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Oil Spill Remote Sensing: 
A Review 

Mery Fingas and Carl E. Brown 

6.1. INTRODUCTION 

Large spills of oil and related petroleum products in the marine environment 
can have serious biological and economic impacts. Public and media scrutiny is 
usually intense following a spill, with demands that the location and extent of 
the oil spill be determined. Remote sensing is playing an increasingly important 
role in oil spill response efforts. Through the use of modern remote-sensing 
instrumentation, oil can be monitored on the open ocean around the clock. With 
knowledge of slick locations and movement, response personnel can more 
effectively plan countermeasures in an effort to lessen the effects of the 
pollution. In recent years, there has been a strong interest in detection of illegal 
discharges, especially in view of the large seabird mortality associated with 
such discharges.' 

Even though sensor design and electronics are becoming increasingly 
sophisticated and much less expensive, the operational use of remote-sensing 
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Copyright © 2011 Elsevier the. All rights reserved. 

	 111 



(112) 	 7 	 Oil Analysis and Remote Sensing 

equipment lags behind the technology. In remote sensing, a sensor, other than the 
eye or conventional photography, is used to detect the target of interest at 
a distance. The most common forms of oil spill surveillance and mapping are still 
sometimes carried out with simple still or video photography. Remote sensing 
from an aircraft is still the most common form of oil spill tracking. Attempts to 
use satellite remote sensing for oil spills continue, although success is not 
necessarily as claimed and is generally limited to identifying features at sites 
where known oil spills have occurred or for mapping discharges or known spills. 

It is important to divide the uses of remote sensing into the end use or 
objective, as the utility of the sensor or sensor system is best defined that way. 
Remote-sensing systems for oil spills used for routine surveillance certainly 
differ from those used to detect oil on shorelines or land. A single tool does not 
serve for all functions. For a given nation and several functions, many types of 
systems may, in fact, be needed. Furthermore, it is necessary to consider the end 
use of the data. The end use of the data, be it location of the spill, enforcement, or 
support to cleanup, may also dictate the resolution or character of the data needed. 

Several general reviews of oil spill remote sensing have been prepared. 2-7  
These reviews show that although progress has been made in oil spill remote 
sensing, this progress has been slow. Furthermore, these reviews show that 
specialized sensors offer advantages to oil spill remote sensing. Off-the-shelf 
sensors have very limited application to oil spills. 

6.2. VISIBLE INDICATIONS OF OIL 

Under many circumstances oil on the surface is not visible to the eye. 8  Other 
than the obvious situations of nighttime and fog, in many situations oil cannot be 
seen. A very common situation is that of thin oil, such as from ship discharges, or 

FIGURE 6.1 An example of problems in detecting slicks visually. There is no oil in this image. 
The differences in water color are caused by mineral fines at the top of the pictures and the meeting 
of darker water from the open ocean. 
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FIGURE 6.2 Another example of confusion in the visible region. This anomaly is caused by the 
front between a river and seawater. Again there is no oil in this image. 

FIGURE 6.3 An image of Herring "milk" on the water surface. This is often mistaken for oil in 
various sensors, and again there is no oil in this image. 

the presence of materials, such as sea weed, ice, and debris, that mask oil 
presence. Often there are conditions on the sea that may appear like oil, when 
indeed there is no oil. These include wind shadows from land forms, surface 
wind patterns on the sea, surface dampening by submerged objects or weed 
beds, natural oils or biogenic material, and oceanic fronts. In the case of large 
spills, the area may be too great to be mapped visually. Several of these cases 
are illustrated in Figures 6.1 to 6.12. All of these factors dictate that remote-
sensing systems be used to assist in the task of mapping and identifying oil. In 
many cases, aerial observation and remote sensing are necessary to direct 
cleanup crews to slicks. Figure 6.13 shows a case where no aerial direction 
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FIGURE 6,4 This image again shows no oil and shows open seawater at a front with mineral-
laden bay waten 

FIGURE 63 An image of the Exxon Valdez tanker at Naked Island. The apparent oil is actually 
reflections from clean water and some wind ruffles on the sea. There is no oil in this image. 

was given and a skimmer crew is missing the slick by about half a kilometer. 
Figure 6.14 shows a skimmer crew that was directed to the thicker slick in the 
area. 

6.3. OPTICAL SENSORS 

6.3.1. Visible 

The use of human vision alone is not considered remote sensing; however, it 
still represents the most common technique for oil spill surveillance. In the 
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FIGURE 6.6 An image looking into a bay. The foreground material is oil; however what appears 
somewhat like oil further into the bay are actually surface wind calms. 

FIGURE 6.7 An image of sheen from a major spill. One can see sheen to a distance of about 30 
km and about 10 km wide. Large areas like this are hard to map without the aid of remote sensing. 

past, major campaigns using only human vision were mounted with varying 
degrees of success. 9  Optical techniques, using the same range of the visible 
spectrum detection, are the most common means of remote sensing. Cameras, 
both still and video, are common because of their low price and commercial 
availability. In recent years, visual or camera observation has been enhanced by 
the use of GPS (Global Positioning Systems). 1°  Systems are now available to 
directly map remote-sensing data onto base maps. 

In the visible region of the electromagnetic spectrum (approximately 400 to 
700 nm), oil has a higher surface reflectance than water, but shows limited 
nonspecific absorption tendencies. Oil generally manifests throughout the 
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FIGURE 6.8 An image of water from an airplane during foggy conditions. There is no oil in this 
image. 

FIGURE 6.9 A visible image of a slick that had just been illegally discharged from a ship. The 
multiple colors are due to the light path interference and indicates a thickness of about 1 pm. 

entire visible spectrum. Sheen shows up silvery and reflects light over a wide 
spectral region down to the blue. As there is no strong information in the 500 to 
600 nm region, this region is often filtered out to improve contrast. 11  Overall, 
however, oil has no specific characteristics that distinguish it from the back-
ground. 12  Taylor studied oil spectra in the laboratory and the field and observed 
flat spectra with no usable features distinguishing it from the background. 13  
Therefore, techniques that separate specific spectral regions do not increase 
detection capability. Some researchers noted that while the oil spectra is flat, 
the presence of oil may slightly alter water spectra. 14  It has been suggested that 
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FIGURE 6.1 0 A visible image of a cleanup operation. Notice the various false indications of oil 
further away from the scene. Photography by Environment Canada. 
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FIGURE 6.11 An infrared image of a slick as taken in 1981. Note the annotation providing 
essential times and positions. 
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FIGURE 6.12 A visible image of the same slick and at the same time as the one shown in Figure 
6.11. This illustrates the higher capability that infrared imaging has under these specific conditions. 

FIGURE 6.13 A visible image of a cleanup crew missing a slick by at least a half kilometer. The 
actual slick is noted on the image. Aerial direction of cleanup crews is not only desirable but 
necessary in many cases. Photography by Enyimnnwnt Canada. 
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FIGURE 6.14 A visible image of a cleanup crew aiming toward the thickest slicks in the area as 
directed by an aerial surveillance team. 

the water peaks are raised slightly at 570 to 590, 780 to 710, and 810 to 710 nm. 
At the same time there are depressions or troughs at 650 to 680 nm and 740 to 
760 nrn. It has been found that high contrast in visible imagery can be achieved 
by setting the camera at the Brewster angle (53 degrees from vertical) and using 
a horizontally aligned polarizing filter that passes only that light reflected from 
the water surface. 15  This is the component that contains the information on 
surface oi1. 11  It has been reported that this technique increases contrast by up to 
100%. Filters with band-pass below 450 nm can be used to improve contrast. 
View angle is important, and some researchers have noted that the thickness 
changes the optimal view angle. 16  

On land, hyperspectral data (use of multiple bands, typically 10 to 100) has 
been used to delineate the extent of an oil well blowout. 17  The technique used 
was spectral reflectance in the various channels, as well as the usual black 
coloration. 

