364:14,
2399:21, 2403:7,	60:22, 2362:13,	motions [1] - 2312:13	2316:9, 2316:16	2368:12, 2368:18
2406:23, 2432:13	2362:14, 2362:23,	mottled [1] - 2401:15	2316:17, 2318:18, 2318:19, 2319:19,	multiple [4]-2332:19, 2334:7, 2340:13
mike ${ }_{[1]}-2302: 16$	2364:5, 2364:6,	move [8]-2338:21,	$\begin{aligned} & \text { 2318:19, 2319:19, } \\ & \text { 2319:21, 2319:25, } \end{aligned}$	2334:7, 2340:13 multiple-stage ${ }_{[1]}$ -
MILLER [1] - 2298:6	2372:11	2338:23, 2359:4,	2320:1, 2321:2,	$\begin{aligned} & \text { multiple-stage }[1] \text { - } \\ & \text { 2332:19 } \end{aligned}$
$\begin{aligned} & \text { million [2]-2400:2, } \\ & 2400: 18 \end{aligned}$	modeled [2] - 2337:8, 2362:17	$\begin{aligned} & \text { 2367:8, 2375:2, } \\ & 2383: 18,2388: 8, \end{aligned}$	2321:3, 2325:12,	multiplying [1] -
millions [2]-2408:7,	modeling [6] -	2428:8	$\begin{aligned} & \text { 2325:13, 2326:8, } \\ & \text { 2326:15, 2326:16, } \end{aligned}$	2431:22   MUNGER [1]
$\begin{gathered} 2408: 11 \\ \text { mind }[4]- \end{gathered}$	2336:3, 2341:3,	moved [4] - 2302:12,	2326:19, 2326:24,	$2298: 13$
2424:3, 2434:1,	$2369: 1$	2387:25	2326:25, 2329:2	must [2]-2405:6,
2434:6	models [6]-2308:7,	movement [1] -	$\begin{aligned} & \text { 2329:3, 2333:13, } \\ & \text { 2333:14, 2338:3, } \end{aligned}$	2420:21
mineral [6] - 2401:14, 2402:6, 2402:15,	$\begin{aligned} & 2309: 4,2314: 19, \\ & 2315: 4,2318: 11, \\ & 2327: 2 \end{aligned}$	$\begin{aligned} & \text { 2365:24 } \\ & \text { moves [1] - 2316:1 } \end{aligned}$	$\begin{aligned} & 2338: 9,2338: 21, \\ & 2338: 24,2343: 23 \end{aligned}$	N
$\begin{aligned} & \text { 2420:17 } \\ & \text { minerals }[2]- \\ & \text { 2401:13, 2402:14 } \end{aligned}$	$\begin{aligned} & \text { molecules [3] - } \\ & 2339: 21,2352: 12, \\ & 2352: 14 \end{aligned}$	$\begin{aligned} & \text { 2303:5, 2303:6, } \\ & 2434: 17 \\ & \text { MR }[61]-2301: 18, \end{aligned}$	$\begin{aligned} & \text { 2343:24, 2345:15, } \\ & \text { 2345:19, 2345:22, } \\ & \text { 2345:25, 2346:4, } \\ & \text { 2346:5, 2346:8, } \end{aligned}$	N.W ${ }_{[1]}-2297: 20$ name $[7]-2303: 10$, $2338: 19,2384: 13$,



2294:5	2434:8	originally [4]-2305:6,	paper [2]-2347:22,	peer-reviewed [5] -
's [1] - 2341:19	ONE [1]-2297:5	326:20, 2349:4,	2348:11	0:8, 2390:11
oil/water [1] - 2375:11	one-stage [2] -	2351:12	paper's [1]-2348:2	90:17, 2391:17
Oklahoma [1] - 2305:7	2328:24, 2356:16	ORLEANS ${ }_{\text {[8] }}$	papers [16]-2311:6,	391:23
OLSON ${ }_{[1]}-2298: 13$	one-week [1] - 2307:5	294:6, 2294:21	2311:9, 2311:11,	nalties
ON ${ }_{[1]}$ - 2294:6	ones [1] - 2342:8	95:12, 2296:1	390:7, 2390:8,	2336:22
one [112] - 2307:5,	ongoing [1] - 2348:20	297:7, 2298:7,	39009, 2390:11,	Pencor [ [5] - 2318
2307:21, 2308:17,	operations [1] -	99:10, 2299	2390:16,	2322:2, 2332:16,
2309:20, 2310:9, 2310:16, 2311:1,	2364:23 operators [1]	otherwise [1] 2354:19	$\begin{aligned} & \text { 2391:13, 2391:19, } \\ & 2391 \cdot 252390 \cdot 1 \end{aligned}$	2358:12, 2361:17
2310:16, 2311:1,	operators 2422:24	$\begin{gathered} 2354: 19 \\ \text { outline }[1]- \end{gathered}$	$\begin{aligned} & \text { 2391:25, 2392:1, } \\ & \text { 2421:11, 2431:1, } \end{aligned}$	pending [1] - 2312:13   PENNSYLVANIA [1] -
2318:4, 2318:8,	on [11] - 2313:8,	outlines [1] - 2402:1	2431:25	97
2318:21, 2319:16,	2330:16, 2334:24,	outlying [1] - 2410:19	paragraph [1] -	PENSACOLA ${ }_{[1]}$ -
2319:22, 2321:19,	2336:6, 2343:10,	outs [1] - 2301:10	2376:10	2295:5
2326:17, 2327:6,	6:17, 2347:11	outside [1] - 2417:10	param	pentane [9]-2355:19,
2328:24, 2328:25,	2:18, 2359:20	outward [1] - 2404:10	2399:15, 2404:	2356:1, 2356:
$\begin{aligned} & \text { 2330:5, 2334:11, } \\ & \text { 2335:4. 2335:5. } \end{aligned}$	2410:21, 2414:4 opinions [20-	outwards $[1]-2404: 8$	2405:8	:7, 2359:15,
23338:10, 2339:5,	$\begin{array}{r} \text { opir } \\ 23 \end{array}$	overall [3] - 2334:17,   2402:16, 2420:20	$\begin{array}{\|l} \text { parameters [1 } \\ \text { 2432:4 } \end{array}$	2378:15, 2378:20
2340:8, 2340:9,	2:22, 2312:25	ov	paramount [1] -	pentanes [1] - 2350:4
2340:11, 2341:2	3:6, 2314:2,	417:11	2337	people [6] - 2303:4,
2349:10, 2349:22,	2338:5, 2355:8,	418:9	part 227 - 2342	2308
$\begin{aligned} & \text { 2354:9, 2356:16, } \\ & \text { 2358:19, 2358:21, } \end{aligned}$	23	19:21, 2429:12	2345:2, 2361:	2410:10, 2410:16,
$\begin{aligned} & 2358: 19,2358: \\ & 2363: 1,2363: 1 \end{aligned}$	2385:22, 2397:18,	242	2365:23, 2381:14,	2410:17
2363:19, 2365:2	399:11	overestimation   2376:16, 2377:	87:23, 2389:20,	2401:1
2365:11, 2367:16,	416:3	erpredicted ${ }^{4}$	2391:	PERA [8] - 2307:1,
2367:17, 2370:4,	27:12, 2428:1	25:18, 2326:1	7, 2396:2	2307:23, 2308
2371:21, 2373:24,	opposed [6] -	2326:7, 2376:2	2407:	2308:5, 2308:23,
