From: Smith, Trevor (GOM DWD) Sent: Sat Jun 12 13:37:00 2010

To: Anderson, Paul (Airenergi); Austin, Julian; Breidenthal, Chase; Dominick, Leon A (DPM); Gkaras, Vassilis; Ibarra, Jim; Lanan, Kevin T; Loya, Darrell (MULLEN ENERGY); Owen, Les L; Schwebel, John; Sinsabaugh, David (LINK PROJECT SERVICES); Vicic, John; Munstereifel, Eric J (Delta Marine Tec); Hughes, John D; Bond, Stan L; Nichols, Mark; Wellings, James S; Smith, Fred (Trendsetter); Petruska, David J; Devers, Kevin J; Cargol, Mike (UNKNOWN BUSINESS PARTNER); Webber, Michael W; Elliott,

Mark (FAITHFUL & GOULD INC); Timmons, Shana; Killeen, Joseph P; Mataway, Tom

Subject: 2010-06-10 Flex Joint Overshot Review Rev0.ppt

Importance: Normal

Attachments: 2010-06-10 Flex Joint Overshot Review Rev0.ppt

<<...>>

For Information - this is the presentation we made to the Government Science team on Thursday. We also reviewed the backup slides with them.

Trevor

Exhibit No. _____ Worldwide Court Reporters, Inc.

CONFIDENTIAL

BP-HZN-2179MDL05053874

BPD361-057311

Agenda

- 1. Context overview -Trevor Smith
- 2. Review of "Clamp & Grout" FJO design and the limits we found
 - design review Julian Austin
 - grout testing Vassilis Gkaras
- Review of "Slips and Packers" FJO design which we are now building
 - Slips and packer background John Vicic
 - FJO design and analysis Julian Austin
 - FJO slip and packer test plan John Vicic
- 4. 5) Field trip to visit the fabrication shop where the FJO is being built

Context

- 1. Currently well is flowing to Enterprise drillship (at ~15000 BPD)
- Readying Q4000 semi to take additional flow via Horizon BOP via former Top Kill manifold system – uses existing connections
- Building longer term containment system(s) new manifold, freestanding riser(s), processing ship(s), and storage tanker
 - These new systems require new connections to the Horizon BOP via three options:
 - a) "Flange Connection Spool" and "Capping Stack" BOP
 - b) "Flex Joint Overshot" and "Capping Stack" BOP

This review

- c) "Latch Cap" on flexjoint riser stub and flow tree
- 4 Potential to pull LMRP and install Capping Stack also remains in play

Summary of Flexjoint Connection Options

- 1. Flex Joint Overshot Clamp and Grout
- 2. Grip and Seal version

Summary of Flexjoint Connection Options

- 1. Flex Joint Overshot Clamp and Grout
- 2. Grip and Seal version

Epoxy Resin Testing

- Sandia National Labs tasked to develop procedures for evaluation of mechanical properties of potential epoxy products
- · Epoxy products:
 - Thermal Chem 4 (TC-4)
 - UltraSeal Liquid Bridge Plug
- Testing conditions:
 - 40degF
 - Injection in molds with presence of brine
 - One metal platen of molds epoxy painted
- Methods
 - Direct Pull Tension test
 - Pipe in pipe shear test

Epoxy Resins Testing

- TC-4
 - + Able to cure at 40degF
 - + Stronger in tension than Ultra-Seal
 - More viscous than Ultra-Seal → possibility to be injected in annulus through subsea piping to be confirmed
- UltraSeal
 - More fluid than TC-4 (viscosity similar to hydraulic oil, easily injectable in annulus space)
 - + More elastic than TC-4
 - Not possible to cure at 40degF
- More research/ experimentation was necessary to optimize ingredient ratio for balance of strength & curing time

Summary of Flexjoint Connection Options

- 1. Flex Joint Overshot Clamp and Grout
- 2. Grip and Seal version

Overshot and Slip Seal Equipment

- Slip and seal connections have successful history in the oilfield for more than 50 years
 - Wellhead casing hanger API 6A 15 ksi, +250 F

- Pipeline connectors - to 48" ANSI 600

2. Flexjoint Overshot - Grip and Seal version

Overview

- · overshot can envelops flexjoint and grips on to flexjoint with slips and seals with a rubber packer stack
- · Independent of flexjoint after installation
- 4700 psia design

- Challenges
 BOP angle TBD FJO may jam during installation
- · Site preparation

Status

- · Currently under fabrication
- · Slips & Packer testing is being planned
- · Site Integration Test scope being developed

Grip and Seal Detail on Next slide

Flex Joint Overshot Key Risks 1D Risk Mitigation FJO jams at installation · test fit-up with inclination at onshore trial (BOP angle 2 degrees) - modify design for installation at angle · drill-string installation provides installation control Slips engagement on FJ · validation testing to confirm slips engagement · remove paint on FJ Packer Seals do not hold · conduct validation testing full working pressure · full scale seal tests at onshore SIT · inject sealant to stop leaks · increase piston pressure to compress seals further Hydrate formation during · apply learning from Top Hat(s) experience installation · modeling flow, chemicals & equipment design Removing Mud Boost · cutting tool selection, cut placement and timing to valve actuator creates minimize risk · temporary condition pending FJO installation