Video cameras are often used in conjunction with filters to improve the 
contrast in a manner similar to that noted for still cameras. This technique has 
had limited success for oil spill remote sensing because of poor contrast and 
lack of positive discrimination. Despite this, video systems have been proposed 
as remote-sensing systems. 18  With new light-enhancement technology (low 
lux), video cameras can be operated even in darkness. Tests of a generation III 
night vision camera shows that this technology is capable of providing imagery 
in very dark night conditions. 19 ' 2°  

Scanners were used in the past as sensors in the visible region of the 
spectrum. A rotating mirror or prism sweeps the field-of-view (FOV) and 
directs the light toward a detector. Before the advent of CCD (charge-coupled 
device) detectors, this sensor provided much more sensitivity and selectivity 
than a video camera. Another advantage of scanners was that signals were 
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digitized and processed before display. Recently, newer technology has 
evolved, and similar digitization can now be achieved without scanning by 
using a CCD imager and continually recording all elements, each of which is 
directed to a different FOV on the ground. This type of sensor, known as a push-
broom scanner, has many advantages over the older scanning types. It can 
overcome several types of aberrations and errors, the units are more reliable 
than mechanical ones, and all data are collected simultaneously for a given line 
perpendicular to the direction of the aircraft's flight. Several types of scanners 
were developed. In Canada, the MEIS (Multidetector Electro-optical Imaging 
Scanner) and the CAST (Compact Airborne Spectrographic Imager) have been 
developed, and in the Netherlands, the Caesar system was developed. I 21 ' 22  

Digital photography has enabled the combination of photographs and the 
processing of images. Locke et al. used digital photography from vertical 
images to form a mosaic for an area impacted by an oil spill. 23  It was then 
possible to form a singular image and to classify oil types by color within the 
image. The area impacted by the spill was also carried out. Video cameras are 
often used in conjunction with filters to improve the contrast in a manner 
similar to that noted for still cameras. This technique has had limited success 
for oil spill remote sensing because of poor contrast and lack of positive 
discrimination. 

The detection or measurement of oil in water has never been successfully 
accomplished using remote visible technology. There may be potential for light 
scattering technology. Stelmaszewski and coworkers measured the light scat-
tering of crude oil in water emulsions and noted that scattering increases with 
wavelength in the UV range and decreases slightly with the wavelength of 
visible light. 24  

The use of visible techniques in oil spill remote sensing is largely restricted 
to documentation of the spill because there is no mechanism for positive oil 
detection. Furthermore, there are many interferences or false alarms. Sun glint 
and wind sheens can be mistaken for oil sheens. Biogenic material such as 
surface seaweeds or sunken kelp beds can be mistaken for oil. Oil on shorelines 
is difficult to identify positively because seaweeds look similar to oil and oil 
cannot be detected on darker shorelines. In summary, the usefulness of the 
visible spectrum for oil detection is limited. It is, however, an economical way 
to document spills and provide baseline data on shorelines or relative positions. 

6.3.2. Infrared 

Oil, which is optically thick, absorbs solar radiation and reernits a portion of 
this radiation as thermal energy, primarily in the 8 to 14 ju-n region. In infrared 
(IR) images, thick oil appears hot, intermediate thicknesses of oil appear cool, 
and thin oil or sheens are not detected. The thicknesses at which these transi-
tions occur are poorly understood, but evidence indicates that the transition 
between the hot and cold layer lies between 50 and 150 im and the minimum 
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detectable layer is between 10 and 70 t1111. 25-28  The reason for the appearance of 
the "cool" slick is not fully understood. A plausible theory is that a moderately 
thin layer of oil on the water surface causes destructive interference of the 
thermal radiation waves emitted by the water, thereby reducing the amount 
of thermal radiation emitted. 8  This may be analogous to the appearance of the 
rainbow sheen, which is explained in Section 6.2. The cool slick would 
correspond to the thicknesses as observed above because the minimum 
destructive thickness would be about two times the wavelength, which is 
between 8 and 10 um. This would yield a destructive onset of about 16 to 20 gm 
to about 4 wavelengths or about 32 to 40 JAM. The destructive area is usually 
only seen with test slicks, which is explained by the fact that the more rapidly 
spreading oil is more transparent than the remaining oil. The onset of the hot 
thermal layer would in theory then be at thicknesses greater than this or at about 
50 gin. 

IR devices ,  cannot detect emulsions (water-in-oil emulsions) under most 
circumstances. 29  This is probably a result of the high thermal conductivity 
of emulsions as they typically contain 70% water and thus do not show 
a temperature difference. 

IR cameras are now very common, and commercial units are available from 
several manufacturers. In the past, scanners with IR detectors were largely 
used. A disadvantage of the older type of IR detector, however, is that they 
required cooling to avoid thermal noise, which would overwhelm any useful 
signal. Liquid nitrogen, which provides about 4 hours of service, had tradi-
tionally been used to cool the detector. Some, smaller sensors use Closed-cycle 
or Sterling coolers, which operate on the cooling effect created by expanding 
gas. While a gas cylinder or compressor must be transported with this type of 
cooler, refills or servicing may not be required for days at a time." In recent 
times, uncooled detectors are commonplace and have entirely replaced the 
older, cooled detectors. 

Most IR sensing of oil spills takes place in the thermal IR at wavelengths of 
8 to 14 gm. A slightly different sensor, which is designed as a fixed-mounted 
unit, uses the differential reflectance of oil and water at 2.5 and 3.1 gm. 31  Tests 
of a mid-band system (3.4 to 5.4 gm) over the Tenyo Maru oil spill showed 
no detection in this range, but ship scars were visible. 32-34  Specific studies in 
the thermal IR (8 to 14 gm) show that there is no spectral structure in this 
region. 35  Tests of a number of IR systems show that spatial resolution is 
extremely important when the oil is distributed in windrows and patches, 
emulsions are not always visible in the IR, and cameras operating in the 3 to 5 
gm range are only marginally useful. 36  Nighttime tests of IR sensors show that 
there is detection of oil (oil appears cold on a warmer ocean), however, the 
contrast is not as good as during daytime. 36-38  

The relative thickness information in the thermal IR can be used to direct 
skimmers and other countermeasure equipment to thicker portions of the slick. 
Figures 6.11, 6.12, 6.15, and 6.16 illustrate the utility of IR oil imaging. Oil 
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FIGURE 6.15 An 
image of an oil slick 
formed from a com-
posite of infrared and 
ultraviolet images. The 
red represents the 
thermal infrared and 
the thickest oil. The 
darker spots are inter-
mediate thicknesses. 
The light blue area 
represents thin oil or 
sheen and is taken from 
the ultraviolet image. 
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FIGURE 6.16 A composite image of the infrared and ultraviolet images of a slick similar to that 
in Figure 6.11. The outlined areas are from the infrared sensor and represent the thicker oil. Areas 
of the infrared and ultraviolet sensors are also annotated. 
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detection in the IR is not positive, however, as several false targets can interfere, 
including seaweed, shoreline, and oceanic fronts. 39  IR is reasonably inexpen-
sive, however, and is currently the prime tool used by the spill remote-sensor 
operator. 

6.3.3. Ultraviolet 

Ultraviolet (UV) sensors can be used to map sheens of oil as oil slicks 
display high reflectivity of UV radiation even at thin layers (<0.1 pm). 
Overlaid UV and IR images are often used to produce a relative thickness 
map of oil spills. This has been illustrated in Figures 6.15 and 6.16. UV 
cameras, though inexpensive, are not often used in this process, however, as 
it is difficult to overlay camera images. 3°  Data from IR scanners and derived 
from push-broom scanners can be easily superimposed to produce these IR/ 
UV overlay maps. UV data are also subject to many interferences or false 
images such as wind slicks, sun glints, and biogenic material. Since these 
interferences are often different from those for IR sensing, combining IR 
and UV can provide a more positive indication of oil than using either 
technique alone. 