$\begin{aligned} & \text { 2375:13, 2379:19, } \\ & \text { 2383:2.2386:24, } \end{aligned}$	2351:25, 2353:10	overpredicting [2] -	2411:9, 2423:16,	2309:9, 2356:7,
2389:4, 2390:6	2374:23, 2376:2		2428:2, 2430:8	PERA's [2]-2308:14,
2394:8,	osite	2330:14, 2330:15,	22:	2335
2395:3, 2396:7,	404:13, 2404:14	34:	partial [1] - 2350:8	percent [60]-2311:16,
2399:20, 2400:3,	optimal [1] - 2333:6	35:17, 2337:2	partially [] - 2348:7,	2324:17, 2324:23,
2400:13, 2400:18,	option [1]-2357:15	7:2	2350:1, 2382:7	2325:4, 2325
$\begin{aligned} & \text { 2400:21, 2400:23, } \\ & \text { 2401:9, 2401:15, } \end{aligned}$	orange [2]-2383:6,	overprediction's [1] -	particular [13]	2325:21, 2327:19,
2402:11, 2402:19,		2337:2		
2405:25, 2406:4,	order [13] - 2302:12,	2337:17, 2338:1	2393:12, 2398:24,	30:3, 233
2406:5, 2406:19,	11:2, 2338:8,	oversimplifying	2401:14, 2405:21,	34:20, 2335
2408:2, 2409:14,	2338:15, 2343:14,	333:1	2415:10, 2420:24,	2335:14, 2335:15,
2409:21, 2410:8, 2410:9, 2410:15,	2345:4, 2347:19,	overview [2]-2313:6,	2428:20, 2429:17	:18, 2346:25,
2410:9, 2410:15, 2410:24, 2411:1,	$7: 17,2400: 15$	386:2	particularly [3] 2323:16, 2363	2347:17, 2349:10,
2413:8, 2413:13	44.4, 2418.4	-2363:17	2422:12,	
2413:24, 2416:10,	ordinary [2]-2370:19,	oxygen [3] - 2351:15,	parts [1]-2317:23	2356:9, 2357
2418:8, 2419:3, 2419:5, 2419:19,	34:7	2351:17, 2351:21	pass [1]-2384:7	57:4, 2358:24,
2420:21, 2421:4,				
2421:22, 2421:23,	$\begin{aligned} & 2393: 2,2 \\ & 2393: 12 \end{aligned}$	P	past [4]-2361:11	62:12, 2362:16,
$\begin{aligned} & \text { 2422:14, 2423:13, } \\ & \text { 2423:14, 2423:15, } \end{aligned}$	organizations [1] -		$2390: 5,2396: 17,$	2362:18, 2362:20, 2364:2, 2376:3,
2424:8, 2425:20,		$\begin{aligned} & \text { e[7]-2312:23, } \\ & 312: 24,2346: 9, \end{aligned}$	path [1]-2317:4	376:6, 2376
2426:2, 2428:6,	93:25, 2394:2	46:16, 2346:20,	PAUL [1] - 2297:10	2377
2429:21, 2430:8,	94:3	76:22, 2398:3	pay ${ }^{\text {[1] - } 2324: 9}$	2377:9, 2377:13
$\begin{aligned} & \text { 2430:23, 2430:25 } \\ & \text { 2431:18, 2432:2. } \end{aligned}$	orient [2] - 2335:24,	panel [2]-2421:22,	peculiar[1]-2416:20	
2432:3, 2432:4,	2380:10			
2432:5, 2434:4,	original $[3]-2349: 4$ $2381: 8,2426: 7$	PAPANTONIO $[1]$ - $2295: 3$	2390:11, 2390:17, 2391:17, 2391:23	2379:8, 2379:23,




$\begin{aligned} & \text { 2360:12 } \\ & \text { purpose }[3]-2337: 1, \\ & 2347: 25,2421: 14 \end{aligned}$	R	2315:10, 2315:19, 2315:23, 2322:13, 2323:6, 2324:5,	$\begin{aligned} & \text { redirect [2]-2383:10, } \\ & 2383: 11 \end{aligned}$	relates [4]-2308:5, 2308:7, 2314:18, 2399:13
	Rachel [1] - 2301:9 RAFFERTY [1] 2295:3 raised [3] - 2426:1, 2426:21   ran [2]-2361:18,			
purposefully [1] - $2418: 13$		$\begin{aligned} & 2323: 6,2324: 5, \\ & 2339: 3,2340: 14, \end{aligned}$	$\begin{aligned} & \text { reduced }[2]-2349: 10, \\ & 2378: 5 \end{aligned}$	relations [1] - 2419:7
purposes [4] -		365:4, 2367:9	reduction [9] -	2403:20
2301:19, 2302:8,		2372:8, 2403:6	2349:11, 2349:13,	relative [4]-2314:23,
2334:14, 2385:19   pushes [1] - 2403:14	$\begin{aligned} & \operatorname{ran}[2]-2361: 18, \\ & 2425: 16 \end{aligned}$	$\begin{aligned} & 2410: 13,2411: 3 \\ & 2419: 1,2432: 24 \end{aligned}$	$2350: 18,2355: 21$	$\begin{aligned} & \text { 2334:20, 2355:2, } \\ & 2378: 5 \end{aligned}$
put [12]-2314:13,	range [18]-2316:5,	REALTIME [1] -   2299:17	$\begin{aligned} & \text { 2378:13, 2378:19, } \\ & 2379: 9 \end{aligned}$	relatively [1] - 2334:19
$\begin{aligned} & \text { 2319:2, 2326:8, } \\ & \text { 2328:16, 2328:20, } \end{aligned}$	$\begin{aligned} & 2327: 6,2350: 2, \\ & \text { 2356:3, 2360:8, } \end{aligned}$	$\begin{aligned} & \text { 2299:17 } \\ & \text { reason }[4]-2303: \end{aligned}$	$\begin{aligned} & \text { 2379:9 } \\ & \text { refer [2] - 2346:7, } \end{aligned}$	release [1]-2352:3   released [2] - 2304:20,
2329:22, 2330:2,	$2377: 8,2377: 1$	2328:20, 2369:6	$2405: 19$	2315:5
2346:1, 2359:2,	7:18, 2383:6	7:3	reference [8]-2309:8,	relevant [6] - 2396:4,
60:14, 2366:11,	2395:15, 2410:14,	reasonable [2]	10:16, 2340:5	7:16, 2407:20,
2421:15	10:19, 2422:17,	2423:3, 2428	46:18, 2381:14	414:11, 2414:17,
puts [2]-2328:21,	22:21, 2424:15,	reasonably [2]-	2391:12, 2394:22,	2423
2329:23	2432:12, 2432:13	2334:18, 2432:13	2395:17	reliability
putting [1] - 2338:19	33:6	reasons [4]-2352:5,	referenced [7]	2337:11
$\begin{gathered} \text { PVT }[11]-2307: 18, \\ 2314: 17,2314: 18, \end{gathered}$	ranged [1] - 2359:12   rare [1] - 2415:24	$\begin{aligned} & \text { 2363:19, 2385:22, } \\ & 2397: 23 \end{aligned}$	$\begin{aligned} & \text { 2312:4, 2318:16, } \\ & \text { 2326:7, 2347:23, } \end{aligned}$	$\begin{aligned} & \text { reliable } 33 \text { - 2363:12, } \\ & 2411: 5 \end{aligned}$
2314:24, 2315:2,	rate [5] - 2315:5	rebuttal [4]-2375:22,	357:14, 2381:13,	reliance [2] - 2345:19,