FJO - Grip and Seal Analysis

- Finite element analysis of the flexjoint bowl and overshot pressure can carried out to understand:
 - Stresses in the components
 - Deflections of the components
- Pressure loadings derived from Oil States standard design calculations
- · Design basis requires that:
 - Components remain substantially elastic
 - Deflections do not compromise gripping strength
- · Motion study to ensure full stroke is available

24 Inch Seal and Grip Connector Validation Test

- 24" PEC -8" slip at the same ramp angle of 12.5 degrees for very similar contact pressures and tooth shear stresses as the FJO with the PEC at 4700 psi.
- Hardness carefully selected test nipple to prove that the contact pressure is also sufficient to bite into the flex joint.
- Teeth similar shear stresses in the teeth would prove that they are low enough to maintain the integrity of the teeth. A post test inspection of the teeth and pipe would be a good indicator for the expected performance of the FJO slips.
- 3/8" radial gap -connector is to designed to make a 3/8" jump to min pipe, a test nipple will be made to min OD to force the gap.
- Seals in the same compound as the FJO, Seal test performed at the same rubber pressure required to seal 4700 psi.
- · Seals will be pressured for 1 hour hold and released- 3x cycles.
- Seals with damage- retested with increased hydraulic pressure and then sealant injection.

Hydrate remediation

- · Hydrate formation temperature ≈70deg F
- · Hydrate remediation options:
 - glycol,
 - MeOH and/or
 - Displacement of water with N2
- · Delivery mechanism options include:
 - Drilling vessel from Installation drilling string bore
 - Installation WorkOver Control System (IWOCS)
- Key issue: try to ensure outflow of oil through bottom during installation (with fallback chemicals delivery)

BPD361-057341

Site Integration Trials - outline scope

- · Investigate installability under representative conditions
 - BOP angle
 - Flexjoint angle
 - Packers & Slips protection
 - Slips engagement risks
 - Evaluation of guidance/protection systems
- · Annulus test of seals (on similar flexjoint)
 - Test hydraulics & position indication
 - Seal damage tests and limits of increased pressure on packer
 - Leak repair by injection of sealant (e.g. Sealtite)

FJO Installation - Estimated Durations							
Flexjoint Overshot	Critical Path Duration P50	Critical Path Duration P90	Offline Duration	Comments			
Run FJO on Vessel Rigging			5				
Demo Padeyes, Grating, Hydraulic line and Mudboost Actuator	12	16	48-56	95% offline activites			
Rig Remove / clear Top Hat. Commence loss of Containment	2	2					
Reposition Rig clear. Vessel move in	6	6					
Align FJO with Vessel over BOP	2	2					
Set / Lock FJO	10	12					
Align Stack 2nd Vessel	0	4		P50 considers running assembly as single unit.			
Set / Lock Stack	4	6					
Vessel out / Rig In	4	6					
Rig places TH over Stack	4	6					
Critical Path	44	60	53-61				

Next Steps

- Complete Machining
- · Slips & Packer validation tests
- Assemble Overshot (seals, ROV hydraulics, chemicals delivery)
- SIT tests
- · Replace Packers & Slips
- · Ready for shipment offshore (target 24 June, zero float)

BPD361-057347

Flange Connection Spool Risks

ID	Risk	Mitigation			
1	Unable to undo flange bolts	Perform subsea unbolting trial on another flange on Horizon riser to demonstrate feasibility (imminent)			
2	Unable to easily remove flange (jammed)	Identify / build_tool to split flange (No flange distortion is evident)			
3	Landing spool over 2 drill pipe stubs	trialing guidance systems this week to select best option			
4	Flange Spool seal damage during installation	dual elastomeric seals reduce risk, accept less than full containment			
5	Flexjoint angle	onshore trials testing at up to 5 degrees inclination			
		· surveying BOP to measure angles			
6	Flexjoint Integrity under 9000 psia (Rated to	analysis shows low risk of FJ rupture but risk of o-ring leakage at 9000 psia			
	5000 psia)	limit pressure to lower level e.g. 4700 psia			

Flange Spool Installation - Estimated Durations

Flange Connection Spool	Critical Path Duration P60	Critical Path Duration P90	Offline Duration	Comments
Run Flange Spool on Vessel Rigging			5	
Rig Remove / clear Top Hat. Commence loss of Containment	2	2		
Reposition Rig clear, Vessel move in	6	6		
Align Flange spool near BOP	1	1		
Remove Flange Bolts	18	24		
Install Flange Splitter	8	12		
Split and Remove Flange	18	24		
Deploy Flange Spoot over BOP	2	2		
Install / Make-up Bolts Align Stack 2nd Vessel	18	24		P50 considers running assembly as single unit.
Set / Lock Stack	4	6		
Rig places TH over Capping Stack	4	6		
Critical Path	81	111	5	