6.4. LASER FLUOROSENSORS 

Laser fluorosensors are sensors that take advantage of the fact that certain 
compounds in petroleum oils absorb UV light and become electronically 
excited. This excitation is rapidly removed through the process of fluorescence 
emission, primarily in the visible region of the spectrum. Since very few other 
compounds show this tendency, fluorescence is a strong indication of the 
presence of oil. Natural fluorescing substances, such as chlorophyll, fluoresce at 
sufficiently different wavelengths than oil to avoid confusion. As different 
types of oil yield slightly different fluorescent intensities and spectral signa-
tures, it is possible to differentiate between classes of oil under ideal condi-
tions.40-50  Readers are referred to a separate subsection in this book for a review 
of laser fluorOsensors. This section on remote sensing will just give a brief 
introduction. 

Most laser fluorosensors used for oil spill detection employ a laser oper-
ating in the UV region of 300 to 355 nm. 40'50-52  With this wavelength of 
activation, there exists a broad range of fluorescent response for organic 
matter, centered at 420 nm. This is referred to as Gelbstoff or yellow matter, 
which can be easily annulled. Chlorophyll yields a sharp peak at 685 am. The 
fluorescent response of crude oil ranges from 400 to 650 nm with peak centers 
in the 480 nm region. The use of laser fluorosensors for chlorophyll and other 
applications has been well documented. 53  One laser fluorosensor operating at 
488 nm from an Argon ion laser was successful in detecting oil from a ship 
platform.54 
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Another phenomenon, known as Raman scattering, involves energy transfer 
between the incident light and the water molecules. When the incident UV light 
interacts with the water molecules, Raman scattering occurs. This involves an 
energy transfer between the incident light and the water molecules. The water 
molecules absorb some of the energy as rotational-vibrational energy and emit 
light at wavelengths, which are the sum or difference between the incident 
radiation and the vibration-rotational energy of the molecule. The Raman 
signal for water occurs at 344 nm when the incident wavelength is 308 nrn 
(XeC1 laser). The water Raman signal is useful for maintaining wavelength 
calibration of the fluorosensor in operation, but it has also been used in a limited 
way to estimate oil thickness because the strong absorption by oil on the surface 
will suppress the water Raman signal in proportion to thickness. 55.56  The point 
at which the Raman signal is entirely suppressed depends on the type of oil, 
since each oil has a different absorption coefficient. The Rarnan signal 
suppression has led to estimates of sensor detection limits of about 0.05 to 
0.1 pm. 57  

The principle of fluorescence can also be used on a smaller scale. A hand-
held UV light has been developed to detect oil spills at night at short range. 58  
Another related instrument is the Fraunhofer Line Discriminator, which is 
essentially a passive fluorosensor using solar irradiance instead of laser light.' I  
This instrument was not very successful because of the limited discrimination 
and the low signal-to-noise ratio. 

Laser fluorosensors have significant potential as they may be the only means 
to discriminate between oiled and unoiled seaweed and to detect oil on different 
types of beaches. Tests on shorelines show that this technique has been very 
successful. 59  Algorithms for the detection of oil on shorelines have been 
developed.°  Work has been conducted on detecting oil in the water column, 
such as occurs with the product, Orimulsion. 61-65  The fluorosensor is also the 
only reliable means of detecting oil in certain ice and snow situations. Oper-
ational use shows that the laser fluorosensor is a powerful tool for oil spill 
remote sensing.' 9 '43  

6.5. MICROWAVE SENSORS 

63.1. Radiometers 

Microwave radiometers detect the presence of an oil film on water by 
measuring an interference pattern excited by the radiation from free space. The 
apparent emissivity factor of water is 0.4 compared to 0.8 for oil.' "6  This 
passive device can detect this difference in emissivity and could therefore be 
used to detect oil. In addition, as the signal changes with thickness, in theory, 
the device could be used to measure thickness. This detection method has not 
been very successful in the field, however, as several environmental and oil-
specific parameters must be known. In addition, the signal return is dependent 
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on oil thickness but in a cyclical fashion. A given signal strength can imply any 
one of two or three signal film thicknesses within a given slick. Microwave 
energy emission is greatest when the effective thickness of the oil equals an odd 
multiple of one quarter of the wavelength of the observed energy. Biogenic 
materials also interfere, and the signal-to-noise ratio is low. In addition, it is 
difficult to achieve high spatial resolution (might need resolution in meters 
rather than the typical tens of meters for a radiometer). 67  

The Swedish Space Agency has carried out work with different systems, 
including a dual-band, 22.4- and 31-GHz device, and a single band 37-GHz 
device. 68  Skou, Sorensen, and Poulson describe a two-channel device operating 
at 37.5 and 10.7 GHz. 69  Mussetto and coworkers at TRW described the tests of 
44-94-GHz and 94-154-GHz, two-channel devices over oil slicks. 70  They 
showed that correlation with slick thickness is poor and suggest that factors 
other than thickness also change surface brightness. They suggest that a single-
channel device might be useful as an all-weather, relative-thickness instrument. 
Tests of single-channel devices over oil slicks have also been described in the 
literature, specifically a 36-GHz and a 90-GHz device. 71 '72  A new method of 
microwave radiometry has recently been developed in which the polarization 
contrasts at two orthogonal polarizations are measured in an attempt to measure 
oil slick thickness. 73  A series of frequency-scanning radiometers have been 
built and appear to have overcome the difficulties with the cyclical 
behavior. 74 ' 75  

In summary, passive microwave radiometers may have potential as all-
weather oil sensors. Their potential as a reliable device for measuring slick 
thickness, however, is uncertain at this time. 

6.5.2. Radar 

Capillary waves on the ocean reflect radar energy, producing a "bright" image 
known as sea clutter. Since oil on the sea surface dampens capillary waves, the 
presence of an oil slick can be detected as a "dark" sea or one with an absence 
of this sea clutter. 76  Unfortunately, the oil slick is not the only phenomenon 
detected in thig way. There are many interferences or false targets, including 
freshwater slicks, wind slicks (calms), wave shadows behind land or struc-
tures, seaweed beds that calm the water just above them, glacial flour, 
biogenic oils, and whale and fish sperm. 77-81  As a result, radar can be inef-
fective in locations such as Prince William Sound, Alaska where dozens of 
islands, freshwater inflows, ice, and other features produce hundreds of such 
false targets. Despite these limitations, radar is an important tool for oil spill 
remote sensing because it is the only sensor that can be used for searches of 
large areas and it is one of the few sensors that can "see" at night and through 
clouds or fog. 

Figures 6.17 to 6.23 illustrate the many slick look-alikes that appear in radar 
displays. 
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FIGURE 6.17 Airborne radar image of a small test slick attended by two boats. N6te that the 
boats cast a radar shadow on both their sides. A ship is passing to the top right of the image, and 
the ship's wake also casts a radar shadow. 

FIGURE 6.18 A satellite Radarsat-1 image of a large area of sea during the raising of the Irving 
Whale barge. Note that the area to the left that appears darker is caused by wind shadows and low 
winds. Only the small areas noted are actually slicks. One might have to know beforehand where 
the slicks were before interpreting this image. 

The two basic types of imaging radar that can be used to detect oil spills and 
for environmental remote sensing in general are Synthetic Aperture Radar 
(SAR) and Side-Looking Airborne Radar (SLAR). SLAR is an older but less 
expensive technology that uses a long antenna to achieve spatial resolution. 
SAR uses the forward motion of the aircraft to synthesize a very long antenna, 
thereby achieving very good spatial resolution, which is independent of range, 
with the disadvantage of requiring sophisticated electronic processing. Though 
inherently more expensive, the SAR has greater range and resolution than the 
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FIGURE 6.19 A close-up of the area shown in Figure 6.18 from radar satellite. These dark 
areas are actually oil, as confirmed by ground observation. The white spots in the center are 
ships. 

FIGURE 6.20 An image of the source of the oil shown in Figure 6.19. The ships shown here 
appear as white spots in the radar image in Figure 6.19. Photography by Environment Canada. 