2315:16, 2317:6,	2418:1, 2418:11	2426:5, 2426:21,	383:17	2346:20
2318:11, 2323:4,	2418:14, 2429:20	2427:2	references [1] -	relied [8]-2318:16,
2334:23, 2334:24	rates [3]-2304:19,	recalculated [1]	2310:22	2320:25, 2323:1
	3:12, 2408:24	2344:23	referred [5] - 2402:13,	7:25, 2379:13,
Q	$\begin{aligned} & \text { rather }[2]-2340: 20, \\ & 2425: 16 \end{aligned}$	$\begin{gathered} \text { received }[11] \text { - } \\ 2305: 20,231 \end{gathered}$	$\begin{aligned} & 2402: 15,2402: 16, \\ & 2415: 13,2424: 8 \end{aligned}$	$\begin{aligned} & 2380: 8,2416: 4, \\ & 2419: 16 \end{aligned}$
quantification [2] 2347:14, 2355:17	ratio [8]-2432:6	$\text { 12:1, } 2319: 2$	referring $[7]$ -	rely [3]-2320:23,
quantifies [3] -	$\begin{aligned} & \text { 2432:7, 2432:8, } \\ & \text { 2432:12, 2432:15, } \end{aligned}$	$\begin{aligned} & 2386: 3,2386: 4 \\ & 2386: 7,2386: 1 \end{aligned}$	$\begin{aligned} & 2365: 25,2379: 10 \\ & 2379: 12,2386: 24 \end{aligned}$	$\begin{gathered} 2345: 3,2347: 18 \\ \text { relying }[2]-2314: 6, \end{gathered}$
2345:8, 2399:15,	$2432: 18,2433: 7$	394:9, 2394:10	2413:25, 2414:24,	$2380: 16$
2404:20	raw [4]-2419:14,	394:11	2419:20	remain [1]-2368:14
quantify [11] - 2315:1,	2421:5, 2423:18	receiving [1] - 2387:9	refers [4] - 2409:3,	remaining [3]
2316:23, 2345:16,	2430:24	recently [1]-2309:25	2412:13, 2412:15,	2301:14, 2302:19,
2347:11, 2347:19,	RE [2] - 2294:5	recess [4]-2383:13,	2431:9	2302:20
2350:9, 2355:7,	2294:8	2383:14, 2384:23,	reflect [1] - 2308:22	remember [3] -
2355:8, 2368:20,	reach [2] - 2347:1	434:21	reflected [1] - 2424:22	8:11, 2359:7
2369:8, 2398:20	$2414: 25$	recognition [1]	reflecting [1]-2341:1	2364:9
quantifying [4]-	reached [3]-2305:3,	2312:1	refresh [1]-2365:5	remind [2]-2303:19,
$\begin{aligned} & 2335: 7,2344: 11, \\ & 2355: 12,2405: 8 \end{aligned}$	2312:19, 2355:12	recognize [4] -	REGAN [1] - 2297:11	2303:22
2355:12, 2405:8 quantitative [1] -	reaching ${ }_{27}$ - 2356:9,	$\begin{aligned} & \text { 2318:20, 2348:13, } \\ & 2373: 8,2380: 7 \end{aligned}$	regard [1] - 2348:9   regarded [1] - 2391	remove [8]-2342:15,   2342:16, 2344:25,
2428:3	$\text { read }[7]-2345:$	recognized [1]	regarding [2] -	2349:15, 2352:1
quantitatively ${ }^{[1]}$	2357:18, 2365:16,	$2311: 19$	$2338: 4,2428: 18$	2354:25, 2378:15
2348:2	2376:14, 2380:19,	recommend [1]	regardless [2]	removed [6] -
quantities [1]	2425:10, 2425:11	2337:13	$2354: 3,2362: 12$	2344:22, 2356:23,
2304:20	reader [2]-2388:4,	recommended [4]	region [3]-2401:8	2378:3, 2378:8,
questioned [1] -	2388:5	2329:1, 2337:1	$\text { 2403:1, } 2415: 5$	2378:14, 2378:21
2346:23	real [6] - 2336:10,	2341:9, 2357:9	REGISTERED [1]	removing [6] -
questioning [1] - 2347:2	$2336: 11,2341: 3,$	recommending ${ }_{[2]}$ 2340:1, $2372 \cdot 24$	2299:18	2349:12, 2352:9,
questions [4] -	$\begin{aligned} & \text { 2341:4, 2344:8, } \\ & 2355: 6 \end{aligned}$	$\begin{gathered} 2340: 1,2372: 24 \\ \text { record }[5]-2303: 11, \end{gathered}$	regular [1] - 2325:25   regularly [1]-2309:25	$\begin{aligned} & 2357: 4,2374: 4 \\ & 2374: 5,2424: 25 \end{aligned}$
2360:13, 2372:24,	realistic [6] - 2304:24,	2303:16, 2304:4,	relate [4]-2307:15,	RENAISSANCE ${ }_{[1]}$ -
2383:9, 2394:21	2304:25, 2313:24,	2384:14, 2427:8	2314:3, 2337:5,	2298:22
quite [1]-2313:16	2336:1, 2336:17,	RECORDED ${ }_{[1]}$	$2430: 21$	rendered [1] - 2355:9
quote [3]-2359:20,	2341:11	2299:23	$\text { related }[7]-2303: 21 \text {, }$	$\text { repeat }{ }_{[1]}-2353: 12$
2372:12, 2394:17	reality [3]-2335:14,	red [4] - 2316:13,	2396:16, 2399:9,	repeated [1] - 2430:13
	$2360: 7,2381: 12$	2348:25, 2381:16,	2414:15, 2421:12,	repeatedly [1] -
	realized [1] - 2383:16		2424:11, 2427:25	2400:8

> rephrase [2] 2346:22, 2347:5 replicate [1] - 2313:17 report [55]-2305:13, 2312:21, 2312:23, 2320:8, 2320:11, 2320:15, 2320:17, 2320:20, 2321:5, 2326:12, 2328:9, $2328: 22,2329: 5$, $2345: 8,2345: 21$, $2346: 1,2346: 3$, $2346: 4,2346: 6$, $2346: 10,2346: 16$, $2346: 23,2346: 25$, $2347: 14,2347: 19$, $2355: 17,2356: 7$, $2357: 9,2373: 9$, $2375: 19,2375: 21$, $2375: 22,2376: 5$, $2376: 19,2377: 2$, $2377: 6,2377: 25$, $2383: 1,2383: 17$, $2383: 19,2397: 22$, $2397: 23,2398: 3$, $2398: 7,2398: 16$, $2405: 11,2408: 3$, $2423: 15,2425: 7$, $2425: 11,2426: 5$, $2426: 8,2426: 20$, $2428: 14$
reported [2] - 2327:9, 2425:6
REPORTER [3] 2299:17, 2299:17, 2299:18
Reporter [1] - 2435:5 reporting [2] 2328:17, 2348:16 reports [14]-2319:5, 2319:22, 2320:2, 2320:4, 2320:23, 2321:5, 2322:4, 2327:16, 2327:17, 2328:8, 2345:17, 2373:11, 2398:23 represent [7] 2358:20, 2415:7, 2415:9, 2418:1, 2429:10, 2429:14, 2429:20
representation [1] 2430:7
representative [2] 2360:4, 2384:1 represented [4] 2309:18, 2402:18, 2432:13, 2432:16 representing [2] 2419:19, 2419:20
represents [11] 2313:24, 2401:10, 2403:1, 2412:1, 2415:6, 2417:13, 2417:15, 2417:17, 2419:23, 2429:21, 2430:10