SLAR. In fact, comparative tests show that SAR is vastly superior. 82-84  Search 
radar systems, such as those frequently used by the military, cannot be used for 
oil spills because they usually remove the clutter signal, which is the primary 
signal of interest for oil spill detection. Furthermore, the signal processing of 
this type of radar is optimized to pinpoint small, hard objects, such as peri-
scopes. This signal processing is very detrimental to oil spill detection. 
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FIGURE 6.21 A radar satellite image of a coastline, There is no oil in this image. The track 
through the image is the wake of a vessel. It should be noted that all ship wakes leave a shadow 
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FIGURE 6.22 A view of an area near ships and platforms. A possible slick is pointed out; 
however, as it is very near a major low-wind area, it is difficult to say whether or not this is really 
a slick. 
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FIGURE 6.23 A view of the track of a vessel. Despite the interpretation that there was a slick 
behind the vessel, the black line may be simply a ship wake. Note also the other dark areas from 
low winds and coast wind shadows. 

SLAR has predominated airborne oil spill remote sensing, primarily 
because of the lower price. 85 ' 86  There is some recognition among the opera-
tors that SLAR is very subject to false hits, but solutions are not offered. 

Experimental work on oil spills has shown that X-band radar yields better 
data than L- or C-band radar. 87 ' 88  It has also been shown that vertical antenna 
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polarizations for both transmission and reception (VV) yield better results than 
other configurati0ns. 82'89-91  The ability of radar to detect oil is also limited by sea 
state. Sea states that are too low will not produce enough sea clutter in the 
surrounding sea to contrast to the oil, and very high seas will scatter radar 
sufficiently to block detection inside the troughs. Indications are that minimum 
wind speeds of 1.5 m/s (-3 knots) are required to allow detectability, and 
a maximum wind speed of 6 rn/s (-12 knots) will again remove the effect. 92-94  
The most accepted limits are 1.5 m/s (-3 knots) to 10 m/s (-20 knots). This limits 
the environmental window of application of radar for detecting oil slicks. Gade 
et al. studied the difference between extensive systems from a space-borne 
mission and a helicopter-borne system. 95  They found that at high winds, it was 
not possible to discriminate biogenic slicks from oil. At low-wind speeds, it was 
found that images in the L-band showed discrimination. Under these conditions, 
the biogenic material showed greater damping behavior in the L-band. Okamoto 
et al. studied the use of ERS- 1 using an artificial oil (oleyl alcohol) and found that 
an image was detected at a wind speed of 1 lm/s, but not at 13.7 m/s. 96  

SAR can be polarimetric imaging that is horizontal-horizontal (RH), 
vertical-vertical (VV), and cross combinations of these. Several researchers 
have shown that VV is best for oil spill detection and discrimination. 97-10°  
Migliaccio et al. showed that the co-polarized phase difference—for example, 
the difference between the HI-I and VV phases can be used to discriminate oil 

FIGURE 6.24 An 
HH polarized view of 
the sea surface. 
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FIGURE 6.25 A VV 
polarized view of the 
same area of sea 
surface. Note that 
this polarization yields 
a slightly clearer 
image of sea-surface 
details than shown in 
Figure 6.24, 

slicks from biogenic slicks. 97  A larger standard deviation for the slick, 
compared to the sea, typically indicates that it is oil. Figures 6.24 and 6.25 show 
the difference between a VV and HH polarization. 

Radar has also been used to measure currents and predict oil spill move-
ments by observing frontal movements. 101  Work has shown that frontal currents 
and other features can be detected by SAR. 102  

Shipborne radar has similar limitations and the additional handicap of low 
altitude, which restricts its range to between 8 and 30 km, depending on the 
height of the antenna. Ship radars can be adjusted to reduce the effect of sea 
clutter deenhancement. Shipborne radar successfully detected a surface slick in 
the Baltic Sea from 8 km away and during a trial off the coast of Canada at 
a maximum range of 17 lun. 103  During the Prestige spill, a Netherlands vessel 
successfully used this technique to guide a recovery vessel into slicks. The 
technique is, however, very limited by sea state, and in all cases where it was 
used, the presence and location of the slick were already known or suspected. 
Recently, researchers have carried out work on improving the imaging of slicks 
from shipborne radars. m4  Today there are some commercial products that 
enhance the images from shipborne radar to enable some oil imaging. 

Gangeskar has proposed an automatic system that can be mounted on oil 
drilling platforms. 1°5  This system would use standard X-band ship navigation 
units and would provide an alert if an oil spill was present. The system includes 
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an extensive postprocessing system to provide both a user-friendly GUI and an 
automatic detection and alert system. The system has not been fully tested to 
date. 

In summary, radar optimized for oil spills is useful in oil spill remote 
sensing, particularly for searches of large areas and for nighttime or foul 
weather work. The technique is highly prone to false targets, however, and is 
limited to a narrow range of wind speeds. Because of the all-weather and day-
night capability, radar is now the most common means of remote sensing. 

6.5.2.1. Radar Processing 

Because radar detection of oil spills is so highly susceptible to false images, 
much work has taken place on means to differentiate oil slicks and false targets, 
often called look-alikes. These look-alikes include: low-wind areas, areas 
sheltered by land, rain cells, organic films, grease ice, wind fronts, up-welling 
zones, oceanic fronts, algae blooms, current shear zones, and so on. 106  The 
discussion in this subsection is relevant to both satellite and airborne SAR 
systems. 

Several "automatic" systems have been designed for slick detection. m  
Limited testing with actual satellite output has shown that many false signals 
are present in most locations. 108 • 109  Extensive effort on data processing appears 
to improve the chances of oil detection) 1°  In recent years, automatic systems 
have given way to systems involving smart algorithms that are manipulated by 
operators. III-113 

The most common way to eliminate wind-origin look-alikes is to map the 
wind fields in the same coordinates as the radar data. "" 4  The most common 
slick look-alikes are low-wind areas. One group of researchers used radar wind 
data calibrated to wind data from an ocean buoy to map oil seeps in the southern 
Gulf of Mexico. 114  

Most researchers used some form of neural networks or fuzzy logic to assist 
in the discrimination of look-alikes and the intended targets." 5- " 8  Others used 
various forms of models such as range dependence models." 9  

Topouzelis and coworkers developed several series of mathematical 
networks for differentiating slicks from look-alikes) 20)23  The basis of these 
networks is the idea that generally oil slicks are imaged through a complex 
series of processes and conditions. Thus imaging is not a simple statistical 
manipulation. The same group developed a fuzzy classification to differentiate 
look-alikes from oil spills. The methodology involved four procedures. The 
first is the segmentation of the image into large image segments with different 
statistical values. In the second procedure, a detailed scale segmentation is 
carried out, and statistical values of each segment are compared to the threshold 
of the large segment from which it came. Third, the dark portions are classified 
according to the properties of the surrounding areas. Finally, the dark areas 
are classified using knowlege bases. The group also examined the use of 
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forward-feed neural networks to discriminate slicks from look-alikes. 120,124 

Several topologies of forward-feed neural networks were examined, and none 
were better than others. The networks yielded classification accuracies as high 
as 91.3 to 93.6% for the given example. A recent work by Topouzelis used the 
inputs of shape texture, asymmetry, mean difference to neighbours, and power 
to the mean images in a neural network. m6  The workers used forward-feed 
neural networks. It was found that the classification accuracy was 99.4% for the 
MLP network in the test case. Later, Topouzelis and co workers used a similar 
method to test a data set of 69 oil spills and 90 look-alikes. 122  They found 
a combination of 11 features out of a possible 25 features. The 11 features 
found to be best for discrimination are perimeter, shape factor object mean 
value, ratio of the power to mean ratios, local area contrast ratio, mean border 
gradient, maximum border gradient, standard deviation border gradient, 
maximum border gradient, mean difference to neighbors, and spectral texture. 
Use of these factors resulted in classification accuracies of 85.3% for oil spills 
and 84.4% for look-alikes. 

A similar approach is to use a classification scheme that incorporates some 
of the same input parameters. Karantzalos and Argialas proposed a classifica-
tion scheme involving processes and then a classification scheme. The first 
processing step involves filtering and levels. 125  The second step is segmentation 
of the images to include all suspected slicks. The final step is to classify the 
potential slicks according to area, perimeter, shape complexity eccentricity, 
orientation, segment mean border gradient, inside segment standard deviation, 
and outside segment standard deviation. 

Several researchers have used Geographic Information System (GIS) 
databases to assist in the interpretation of SAR imagery. 125-131  The technique 
divides the area of interest into segments and notes data such as currents, 
proximity to land, wind, and sea lanes. These parameters are then correlated to 
the SAR images. For example, oil spills are much more likely under the correct 
wind conditions, in sea lanes, and far from land. Tahvonen used data sets 
including wind speed and direction, sea-surface temperature, heavy rain, and 
location of algae blooms to assist in the discrimination. 126  Muellenhoff 
proposed a daM set consisting of wind information, sea-surface temperature, 
chlorophyll-a concentration, geostrophic currents, wave information, contex-
tual background information, and existing oil spill databases. 129  The assigned 
influences were wind speed-30%; wind direction-12%; sea-surface tem-
perature-14%, chlorophyll-a concentration-10%; oil ports-10%; and main 
traffic lines-20%. Wave and current direction only accounted for 2% each. 

Migliaccio and group studied the processing of SAR images from an 
aircraft-based sensor. 132-134  It was noted that the main obstacle to analysis was 
speckle in the images. Speckle is caused by stray reflectances, such as from 
rough seas. Speckle is also caused by random constructive and destructive 
interference. Since speckle is temporary, multi-look imaging is one way to 
decrease speckle by a large amount. Further processing can then be achieved by 
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combining multi-look data with wind data, best obtained from satellite scat-
terometers. The technique proposed for multi-look data is to divide the SAR 
imagery into subbands and then generate lower-resolution imagery. Then the 
images are averaged. This results in reduction of speckle. To process single-
look data with high speckle content, filters are used. First speckle is removed, 
and then an ROA (ratio of average) filter is used. In both techniques, edge 
detection is used to find the actual limits of the slicks or look-alikes. 

Marghany and co workers used a fractal method to analyze SAR data. 135  
The images are broken into fractals, and these fractals have dimensions that are 
different for oil spills and look-alikes. A further study under different wind 
speeds showed that there were differences only in the wide beam mode for low-
wind zones and current shear features between real oil slicks. 136  Danisi et al. 
utilized a similar approach. 137  

Another method employed by researchers to separate oil slicks from look-
alikes is to use textural analysis. 138 ' 139  Direct statistical methods are also 
employed. Tello et al. noted that an algorithm characterizing the border 
between oil spill candidates and the surrounding sea allows for good classifi-
cation. 139  Lounis et aL used a measure of similarity between the local proba-
bility density function of clean water and of the dark area to be examined. 14°  
Comparing the two values is said to result in discrimination between oil and 
look-alikes. Pelizzari employed a similar technique using graph cuts to estimate 
a smoothness factor."' 

Ferraro et al. describe the development of an operational system for the 
Mediterranean Sea and show a procedure for identifying oil spills as (1) 
isolation and contouring of all dark signatures, (2) extraction of shape and 
backscattering contrast signatures, (3) test of these values against standard 
values, and (4) calculation of the probabilities of each patCh. 142-144  

Another series of techniques involves the use of two streams of information. 
Several researchers used both SAR and visible information from the MODIS 
(Moderate Resolution Imaging Speetroradiometer) satellites to discriminate 
between look-alikes and oil slicks. 145  The visible imagery is subject to false 
images, but not the same ones as satellites, and thus discrimination can be 
achieved to a degree. Similarly, Sipelgas used visible imagery from the MODIS 
satellite to assist in discrimination of false images from oil slicks in the Gulf of 
Finland. 146  Adamo et al. used three streams for information—SAR data, 
MODIS, and MERIS data—to discriminate look-alikes from actual spills. 145  

6.5.3. Microwave Scatterometers 

A microwave scatterometer is a device that measures the scattering of radar 
energy by a target. One radar scatterometer was flown over several oil slicks 
and used a low-power transmitter operating in the Ku band (13.3 GHz)." The 
scatterometer detected the oil, but discrimination was poor. The "Heliscat," 
a device with five frequencies, has been used to investigate capillary wave 
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damping. 92  The advantage of a microwave scatterometer is that it has an aerial 
coverage similar to optical sensors and it can look at several incident angles. 
The main disadvantages include the lack of discrimination for oil and the lack 
of imaging capability. 

6.5.4. Surface Wave Radars 

It is possible to send radio waves along the sea using high frequency. The 
conductivity of the sea acts as a form of wave guide. These radars can be used to 
detect ships as far out as 500 km. 147  Since these are surface wave phenomena, 
only targets above the surface are detected; thus slicks may not be detected by 
this technique. 148  Modeling of the technique does not show whether there is 
potential for this method. 149  

6.5.5. Interferometric Radar 

Radars can be used to measure height, currents, and other surface elevation 
phenomena using interferometric techniques. Some radar systems on aircraft 
are fitted for this application, such as the government of Canada Convair 5 80. 
This can also be carried out in space using two satellites traveling in tandem. 
One research group employed the tandem satellite pairs of ERS-2 and 
ENVISAT to carry out such work, but there are no reports on the use on oil 
spills . 15°  

6.6. SLICK THICKNESS DETERMINATION 

There has long been a need to measure oil slick thickness; this need has been 
expressed both within the oil spill response community and among academics 
in the field. There are presently no reliable methods, either in the laboratory or 
in the field, for accurately measuring oil-on-water slick thickness. The ability to 
do so would significantly increase understanding of the dynamics of oil 
spreading and behavior. Knowledge of slick thickness would make it possible 
to determine the effectiveness of certain oil spill countermeasures, including 
dispersant application and in-situ burning. Indeed, the effectiveness of indi-
vidual dispersants could be determined quantitatively if the oil remaining 
on the water surface following dispersant application could be accurately 
measured. 151,152  

6.6.1. Visual Thickness Indications 

A very important tool for working with oil spills has been the relationship 
between appearance and thickness. Careful study of the literature on this 
relationship and comparison of this to field experience shows that there is 
limited potential to scale thicknesses to visual appearance. 8  The only phys-
ical-based appearances that occurs are thicknesses of about 0.7 to 2.5 urn 



C-13-6-) 
	

Oil Analysis and Remote Sensing 

TABLE 6.1 Relationship of Thickness to Appearance 

Visibility Thresholds (pm) 

Darkening Dull 

Minimum Silvery Rainbow Colors 	Colors 	Dark 

Typical 	 0.09 	0.1 	0.6* 	0.9 	 2.7 	 8.5 

thickness 

*Note this is the only physical-based appearance factor 

FIGURE 6.26 A rainbow sheen above a sunken vessel. The appearance of a rainbow sheen is the 

only strong visible indicator of slick thickness, and thickness may be between about 0.7 and 2.5 

Phowgraphy by Envimnment Canada, 

at which the rainbow colors appear as a result of multiple constructive and 
destructive interferences by light. Table 6.1 presents a summation of the 
best knowledge on this phenomenon. Figures 6.26 and 6.27 show typical 
rainbow sheens for which we can estimate that the thickness is about 1 Rm. 
This is the only color appearance that has a physical slick thickness asso-
ciated with it. 

6.6.2. Slick Thickness Relationships in Remote Sensors 

A number of investigators tried to correlate slick thickness with appearance in 
various remote-sensing instruments. Hollinger and Mennella conducted a series 
of eight controlled oil spills off Virginia to investigate the use of microwave 
radiometry to delineate oil spills. 153  They used 19.4 and 69.8 GHz radiometers 
on the spills, Measurements using sorbents were used to calibrate the 
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FIGURE 6.27 A rainbow sheen above another sunken vessel. The appearance of a rainbow sheen 
is the only strong visible indicator of slick thickness, and thickness may be between about 0.7 and 
2.5 nm. Photography by Environment Canada. 

radiometer. It was noted that the sheens typically had a thickness of 2 to 4 gm. It 
was found that 90% of the oil was in 10% of the slick area and that the 
microwave threshold was about 0.1 mm (100 gm). 