reproduce [1] 2334:17
request [1] - 2304:6 requested [2] 2322:11, 2333:16 research [7] 2387:10, 2387:12, 2389:16, 2389:18, 2389:21, 2390:5, 2394:15
researchers [1] 2394:13
reserve [1] - 2303:25
Reservoir [1] 2306:15 reservoir [115] 2304:18, 2305:1, 2307:17, 2307:19, 2308:8, 2313:9, 2313:25, 2314:13, 2315:2, 2316:2, 2316:20, 2317:1, 2317:9, 2321:14, 2321:20, 2322:5, 2323:25, 2327:12, 2336:2, 2336:8, 2337:1, 2339:4, 2340:7, 2340:16, 2341:1, 2341:4, 2341:13, 2341:15, 2343:16, 2344:13, 2348:17, 2349:5, 2352:10, 2352:16, 2355:13, 2358:8, 2358:14, 2358:15, 2361:14, 2363:21, 2370:15, 2371:6, 2373:16, 2382:17, 2385:15, 2385:20, 2389:6, 2395:12, 2395:16, 2396:24, 2398:14, 2398:17, 2398:18, 2399:2, 2401:21, 2401:24, 2402:25, 2403:3, 2403:4, 2403:12, 2403:14, 2403:19, 2404:24, 2404:25, 2405:4, 2405:5, 2405:9, 2406:8, 2406:13, 2407:3, 2407:4, 2407:6, 2407:18, 2408:1,

2408:9, 2410:23, 2410:25, 2411:7, 2411:12, 2411:15, 2411:17, 2411:18, 2411:25, 2412:6, 2412:9, 2412:18, 2412:21, 2412:25, 2413:3, 2413:17, 2413:19, 2413:21, 2415:2, 2415:14, 2415:17, 2415:20, 2416:9, 2417:22, 2417:23, 2418:2, 2418:19, 2422:12, 2422:24, 2423:9, 2423:10, 2424:23, 2425:16, 2426:3, 2427:12, 2433:1, 2434:5
reservoir's [7] 2411:10, 2419:16, 2421:20, 2425:5, 2428:18, 2433:18, 2433:22
reservoirs [1] - 2397:9 resistivity [1] -
2414:14
RESOURCES ${ }_{[1]}$ 2296:18
respect [16] - 2304:8,
2307:10, 2308:5, 2314:16, 2323:19, 2324:12, 2326:4, 2338:11, 2338:25, 2341:12, 2342:24, 2355:12, 2355:17, 2393:10, 2414:7, 2430:7
respond [1] - 2357:8 responding [2] -
2338:11, 2426:20 response [2] 2365:10, 2419:25 restricted [1] 2394:14
result [7]-2327:14, 2330:10, 2339:21, 2343:5, 2368:16, 2429:21, 2431:25 resulted [6] - 2347:15, 2349:13, 2350:18, 2367:18, 2373:23, 2378:5
results [6]-2319:16, 2358:16, 2419:15, 2421:8, 2427:17
retention [1] - 2385:12 retrieved [1] - 2415:19 returned [1] - 2388:15 revenues [1] - 2324:3

```
review [4] - 2304:21,
 2357:8, 2416:2,
```

    2425:8
    reviewed [6] - 2390:8,
2390:11, 2390:17,
2391:17, 2391:23,
2428:13
RICHARD [2] -
2296:22, 2299:4
Richard [1] - 2397:14
RICHESON [1] -
2299:9
RIG [1] - 2294:5
right-hand [7] -
2316:14, 2320:13,
2366:19, 2367:24,
2380:11, 2380:25,
2383:6
rigid [1] - 2399:23
rigorous [1] - 2375:15
RMR [1] - 2299:17
Robert [3] - 2384:15,
2384:25, 2385:6
ROBERT [5] -
2297:18, 2297:23,
2300:6, 2384:11,
2384:17
ROBERTS [1] -
2298:10
ROBIN [1] - 2295:7
Rock [8] - 2391:6,
2392:7, 2393:3,
2393:6, 2393:7,
2393:9, 2393:10,
2393:14
rock [78] - 2385:9,
2386:17, 2387:1,
2387:16, 2388:1,
2388:5, 2388:17,
2389:2, 2389:3,
2389:6, 2389:10,
2389:11, 2389:16,
2389:22, 2389:23,
2390:4, 2390:20,
2390:21, 2391:11,
2392:8, 2393:23,
2394:1, 2394:4,
2394:9, 2394:19,
2395:12, 2396:16,
2397:4, 2397:12,
2397:13, 2399:4,
2402:14, 2402:15,
2402:25, 2403:3,
2403:9, 2403:12,
2403:13, 2404:11,
2405:18, 2406:17,
2406:19, 2407:1,
2407:5, 2407:8,
2407:13, 2407:18,
2407:23, 2408:1,

2408:4, 2408:18, 2409:3, 2409:23, 2410:6, 2410:21, 2410:23, 2411:16, 2413:6, 2413:21, 2413:24, 2414:10, 2417:6, 2417:10, 2417:14, 2417:21, 2418:6, 2420:14, 2420:16, 2420:24, 2421:12, 2422:9, 2424:1, 2424:12, 2426:17, 2430:12
rock's [2] - 2398:14, 2410:1
rocks [10] - 2385:15, 2387:2, 2389:25, 2398:17, 2401:24, 2406:13, 2409:21, 2410:5, 2411:1, 2411:2
role [1] - 2340:2
room [1] - 2425:16
ROOM [1] - 2299:18
rotary [12] - 2411:19, 2411:23, 2412:1, 2412:3, 2412:5, 2412:13, 2412:14, 2413:4, 2413:16,
2413:18, 2415:15, 2415:22
rotates [1] - 2412:8
ROUGE [1] - 2296:6
roughly [6] - 2388:2,
2388:6, 2400:1, 2415:12, 2428:6, 2433:8
ROY [2] - 2294:23, 2294:24
Royal [2] - 2388:8, 2388:24
rule [1] - 2431:20 ruling [1] - 2303:25 run [3] - 2321:10, 2361:25, 2374:16
Ryerson [16] - 2345:7, 2345:19, 2346:7, 2346:19, 2346:24, 2347:22, 2347:25, 2348:11, 2348:13, 2357:5, 2374:6, 2379:13, 2380:3, 2380:7, 2381:2, 2381:20

S
S-I-P [1] - 2400:23
Salt [1] - 2397:5
salt $[1]-2351: 5$

salty ${ }_{[1]}$ - $2351: 6$ sample [17]-2318:4, 2319:23, 2320:6, 2320:7, 2320:8, 2323:5, 2325:17, 2325:19, 2327:6, 2327:7, 2329:21, 2377:17, 2380:13, 2380:14, 2392:19, 2419:18 sample's [2] 2426:14, 2430:16 sampled [1] - 2381:5 samples [65] - 2317:8, 2317:24, 2318:2, 2318:4, 2318:21, 2318:22, 2318:23, 2319:3, 2319:4 2319:14, 2319:17, 2320:18, 2321:7, 2321:17, 2322:1, 2324:20, 2324:21, 2324:22, 2324:24, 2325:18, 2327:21, 2327:22, 2328:1, 2329:6, 2330:6, 2331:17, 2331:18, 2332:4, 2333:20, 2344:18, 2345:9, 2346:21, 2348:4, 2348:6, 2348:16, 2348:20, 2349:8, 2357:25, 2358:13, 2361:14, 2361:19, 2361:22, 2376:17, 2377:7, 2377:8, 2377:9, 2377:12, 2380:2, 2380:12, 2381:20, 2411:12, 2411:16, 2411:17, 2413:16, 2415:15, 2420:11, 2421:17, 2421:21, 2426:17, 2428:20, 2428:21, 2428:22, 2429:1 sand [10]-2408:8, 2408:9, 2408:12, 2408:14, 2408:19, 2409:15, 2420:17, sands [3] - 