A series of experiments was carried out in 1979 to evaluate IR and SLAR 
for oil spill detection. 154  The imagery was correlated against visual and 
sorbent measurements, which were used to derive a thickness estimate. It 
was concluded that the IR threshold was between 25 and 50 p.m and for 
SLAR 100 nm. Furthermore, manipulation of data showed that a mass 
balance could be achieved if the thickness at which the IR showed oil to be 
colder at the sea occulTed at 100 gm and for the heated portion of the oil at 
1,000 i_tm. 

The United Kingdom conducted Isowake Experiments in 1982. 155 ' 156  On 
the basis of estimations and calculations, it was concluded that the lowest 
detectable slick thickness for IR was between 10 and 50 gm, whereas hot spots 
in the IR image could be as much as 1,000 gm. 

MacDonald et al. used photography from the space shuttle to define up to 
124 slicks in an area of the Gulf of Mexico, offshore Louisiana. 157  Similarly, 
a thematic image from Landsat showed at least 66 slicks in one large area. 
Some of the thickness relationships were based on unpublished experimental 
data from Duckworth. 

Brown et al. conducted experiments to measure the visibility of oil slicks. 
The observers and a visible UV camera were mounted in a crane basket 30 m 
over the slick. 12' 158 ' 159  It was found that the detection ability decreased by over 
50% for most oils and for the cameras when the angle was changed from 90 to 
55 degrees from the horizontal (equivalent incidence angle of 0 to 35 degrees). 
Detectability degraded to 70% and sometimes to nil as the viewing angle was 
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decreased past 55 through 35 degrees. Brown et al. conducted several experi-
ments to ascertain the relationship between thickness of slicks and the density 
(or intensity) of the IR image. 39  The thicknesses varied between 1 and 10 mm, 
and thicknesses were measured using an acoustic system. No relationship 
between slick thickness and IR brightness was found. 

6.6.3. Specific Thickness Sensors 

The suppression of the water Raman peak in laser fluorosensor data has not 
been fully exploited or tested. This technique may work for thin slicks, but not 
necessarily for thick ones, at least not with a single excitation frequency. 
Attempts have been made to calibrate the thickness appearance of IR imagery, 
but also without success. It is suspected that the temperatures of the slick as 
seen in the IR are highly dependent on oil type, sun angle, and weather 
conditions. If so, it may not be possible to use IR as a calibrated tool for 
measuring thickness. Because accurate ground-truth methods do not exist, it is 
very difficult to calibrate existing equipment. 160,161 The use of sorbent tech-
niques to measure surface thickness yields highly variable results. 151  As noted 
in the section on microwave radiometers, the signal strength measured by these 
instruments can imply one of several thicknesses. This methodology does not 
appear to have potential other than for measuring relative oil thickness. 

A variety of electrical, optical, and acoustic techniques for measuring oil 
thickness have been investigated. 161.162 Two promising techniques were 
pursued in a series of laboratory measurements. In the first technique, known as 
thermal mapping, a laser is used to heat a region of oil, and the resultant 
temperature profiles created over a small region near this heating are examined 
using an IR camera. 163  The temperature profiles created are dependent on the 
oil thickness. A more promising technique involves laser acoustics. i64,165  The 
Laser Ultrasonic Remote Sensing of Oil Thickness (LURSOT) sensor consists 
of three lasers, one of which is coupled to an interferometer to accurately 
measure oil thickness. 160,165-168 The sensing process is initiated with a thermal 
pulse created in the oil layer by the absorption of a powerful CO2 laser pulse. 
Rapid thermal expansion of the oil occurs near the surface where the laser beam 
was absorbed, which causes a steplike rise of the sample surface as well as an 
acoustic pulse of high frequency and large bandwidth (-15 MHz for oil). The 
acoustic pulse travels down through the oil until it reaches the oil—water 
interface where it is partially transmitted and partially reflected back toward the 
oil—air interface, where it slightly displaces the oil's surface. The time required 
for the acoustic pulse to travel through the oil and back to the surface again is 
a function of the thickness and the acoustic velocity of the oil. The displace-
ment of the surface is measured by a second laser probe beam aimed at the 
surface. Motion of the surface induces a phase or frequency shift (Doppler 
shift) in the reflected probe beam. This phase or frequency modulation of the 
probe beam can then be demodulated with an interferometer. 169  The thickness 
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FIG U RE 6.28 The signal from a 3-laser-thickness sensor. The time corresponds to a thickness of 
about 6 mm. This was measured by a prototype sensor mounted in an aircraft and flying over bins 
with various thicknesses of oil on water. 

can be determined from the time of propagation of the acoustic wave between 
the upper and lower surfaces of the oil slick. This is a very reliable means of 
studying oil thickness and has great potential. Laboratory tests have confirmed 
the viability of the method, and a test unit has been flown to Confirm its 
operability. 160 Figure 6.28 shows the first airborne measurement of slick 
thickness. 

Several attempts have been made to measure thickness by using visible 
spectral imaging. As there are no visual indications other than the rainbow 
sheen area around 0.8 pm, these efforts are wasted. 8 "7°  

6.7. ACOUSTIC SYSTEMS 

Pogorzelski has shown that acoustic means can be used to measure oil 
viscosities on the surface." 1  A directional acoustic system employing high-
frequency forward specular scattering was used in the laboratory and at sea. 
Signals scattered are related to the rheological film properties. It is not known at 
this time if the system is scalable or exactly what the limitations are. 

6.8. INTEGRATED AIRBORNE SENSOR SYSTEMS 

Increasingly, a number of different types of airborne oil spill remote sensors are 
being consolidated into sensor systems. The reason for this integration is to take 
advantage of the different information provided by each of the specific sensors 
and combine the information to provide a more complete and comprehensive 
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information product. Although each of the individual sensors has specific 
inherent weaknesses such as false detections, these false detections are often 
different for each sensor type; hence a consolidation of information can help 
resolve and remove some of the uncertainties that exist from a single data 
source. Furthermore, additional information such as the relative thickness of 
the oil slick can be deduced from the overlaying of imagery from several sensor 
types. Although the absolute thickness of an oil slick remains the subject of 
continued research and scientific opinion, the ability to locate the thicker 
portions of the slick is essential in terms of operational spill cleanup and 
response. In addition to the integration of a number of remote sensors into 
a sensor system, information from other sources such as marine vessel traffic 
surveillance systems (i.e., automatic identification system, AIS) can be inte-
grated and can play an essential role in identifying the source of the marine 
pollution. 

Two commercially available airborne marine oil spill remote-sensing 
systems are the MEDUSA and the MSS 6000) 72-174  MEDUSA incorporates 
a number of sensor technologies such as laser fluorosensors, IR/UV line 
scanners, forward-looking IR sensors, microwave radiometers, SLAR 
systems, and camera systems, as well processing software into a flexible real-
time data acquisition and processing system. The data from the various 
sensors are geo-referenced and fused with information from Airborne Infor-
mation Systems (AIS) and marine surveillance radars into a G1S—based 
display output format. The processing software is known as the Oil Spill 
Scene Analysis System (OSSAS) and allows for the extraction of features 
such as the area of oil coverage, including areas of intermediate and thicker 
portions of the slick. The MSS 6000 Maritime Surveillance System is 
comprised of a flexible suite of sensors such as SLAR systems, IR/UV line 
scanners, forward-looking IR sensors, microwave radiometers, and camera 
systems, along with data processing and mission management software in 
order to perform the oil spill remote-sensing surveillance task. The MSS 6000 
also focuses on sensor integration and includes AIS and marine search radar 
inputs. All sensor data, imagery, slick targets, vessels, and the like are 
annotated using navigation data from a single source to form an integrated 
part of a GIS). Both the MEDUSA and MSS 6000 can distribute their data in 
near—real time via direct downlink or satellite communications to vessels or 
shore-based communications centers. A large number of maritime nations are 
now employing integrated airborne sensor systems) 74' 175  

6.9. SATELLITE REMOTE SENSING 

The use of optical satellite remote sensing for oil spills has been attempted 
several times. The slick from the IXTOC I well blowout in Mexico was 
detected using GOES (Geostationary Operational Environmental Satellite) 
and by the AVHRR (Advanced Very High Resolution Radiometer) on the 
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LANDSAT satellite. 11  A blowout in the Persian Gulf was subsequently 
detected. The massive Exxon Valdez slick was detected on SPOT (Satellite Pour 
l'Observation de la Terre) satellite data. 176  Oiled ice in Gabarus Bay resulting 
from the Kurdistan spill was detected using LANDSAT data. 177 ' 178  Several 
workers were able to detect the Arabian Gulf War Spill in 1991. 179-182  The 
Haven spill near Italy was also monitored by satellite. 183  A spill in the Barents 
Sea was tracked using an IR band on NOAA 10. 184  It is significant to note that, 
in all these cases, the position of the oil was known and data had to be processed 
to actually see the oil, which usually took several weeks. Newer findings show 
that the ability to detect oil may be a complex function of conditions, oil types, 
and view angles. 185-187  Figure 6.29 shows a visible satellite image of an area in 
Russia in which there was a massive pipeline spill. As noted in the caption for 
this image, the oil is not visible; however, a round lake in the image was 
mistaken for oil. Figure 6.30 shows an oiled ice area off Canada in which 
sediment and oil appear alike. 

There are several problems associated with relying on satellites operating in 
optical ranges, for oil spill remote sensing. The first is the timing and frequency 
of overpasses and the absolute need for clear skies to perform optical work. 188  
The chances of the overpass and the clear skies occurring at the same time give 

FIGURE 6.29 A SPOT satellite visible image of an area in Russia where a large oil spill 
occurred, The oil spill is shown by the arrows. The black round objects are lakes. This illustrates 
that satellite visible imagery is difficult to interpret. 
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FIGURE 6.30 A satellite 
visible image of an area off 
the east coast of Canada 
where an oil spill had 
occurred. Some of the black 
stripes in the white ice are 
oil mixed with sediment; 
others are sediment. The 
black on the right is land and 
the black on the left is sea. 
This image also illustrates 
the lack of discrimination of 
targets using visible satellite 
imagery. 

a very low probability of seeing a spill on a satellite image. This point is well 
illustrated in the case of the Exxon Valdez spi11. 189  Although the spill covered 
vast amounts of ocean for over a month, there was only one clear day that 
coincided with a satellite overpass, and that was on April 7, 1989, Another 
disadvantage of satellite remote sensing is the difficulty in developing algo-
rithms to highlight the oil slicks and the long time required to do so. For the 
Exxon Valdez spill, it took over two months before the first group managed to 
"see" the oil slick in the satellite imagery, although its location was precisely 
known. Recently, several workers have attempted to use MODIS visible data to 
detect oil spills. ' 90' 191  To be successful, these techniques generally rely on 
ancillary data such as suspected position or other satellite data. 

There is some information on slicks available from angular information. 
For example, Chust and Sagarminaga used the Multi-angle Imaging Spec-
troRadiometer (MISR) sensor aboard a satellite to detect oil spills on Lake 
Maracaibo, Venezuela. 192  This sensor uses nine push-broom cameras at fixed 
angles from nadir to 70.5" to examine particular surfaces. A comparison of 
this angular sensor shows that better contrast was obtained than a simple nadir 
camera on another satellite. Data analysis showed that oil spills appear in 
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greater contrast in those view angles affected by sun glitter because of the 
presence of oil. 

Recently, IR data from satellite has been used to map the land oil pollution 
in Kuwait. 193  It was found that the old hydrocarbon-contaminated areas showed 
as much as 10 °C difference from the surrounding land. Ground-truthing was 
used extensively in compiling the data. Casciello et al. also made an attempt to 
use IR imagery from the thermal IR region of the AVEIRR satellite to locate 
known oil spills: 94  

Radar satellites, including ERS-1 and -2, Radarsat-1 and -2, and ENVISAT, 
are useful in detecting large offshore spills and in spotting anomalies: 95-198  
Radarsat has been used for detecting oil seeps and smaller spills resulting from 
an oil barge. I99 '20°  The relative location of these smaller slicks was known 
before the detection. A novel application of Radarsat has been the study of oil 
lakes in the deserts of Kuwait. 201,202 A number of nations now use radar 
satellites routinely to provide imagery for larger spills and to give indications of 
ship discharges. ERS- 1 and 2 have been used for mapping oil spills in the 
Caspian Sea. 202  Fortuny et al. describe the use of ERS-2 and ENVISAT to 
provide imagery during the Prestige incident off Spain. 203 

Torres Palenzuela and co workers used two ASAR (Advanced SAR) images 
from the Envisat satellite to study the Prestige spill off Spain. 204  Using several 
techniques that were readily-available, such as filtering and comparison to GIS 
data of the areas, several slicks were identified. These slicks were confirmed by 
recorded sightings from helicopters and ships. 

Several countries have instituted satellite monitoring systems for oil 
pollution.205,206  Many of these countries use processing methods as described 
above. Extensive programs are in place in the Baltic Sea, North Sea, and 
English Channe1. 143  There are now beginning programs in the Black, Caspian, 
and Azov seas. 206,207 Canada has had a program in place for several years. 205  
The Mediterranean Sea has had such a program for a long tin -W. 141 ' 142  A 
constellation of monitoring satellites is proposed for the Mediterranean sea. 

In recent years, a number of new satellite-borne SAR sensors have been 
launched; see Table 6.2. While one of these sensors, Radarsat-2, operates in 
the traditional' C—band, TerraSAR—X and Cosmos Skymed operate in the 
X—band, while the PALSAR sensor on ALOS operates in the L—band. As 
noted above, X—band is the preferred band for oil spill remote sensing in terms 
of Bragg scattering. All four of these new SAR satellites have polarimetric 
imaging modes (some are experimental vs. operational modes) and much 
higher spatial resolution (down to 3 m), which may have application for oil spill 
remote sensing. Radarsat-2, like its predecessor, is an operational commercial 
satellite that can be tasked to respond to emergency situations such as major oil 
spills. The time required to task Radarsat-2 in emergency mode is now 4 hours, 
which is a large improvement from the 12 hours required to task its predecessor. 
As noted above, VV polarization provides a superior clutter-to-noise ratio 
(CNR) over HH polarization for oil spill detection. Radarsat-2 is fully 



TABLE 6.2 Current and Future Satellite-Borne SAR Sensors 

Satellite Launch Date Owner/Operator Band 

ERS-2 1995 European Space Agency C 

RADARSAT-1 1995 Canadian Space Agency C 

RADARSAT-2 2007 Canadian Space Agency C 

ENVISAT (ASAR) 2002 European Space Agency C 

ALOS (PALSAR) 2006 Japan Aerospace Exploration 
Agency 

L 

TerraSAR-X 2007 German Aerospace Centre X 

Tandem -X thd German Aerospace Centre X 

Cosmos Skymed-1/2 2007 Italian Space Agency X 

TecSAR 2008 Israel Aerospace Industries X 

Sentinel-1 2012 European Space Agency C 

RADARSAT-Constellation 
(3-satellites) 

2014 Canadian Space Agency C 
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polarimetric, and there is interest in investigating whether a dual polarization 
ScanSAR mode utilizing VV/VH polarizations will work for oil and ship 
detection, respectively, as part of the Integrated Satellite Tracking of Pollution 
(ISTOP) program. 208  The increased number of SAR satellites, as well as the 
plans to operate constellations of small satellites such as Cosmos (Constellation 
of Small Satellites for Mediterranean basin Observation), will provide 
increased temporal coverage with revisit times down to a few hours in some 
circumstances. The opportunity for increased frequency of image collection 
should prove useful to the oil spill response community. Figures 6.31 to 6.36 
show the use of radar satellites and the look-alikes to oil that sometimes appear 
in the images, 

6.10. OIL UNDER ICE DETECTION 

The difficulties in detecting oil in or under ice are numerous. Ice is never 
a homogeneous material but rather incorporates air, sediment, salt, and water, 
many of which may present false oil-in-ice signals to the detection mecha-
nisms. In addition, snow on top of the ice or even incorporated into the ice adds 
complications. During freeze-up and thaw in the spring, there may not be 
distinct layers of water and ice. There are many different types of ice and 
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FIGURE 6.31 A satellite radar image of a known spill off the Galapagos Islands. Note that most 
of the image consists of slick look-alikes, 

different ice crystalline orientations. A separate subsection in this book 
provides a review of oil in and under ice. 