2396:23, 2408:9, 2409:5 sandstone $[15]$ 2389:6, 2395:1, 2401:7, 2401:11, 2401:12, 2402:6, 2408:7, 2409:18, 2415:2, 2415:3, 2432:10, 2432:11,	2432:14   Sandstones [2] 2390:23, 2430:20 sandstones [14]2386:12, 2389:7, 2389:8, 2389:9, 2391:4, 2395:16, 2396:12, 2400:5, 2401:24, 2402:2, 2404:4, 2408:24, 2409:15, 2422:12 sandstones' [1] 2409:9   SARAH [1] - 2296:23 saturant [1]-2426:17 saturation [3] 2321:13, 2335:8, 2335:9   saw [5]-2322:7, 2322:20, 2325:23, 2344:19, 2378:4 scale [2]-2401:11, 2415:12   Scandinavia [1] 2388:11 scatter [1] - 2410:9 schedule [3] - 2302:6, 2302:13, 2302:25 SCHELL [1] - 2299:8 schematic [4] 2411:25, 2412:7, 2414:22, 2417:5 schematically [2]2415:6, 2417:11 Schlumberger [5] 2320:6, 2320:7, 2320:8, 2321:25, 2361:18   Scholar [4]-2391:22, 2391:24, 2392:1 scholars [1] - 2390:15 school [2] - 2306:17, 2386:2   Science [4] - 2305:17, 2386:3, 2386:5, 2392:16   science [2]-2364:25, 2391:2   Sciences [1] - 2392:7 scientific [8] -   2390:11, 2390:17, 2390:25, 2391:17, 2391:23, 2400:20, 2431:1, 2431:25   Scientific [3] 2390:24, 2391:15, 2391:18 scientist [4] 2336:10, 2379:20, 2387:19, 2402:4	```scientists [2] - 2391:14, 2393:2 scope [1] - 2397:16 SCOTT [1] - 2296:20 screen [4] - 2367:5, 2392:9, 2394:17, 2396:21 screw [1]-2351:15 sea [3]-2336:2, 2344:19, 2369:11 seabed [8]-2313:25, 2336:3, 2336:20, 2336:24, 2340:4, 2341:5, 2341:7, 2341:16 seafloor [2] - 2367:25, 2369:15 SEAN [1] - 2298:22 seat [1] - 2384:13 seated [1] - 2301:7 seawater [3] - 2344:3, 2344:4, 2345:9 second [18] - 2304:21, 2313:14, 2329:5, 2331:15, 2335:6, 2335:21, 2335:25, 2344:25, 2345:2, 2350:3, 2350:6, 2379:8, 2405:13, 2406:7, 2428:17, 2430:10, 2431:12, 2431:16 section [1] - 2382:20 SECTION [4] - 2294:5, 2294:9, 2294:12, 2296:19 see [33] - 2302:1, 2302:21, 2306:2, 2316:19, 2324:12, 2326:15, 2329:9, 2341:17, 2342:17, 2348:18, 2349:17, 2349:20, 2350:12, 2374:1, 2376:25, 2377:18, 2389:1, 2389:4, 2392:9, 2394:23, 2395:5, 2401:12, 2404:9, 2406:25, 2408:10, 2412:7, 2415:12, 2421:22, 2422:6, 2423:13, 2424:18, 2433:6 seeing [1] - 2316:12 seek [1] - 2355:8 seem [1] - 2434:9 sees [3] - 2410:9, 2418:9, 2419:19 seldom [1] - 2334:3 sell [2] - 2322:17,```		2344:12, 2347:12, 2348:23, 2349:12, 2354:24, 2356:9, 2357:12, 2357:14, 2357:19, 2357:21, 2357:23, 2358:3, 2358:22, 2358:25, 2359:3, 2359:6, 2359:8, 2361:21, 2361:25, 2362:4, 2362:24, 2363:15, 2363:19, 2364:24, 2368:12, 2369:1, 2373:17, 2382:20 separators [1] 2368:23 series [2]-2391:1, 2391:3 serious [2]-2313:16, 2313:21   served [1] - 2396:21 SERVICES [1] 2298:19 services [1] - 2396:16 SESSION [1] 2294:15 sessions [1] - 2394:2 set $[8]-2315: 18$, $\qquad$ 2329:11, 2332:4, 2397:23, 2404:15, 2410:13   sets [3]-2410:9,   2410:13, 2411:13 several [8] - 2335:2, 2348:5, 2387:23, 2389:13, 2411:13, 2430:9, 2432:4 shaded [4]-2317:6, 2317:13, 2317:15, 2317:23   shake [1]-2351:15 shale [1] - 2310:1 shape [4]-2386:19, 2387:3, 2395:21, 2399:16   SHELL [1] - 2297:5 ship [1] - 2370:8 shooting [2] 2412:24, 2413:4 short [5] - 2301:23, 2316:21, 2318:15, 2383:24, 2424:3 shorter [2] - 2418:25, 2419:2   show [8] - 2334:13, 2365:5, 2366:17, 2376:7, 2382:7, 2411:21, 2414:21, 2423:18

showed [4]-2379:16, 2380:1, 2380:18, 2424:21
showing [4]-
2316:14, 2341:20, 2358:10, 2402:10
shown [6]-2327:22, 2374:6, 2401:20, 2415:4, 2417:9, 2432:1
shows [13]-2341:12, 2374:10, 2380:11, 2381:18, 2382:16, 2402:5, 2411:25, 2414:22, 2417:5, 2429:9, 2431:8, 2431:13, 2431:16 shrink [4]-2339:20, 2342:5, 2342:19, 2343:21
shrinkage [44] 2313:17, 2321:19, 2321:22, 2322:14, 2323:19, 2323:23, 2324:6, 2324:12, 2324:16, 2324:23, 2325:2, 2325:18, 2326:1, 2326:3, 2327:5, 2327:8, 2328:24, 2330:20, 2334:19, 2335:6, 2335:10, 2337:12, 2337:17, 2355:22, 2357:3, 2358:1, 2358:2, 2358:16, 2358:19, 2360:8, 2362:23, 2363:12, 2363:13, 2363:21, 2363:25, 2364:1, 2364:7, 2364:8, 2374:10, 2375:5, 2375:8, 2376:1, 2376:2, 2382:16
shrinking [2] - 2352:5, 2352:22
shrunk [1] - 2347:16 shrunken [1] -
2342:16
Shushan [1]-2426:1
side [13]-2325:22,
2348:25, 2366:19, 2366:22, 2367:4, 2367:23, 2367:24, 2369:6, 2380:11, 2380:25, 2383:6, 2412:3, 2412:23
sidewall $[11]-2384: 2$, 2411:20, 2411:23, 2412:15, 2412:16, 2412:22, 2413:3,

2413:16, 2413:18, 2415:15, 2415:22 significance [1] 2334:10
significant [3] 2330:16, 2334:25, 2369:11
significantly [1] 2344:21
similar [2] - 2309:5, 2318:8
simple [5] - 2350:25, 2369:7, 2377:2, 2422:3, 2426:4
simpler [1] - 2369:13 simplest [2] - 2371:4, 2371:7
simplifying [4] 2368:9, 2368:11, 2369:16, 2369:20 simply [4] - 2326:19, 2349:11, 2362:17, 2373:1
simulate [3] -
2329:17, 2331:8, 2371:23
simulated [5] -
2331:13, 2362:9, 2364:15, 2364:17, 2368:22
simulating [1] -
2364:13
simulation [1] -
2330:1
SINCLAIR [1] 2295:22
single [43] - 2321:9, 2321:10, 2321:19, 2326:17, 2327:2, 2327:6, 2327:9, 2328:7, 2328:13, 2331:5, 2332:5, 2332:14, 2333:8, 2333:17, 2334:6, 2340:5, 2340:9, 2340:23, 2356:10, 2356:13, 2356:20, 2359:11, 2360:11, 2361:22, 2362:1, 2362:5, 2362:9, 2362:19, 2363:24, 2364:5, 2364:7, 2364:14, 2368:1, 2369:16, 2370:24, 2371:11, 2371:13, 2372:24, 2373:3, 2373:15, 2377:25, 2381:14, 2422:13 single-stage [25] 2321:19, 2327:6,

2328:13, 2331:5, 2340:23, 2356:10, 2356:13, 2356:20, 2359:11, 2360:11, 2361:22, 2362:1, 2362:5, 2362:9, 2362:19, 2363:24, 2364:7, 2364:14, 2368:1, 2369:16, 2371:11, 2371:13, 2372:24, 2373:3, 2373:15
$\boldsymbol{\operatorname { s i p }}[1]-2400: 21$
situ [1] - 2426:22
situation [7] -
2325:25, 2330:18, 2335:14, 2354:18, 2405:23, 2407:12, 2429:12
situations [1] 2405:19
six [3] - 2332:15, 2332:16, 2358:13 six-stage [2] -
2332:15, 2358:13 size [5] - 2386:20,
2387:3, 2395:21, 2399:16, 2407:4 skill [1] - 2323:8
skill-set [1] - 2323:8
skis [1] - 2301:21
slick [1] - 2380:14
slide [10] - 2314:13, 2358:6, 2381:17, 2389:4, 2391:12, 2394:21, 2404:15, 2411:25, 2421:23, 2429:9
slides [2] - 2390:6, 2404:18
slight [2] - 2367:18, 2434:3
slightly [1] - 2364:13
slowly [1] - 2423:20
small [10] - 2368:4,
2400:16, 2401:8,
2401:10, 2403:2,
2412:8, 2413:12,
2413:13, 2415:6,
2421:1
smaller [2] - 2308:19,
2404:2
SMITH [1] - $2298: 21$
so-called [3] -
2309:15, 2321:8, 2350:13
so.. [2]-2353:7, 2355:6
Society [11] - 2310:10,
2310:20, 2311:2,

2312:8, 2392:23,	2415:5, 2416:18,
2392:24, 2393:7,	2417:3, 2417:13,
2393:9, 2393:10,	2418:17, 2421:4,
2393:14, 2394:12	2423:2, 2429:6,
software [4] - 2307:2,	2430:10, 2432:13
2360:22, 2361:6,	sound [1] - 2395:23
2375:17	sounds [1] - 2338:18
SOILEAU [1] -	sources [1] - 2391:23
2295:14	SOUTH [4] - 2295:4,
soils [1] - 2395:12	2295:14, 2297:15,
solid [10] - 2386:7,	2298:16
2386:13, 2386:16,	space [11] - 2395:5,
2386:23, 2386:25,	2401:19, 2402:7,
2387:2, 2395:3,	2404:5, 2404:9,
2395:21, 2408:20,	2417:14, 2420:17,
2408:25	2420:20, 2421:1
solidified [1] - 2409:3	spaces [2] - 2395:8
solidity [1] - 2409:17	SPE [5] - 2312:5,
solubility [19] -	2390:13, 2390:14,
2343:1, 2343:4	2391:25, 2392:21
2343:5, 2343:15,	speaking [1] -
2344:8, 2344:12,	2361:24
2345:7, 2347:12,	special [4] - 2312:9,
2347:17, 2347:19,	2394:2, 2394:4,
2350:21, 2354:25,	2421:14
2355:5, 2359:14,	specific [6] - 2309:14,
2360:9, 2374:3,	2310:21, 2389:9,
2375:4, 2375:9,	2390:1, 2394:4,
2377:23	2396:3
soluble [1] - 2381:6	specifically [14] -
someone [2] -	2345:8, 2347:3,
2370:13, 2400:21	2363:20, 2364:3,
sometimes [2] -	2394:25, 2397:8,
2322:18, 2403:10	2399:17, 2400:17,
somewhat [4]	2400:18, 2401:23,
2396:5, 2404:14,	2404:20, 2407:10,
2421:23, 2432:12	2413:25, 2414:24
somewhere [3] -	specifics [1] - 2314:14
2309:16, 2390:10,	specified [1] -
2433:19	2333:24
sorry [9]-2320:13,	spectrum [2] - 2409:2,
2329:5, 2332:1,	2409:13
2334:24, 2338:3,	speculation [3]-
2353:12, 2367:15,	2365:1, 2365:8,
2406:11, 2414:6	2365:11
sort [39]-2301:19,	speeds [1] - 2416:15
2326:2, 2371:1,	spell [3] - 2303:10,
2390:12, 2391:10,	2384:13, 2384:16
2395:24, 2396:10,	spill [9] - 2344:18,
2399:7, 2400:13,	2345:11, 2348:4,
2400:24, 2401:7,	2348:5, 2348:20,
2401:8, 2401:9,	2366:5, 2370:7,
2401:14, 2402:10,	2433:1
2403:1, 2403:2,	SPILL [1] - 2294:5
2406:9, 2408:16,	spilled [1] - 2313:12
2408:17, 2408:20,	spin [1] - 2307:2
2408:22, 2409:13,	spin-off [1] - 2307:2
2409:17, 2410:3,	spot [1] - 2328:2
2410:19, 2410:25,	spot-on [1] - 2328:2
2412:24, 2415:4,	spread [1] - 2359:18

2415:5, 2416:18, 2418:17, 2421:4, 2423:2, 2429:6, 2430:10, 2432:13 sound [1] - 2395:23 sounds [1] - 2338:18 SOUTH [4] - 2295:4, 2295:14, 2297:15, 2298:16
space [11] - 2395:5, 2401:19, 2402:7, 2404:5, 2404:9, 7:14, 2420:17 spaces [2] - 2395:8 SPE [5] - 2312:5, 2391:25, 2392:21
speaking [1] special [4] - 2312:9, 2394:2, 2394:4, 2421:14
fic [6] - 2309.14 $2300: 1,2304: 4$ 2396:3 specifically [14] 2345:8, 2347:3, 2363:20, 2364:3 2399:17, 2400:17, 2400:18, 2401:23, 2404:20, 2407:10, 2413:25, 2414:24
specifics [1] - 2314:14 specified [1] -
spectrum [2] - 2409:2, 2409:13
,
2365:11
speeds [1] - 2416:15
spell [3] 2303:10,
spill [9] - 2344:18,
2345:11, 2348:4,
2348:5, 2348:20,
2366:5, 2370:7,
2433.1

SPILL [1] 2294:5
spin
spin-off [1] - 2307:2
spot [1] - 2328:2
spot-on [1] - 2328:2
spread [1] - 2359:18

	```2368:25, 2369:16, 2371:11, 2371:13, 2371:17, 2371:18, 2371:20, 2371:21, 2372:17, 2372:18, 2372:19, 2372:20, 2372:24, 2373:3, 2373:15, 2373:18, 2374:2, 2376:18, 2377:25, 2378:1, 2383:6 stages [16] - 2329:12, 2332:17, 2337:25, 2339:6, 2340:3, 2340:8, 2340:11, 2341:7, 2344:14, 2354:14, 2366:25, 2368:21, 2373:25, 2375:18, 2430:5 stair [10] - 2427:23, 2428:19, 2428:22, 2428:25, 2429:7, 2429:22, 2430:5, 2430:15, 2431:7, 2433:17 stair-step [10] - 2427:23, 2428:19, 2428:22, 2428:25, 2429:7, 2429:22, 2430:5, 2430:15, 2431:7, 2433:17 stairstep [1] - 2416:11 stand [2] - 2314:20, 2326:21 standard [10] - 2307:19, 2318:5, 2318:10, 2318:11, 2363:18, 2364:22, 2369:3, 2399:4, 2428:10 Stanford [4]-2305:8, 2305:18, 2305:22, 2305:24 Stanley [1] - 2305:22 start [8] - 2314:10, 2314:17, 2316:13, 2319:11, 2344:7, 2360:21, 2408:7, 2408:9 started [6] - 2302:11, 2305:24, 2306:1, 2306:22, 2318:11, 2423:19 starting [7]-2316:18, 2316:25, 2338:6, 2346:9, 2365:6, 2387:18, 2406:9 startling [1] - 2434:10 starts [1] - 2380:22 State [1] - 2396:24```	```STATE [2]-2296:3, 2296:4 state [76] - 2303:10, 2309:4, 2313:15, 2314:3, 2314:4, 2314:6, 2314:8, 2314:11, 2314:16, 2314:18, 2314:24, 2315:17, 2315:25, 2316:11, 2317:14, 2317:16, 2317:19, 2318:7, 2318:8, 2318:13, 2320:24, 2321:1, 2321:23, 2322:14, 2323:2, 2323:3, 2323:9, 2323:11, 2323:12, 2323:14, 2323:18, 2323:20, 2323:21, 2324:11, 2325:6, 2325:9, 2325:15, 2327:18, 2327:20, 2327:23, 2328:4, 2328:16, 2328:23, 2329:16, 2331:7, 2334:15, 2334:16, 2335:4, 2335:5, 2335:19, 2337:9, 2337:15, 2337:17, 2338:16, 2358:23, 2359:5, 2360:22, 2360:23, 2361:7, 2362:10, 2362:13, 2362:14, 2362:22, 2363:7, 2363:11, 2363:17, 2364:5, 2365:2, 2365:11, 2384:13, 2405:22, 2408:19, 2418:4, 2418:14, 2429:11, 2429:20 statement [5] - 2304:22, 2307:7, 2357:17, 2359:24, 2376:22 STATES [4]-2294:2, 2294:11, 2294:16, 2296:13 States [6] - 2301:10, 2302:18, 2326:9, 2338:4, 2360:18, 2397:15 states [1] - 2329:17 STATES' [1] - 2295:21 States' [2]-2325:7, 2360:25 stay [1] - 2418:9 stays [1] - 2339:21 steel [5] - 2395:4, 2395:5, 2399:22,```	2417:7   STENOGRAPHY [1] -   2299:23   step [17] - 2338:6,   2344:24, 2344:25,   2373:24, 2383:2,   2427:23, 2428:19,   2428:22, 2428:25,   2429:7, 2429:22,   2430:5, 2430:11,   2430:15, 2431:7,   2433:3, 2433:17   STEPHEN [2] -   2294:20, 2296:14   steps [3]-2429:22,   2430:8, 2430:9   STEVEN [2] - 2296:20,   2298:10   stick [1] - 2331:4   still [2] - 2351:3,   2364:2   stock [75] - 2305:1, 2305:2, 2314:1,   2316:22, 2326:4,   2326:5, 2327:13,   2327:15, 2330:11,   2330:15, 2332:13,   2336:3, 2336:8,   2336:23, 2336:24,   2337:2, 2339:5,   2340:8, 2340:10,   2340:12, 2341:1,   2341:13, 2343:16,   2344:15, 2344:16,   2344:17, 2344:22,   2344:24, 2347:15,   2349:5, 2349:11,   2349:12, 2349:14,   2350:10, 2350:19,   2350:23, 2352:17,   2354:8, 2354:11,   2354:12, 2355:1,   2355:13, 2355:21,   2355:24, 2356:2,   2356:5, 2356:8,   2356:10, 2356:11,   2356:19, 2356:23,   2357:2, 2358:9,   2358:15, 2362:1,   2362:5, 2363:2,   2363:8, 2363:21,   2368:7, 2370:5,   2370:18, 2370:23,   2370:24, 2371:6,   2372:7, 2373:11,   2373:16, 2373:25,   2376:16, 2377:23,   2378:4, 2378:14,   2378:19   Stockholm [2] -	


2302:23, 2303:5, 2303:12, 2303:24, 2304:9, 2312:15, 2319:20, 2326:14, 2326:22, 2331:15, 2331:20, 2331:21, 2331:22, 2331:23, 2331:25, 2332:1, 2332:3, 2332:5, 2332:7, 2332:8, 2332:11, 2332:12, 2332:15, 2332:20, 2332:24, 2332:25, 2333:2, 2333:7, 2333:10, 2333:11, 2333:12, 2338:18, 2338:23, 2346:3, 2347:6, 2350:25, 2351:4, 2351:5, 2351:11, 2351:24, 2352:2, 2352:6, 2353:9, 2353:12, 2353:13, 2353:16, 2353:17, 2353:19, 2353:20, 2353:22, 2353:23, 2353:24, 2353:25, 2354:3, 2360:14, 2370:2, 2370:9, 2370:10, 2370:12, 2370:13, 2370:21, 2371:1, 2371:2, 2371:3, 2371:4, 2371:9, 2371:11, 2371:13, 2371:15, 2371:16, 2371:18, 2372:1, 2372:5, 2372:6, 2372:8, 2372:10, 2372:14, 2372:15, 2372:17, 2372:21, 2374:20, 2374:24, 2383:10, 2383:12, 2383:15, 2383:21, 2384:5, 2384:13, 2384:15, 2384:16, 2384:17, 2384:19, 2384:23, 2397:20, 2398:8, 2426:4,
2426:9, 2426:11, 2427:2, 2427:9, 2427:15, 2434:12, 2434:17, 2434:20
theme [1] - 2390:5
themselves [4]2308:10, 2320:4, 2420:23, 2423:18 theoretical [1] 2423:23
theory $[8]-2394: 19$, 2395:18, 2395:20, 2396:6, 2396:11,
$2406: 9$
thereafter [2] 2305:19, 2387:23 thermodynamic [11] 2339:3, 2339:9, 2340:3, 2341:7, 2342:9, 2343:5, 2364:21, 2366:1, 2366:4, 2375:14, 2375:15
thermodynamics [3] 2339:23, 2354:16, 2375:10
thermogenic ${ }_{[1]}$ 2341:24
thesis [3]-2306:10, 2306:13, 2386:10
third $[7]$ - 2335:12, 2350:11, 2350:12, 2350:16, 2378:18, 2379:11, 2432:19
THIRD ${ }_{[1]}$ - 2296:5
THOMAS ${ }_{[2]}$ - 2295:3, 2296:19
three [43]-2307:8, 2318:1, 2318:15, 2321:7, 2321:17, 2321:25, 2331:25, 2332:1, 2332:3, 2333:4, 2349:9, 2349:13, 2349:15, 2349:19, 2350:9, 2354:10, 2357:25, 2361:17, 2363:1, 2365:18, 2365:24, 2373:12, 2375:18, 2378:3, 2379:6, 2388:14, 2399:2, 2404:15, 2414:1, 2416:5, 2416:6, 2419:10, 2420:11, 2421:17, 2421:21, 2421:25, 2422:4, 2428:21, 2428:23, 2429:1, 2429:14, 2434:2
three-dimensional ${ }_{[1]}$

- 2365:24
three-slide [1] 2404:15
three-stage ${ }_{[1]}$ -
2333:4
thumb [2]-2384:6, 2431:20
Thursday [2] -
2301:23, 2302:13
tightly [1]-2424:2
timekeepers [1] -
2302:17
timing [2] - 2322:3,

2351:23, 2351:25,	2397:4, 2421:12,	2353:19, 2353:22,	Z
2352:13, 2352:21, 2352:23, 2352:25,	2430:19	2353:24, 2354:3,	
$\begin{aligned} & \text { 2352:23, 2352:25, } \\ & \text { 2353:7, 2353:24, } \end{aligned}$	well-tuned [1] -	2370:9, 2370:12,	Z-I-M-M-E-R-M-A-N
2354:2, 2354:6,	wellbore [1] - 2390:2	2371:4, 2371:11,	Zick [28]-2304:2
2354:17, 2354:19,	wellhead [9] -	2371:15, 2371:18,	$2313: 15,2325: 6,$
2354:20, 2355:4,	2341:14, 2367:16,	2372:5, 2372:8,	2329:20, 2330:8,
2355:5, 2355:13,	367:17, 2370:15,	2372:14, 2372:17,	2334:12, 2337:14
2359:25, 2364:20,	2371:5, 2371:12,	2374:24, 2384:15,	2338:12, 2338:20,
2364:21, 2364:23,	72:4, 2372:20	2384:17	338:22, 2342:24,
2365:20, 2366:2,	2373:1	witnesses [3]	2343:25, 2344:8,
2366:4, 2370:16,	whereby [1] - 2391:16	2301:20, 2302:4,	2353:5, 2356:22,
2372:3, 2372:4,	white [3]-2326:11,	2302:9	2357:14, 2358:19,
2374:13, 2374:21,	2412:1, 2415:6	word [3] - 2400:20,	2358:24, 2359:20,
2374:24, 2375:1,	WHITELEY ${ }_{[1]}$	2400:22, 2403:7	360:1, 2361:1,
2375:3, 2375:6,	2296:8	words [6] - 2339:15,	2361:3, 2361:10,
2375:14, 2375:15,	Whitson [24]	2353:13, 2367:13,	2365:22, 2368:22,
2375:18, 2381:11,	2302:12, 2303:12,	2374:4, 2374:10,	2372:11, 2375:2,
2382:3, 2401:22	2303:16, 2303:18,	2418:24	2375:23
water's [2]-2351:6,	2304:12, 2305:12,	works [5]-2322:8,	Zick's [17] - 2314:4,
2355:2	2312:11, 2312:18,	2322:10, 2391:16,	2325:9, 2325:15,
wave [2]-2416:16	2326:12, 2326:20,	2417:4, 2429:8	2326:13, 2328:4,
waves [1] - 2416:16	2327:1, 2338:7,	workshops [1] -	2334:13, 2335:1,
Wayne [1] - 2384:17	2338:25, 2345:15,	2393:25	2337:22, 2338:7,
WAYNE [1] - 2384:18	2346:6, 2346:17,	world [2]-2393:2,	2338:14, 2345:2,
ways [1] - 2425:24	2354:24, 2360:19,	2394:13	2357:9, 2361:3,
weak [1] - 2410:11	2365:9, 2366:14,	world's [1] - 2390:25	2362:13, 2362:19,
weakly [2]-2409:21,	2370:4, 2373:8,	wrap [3] - 2357:8,	2376:1, 2376:13
2409:23	2377:21, 2382:20	2382:11, 2382:15	ZIELIE [2]-2299:17,
$\begin{aligned} & \text { Weatehrford [1] - } \\ & \text { 2409:20 } \end{aligned}$	WHITSON [2] - $2300: 3,2303: 8$	WRIGHT [1] - 2294:23 write [3]-2306:10,	$\begin{aligned} & 2435: 8 \\ & \text { Zielie }[2]-2435: 5, \end{aligned}$
Weatherford [26] -	Whitson' [1] - 2383:17	2326:11, 2397:22	2435:9
$\begin{aligned} & 2383: 25,2384: 2, \\ & 2385: 16,2398: 25, \end{aligned}$	Whitson's [6] 2304:4, 2304:7,	writing [2]-2361:12,	Zimmerman [14] -
		2428:14	2302:14, 2384:10,
$\begin{aligned} & \text { 2385:16, 2398:25, } \\ & \text { 2399:10, 2411:14, } \end{aligned}$	$\begin{aligned} & \text { 2304:4, 2304:7, } \\ & \text { 2334:15, 2338:5, } \end{aligned}$	written [5]-2304:6,	2384:15, 2384:18,
$\begin{aligned} & \text { 2399:10, 2411:14, } \\ & \text { 2418:15, 2419:8, } \end{aligned}$	$\begin{aligned} & \text { 2334:15, 2338:5, } \\ & \text { 2338:11, 2383:19 } \end{aligned}$	2310:9, 2360:25,	2385:1, 2385:4,
2419:15, 2420:1,	whole [2]-2336:9,	2377:4, 2390:20	2385:6, 2386:1,
2420:10, 2421:5,	2377:9	wrote [1] - 2375:19	2397:12, 2397:22,
	wide [4]-2316:5, 2393.2, 2395:15	Wylie [1] - 2391:9	2398:3, 2401:5,
$\begin{aligned} & 2421: 8,2422: 20, \\ & 2425: 3,2425: 9, \end{aligned}$			2414:21, 2419:14
$\begin{aligned} & \text { 2425:3, 2425:9, } \\ & \text { 2425:11, 2425:13, } \end{aligned}$	$\begin{aligned} & 2393: 2, \\ & 2433: 6 \end{aligned}$	Y	ZIMMERMAN [2] -
$\begin{aligned} & \text { 2425:11, 2425:13, } \\ & \text { 2425:15, 2426:14, } \end{aligned}$	widely [1]-2391:21		2300:6, 2384:11
$\begin{aligned} & \text { 2428:9, 2428:10, } \\ & \text { 2429:2, 2431:6, } \end{aligned}$	WINFIELD [1] - 2295:22	year [1] - 2307:5 years [21]-2305:7, 2306:21, 2307:1	$\begin{aligned} & \text { Zimmerman's [1] - } \\ & \text { 2398:7 } \end{aligned}$
Weatherford's [1] -	wise [1] - 2434:14 wish [1]-2303:6	2307:12, 2309:3,	"
		2309:6, 2309:16,	
Wednesday [1] - 2301:12	2370:2, 2383:15,	$\begin{aligned} & \text { 2309:19, 2387:12, } \\ & \text { 2387:23, 2388:14, } \end{aligned}$	"MIKE" ${ }^{11}$ - 2297:23
	$\begin{aligned} & \text { 2384:9, 2396:19, } \\ & \text { 2396:22, 2427:3 } \end{aligned}$	2388:21, 2388:22,	
$\begin{array}{\|c} \text { week [5] - 2301:24, } \\ \text { 2302:7, 2302:18, } \end{array}$	WITNESS [37] -	2389:14, 2389:17,	
	2303:12, 2319:20,	2390:5, 2392:14,	
$\begin{gathered} \text { 2307:5, 2326:21 } \\ \text { weight }[5]-2364: 6, \end{gathered}$	2331:20, 2331:22,	2392:22, 2397:6,	
$\begin{aligned} & \text { 2364:9, 2403:12, } \\ & 2403: 13,2417: 21 \end{aligned}$	$2331: 25,2332: 3 \text {, }$	2408:7, 2408:11	
		yellow [4]-2317:10,	
$\begin{gathered} \text { 2403:13, } 2417: 21 \\ \text { weighted }[1]-2364: 3 \end{gathered}$	$\begin{aligned} & \text { 2332:7, 2332:11, } \\ & \text { 2332:15, 2332:24, } \end{aligned}$	2317:23, 2401:8,	
WEINER [1] - 2299:9	$\begin{aligned} & 2333: 2,2333: 10, \\ & 2333: 12,2351: 4, \end{aligned}$	2415:9	
WEITZ ${ }_{[1]}-2295: 7$welded [1] - 2408:16		YORK [2] - 2295:8,	
	$2351: 11,2352: 2,$	2299:3	
welded [1]-2408:16 well-known [3] -	2353:12, 2353:16,	yourself [1] - 2385:4	