6.11. UNDERWATER DETECTION AND TRACKING 

Many different techniques have been tried for underwater oil detection. First, 
the division should be made between oil in the water column or floating on 
a pycnocline, and oil on the bottom. Quite different physics and conditions can 
apply to these different situations. 

Several parties have tried to use standard sonars to detect submerged oil on 
the bottom. Oil on the bottom can appear as a softer surface than ordinary 
bottom sediment. 209  The problem arises in that vegetation on the bottom also 
appears similar, and thus many false positives arise. In the water column, sonar 
can be useful as it can locate intermediate oil on pycnoclines; however, there is 
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FIGURE 6.32 A satellite radar image of the large Sea Empress spill off the United Kingdom. 
The dark areas near the shore are calm areas. Note that the slick and these calm areas blend so that 
there is no delineation between them near the shoreline. 

FIGURE 6.33 A Radarsat-1 image of the large Sea Empi-ess spill off the United Kingdom. 
Similar features as in Figure 6.32 are noted. 
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FIGURE 6.34 A third satellite radar image of the large Sea Empress spill off the United 
Kingdom. This image was taken a few days after the images in Figures 6.32 and 6.33. It appears 
that the oil slick has separated and some has moved to the bottom of the photograph and part 
toward the shore. This was never confirmed, and the "slick" at the bottom of the, photograph may 
have indeed been oceanographic features. 

no unique signature, and there are often weeds and other debris on pynoclines. 
Wendelboe et al. report on tests using a 200 and 400 kHz (dual-frequency) 
multibeam system. 21°  The contributing signal is the lower acoustic reflectivity 
of the oil than typical bottom geological formation or the better reflection than 
weed beds. Wendelboe et al. used the backscatter signals from several tests to 
develop algorithms for oil detection. This was tested in a tank with a 90% 
success rate and a 23% false detection rate. 

Oil on the bottom has successfully been mapped by underwater cameras, 
often mounted on sleds. 210-213  The problems with this technique are the bottom 
visibility— which is often insufficient to discriminate—and the difficulty in 
towing the camera vehicle as slow as I knot, the necessary speed. Pfeifer et al. 
were successful in employing mosaics of photographs to determine the aerial 
extent of oil on the seafloor. 212-213  

A low-technology approach had been historically employed. Heavy oil, oil 
such as would sink, often adheres to oil snares or pom-poms, which are 
polypropylene strips mounted much as a cheerleader's pom-pom. These can be 
mounted on a beam and towed over the bottom and then raised periodically to 
see if oil has adhered. 21°  Alternatively, they can be mounted on an anchor with 
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FIGURE 6.35 A 
radar image of the 
Nakhodka oil spill off 
the west coast of Japan 
(Radarsat-1). Only the 
black features on 
the lower half of the 
photograph and near 
the shoreline have been 
confirmed as oil. The 
remainder of the black 
areas are oceano-
graphic features. 

a marker buoy. These are then raised periodically to check whether the 
subsurface oil has contacted them. 

Camilli et al. have successfully applied mass spectrometry to the detection 
of sunken heavy oil (Fuel Oil #6). 214  Using the small and enclosed mass 
spectrometer, TETHYS, the low-molecular-weight hydrocarbons coming from 
sunken oil masses are monitored. The mass spectrometer is mounted in 
a submersible that is driven over the seafloor. The exact position of the 
submersible is monitored closely using an acoustic positioning system on the 
surface. Signals then can be correlated closely to the position on the seafloor. 
Three ion peaks of ink 43, 41, 27 are monitored to establish hydrocarbon 
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FIGURE 6.36 A satellite radar image of an oil slick in the North Sea. This slick was confirmed 
by aerial observation. 

presence. Tests show that the ion peaks provide sensitivity as lolk as 0.4 ppb. 
This is fully sufficient to monitor sunken oil. Tests were conducted in a test tank 
and later over actual spills in the Gulf of Mexico. The technique was able to find 
concentrations of sunken oil and place the locations within 1 meter. The tests in 
the Gulf of Mexico were conducted at depths of 200 meters and confirmed by 
using cameras on the submersible. 

6.12. SMALL REMOTE -CONTROLLED AIRCRAFT 

Several parties have suggested using remote-controlled aircraft to provide more 
economical solutions for response personne1. 215 '216  In fact, remote-controlled 
aircraft have been used by a number of parties for monitoring a variety of 
pollutants since the 1 970s. 217  

Belgium employs an Unmanned Aerial Vehicle (UAV) of the B-Hunter 
class to routinely monitor its portion of the North Sea. 216  This is a large UAV 
that has visible and IR camera systems aboard. The unit has a 10-hour 
endurance over the targets. 

A variety of commercial platforms are now available that can carry small 
sensors such as visible and IR cameras. Furthermore, automatic navigation 
technology has now made these units, especially helicopters, very much easier 
to fly than in previous years. 
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6.13. REAL-TIME DISPLAYS AND PRINTERS 

A very important aspect of remote sensing is the production of data so that 
operations people can quickly and directly use it. Real-time displays are 
important, so that remote sensor operators can adjust instruments directly in 
flight and provide information quickly on the location or state of the spill. A 
major concern of the client is that data be rapidly available. 218  An additional 
concern is that the data from various sensors be available in a combined or 
fused form. 85  Furthermore, there is a need to correct this data for aircraft 
motion and to annotate the data with time and position. At this time, existing 
hardware and software must be adapted as commercial off-the-shelf equipment 
for directly outputting and printing sensor data is not yet available. The displays 
and operators of a remote sensing aircraft are shown in Figure 6.37. 

6.14. ROUTINE SURVEILLANCE 

One application of oil spill remote-sensing equipment is to detect and map 
slicks resulting from illegal discharges of oil from ships and offshore platforms. 
Historically, this task has always been performed using visual techniques, but 
in the past decade it has increasingly been turned over to aircraft with some 

FIGURE 6.37 The interior of a remote sensing aircraft showing operators and displays. 
Photography by Environment Canada. 
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instrumentation. Typical instrumentation includes a SLAR, IR/UV scanner, and 
cameras. This sensor package is economical compared to more ideal packages 
and greatly improves capability beyond just visual observation. Limitations 
include limited ability to 'look into' ship wakes, limited night operations, and 
inability to positively identify oil slicks. Recent additions such as improved 
SLAR systems, better display systems, and nighttime cameras have added to 
the capability but do not overcome these limitations. Figure 6.38 shows pilots 
overflying the stern of a ship to ascertain whether it is discharging oil. 

Many efforts have been made to perform surveillance of illegal discharges. 
Most existing operative remote systems are dedicated to this function. These 
are estimated to be around 35, most of these being around Europe. 219  There are 
intensive programs in some areas, for example, in the North Sea. Carpenter 
reports on the 18-year program of surveillance in the North Sea. 22°  Some 
interesting statistics are noted. In 2004, 418 unidentified slicks were found, 65 
slicks from oil rigs, and 57 slicks from ships. In 2004, 3,314 hours were flown 
in daylight and 594 in darkness. In the same year 91 slicks were found in the 
darkness and 449 in daylight. 

Ferraro et al. describe a routine surveillance program using satellite and 
aircraft data for the Mediterranean Sea. 142  Future work in the Mediterranean 
Sea proposes a cluster of radar satellites to constantly monitor oil pollution. 22i  

A word about aircraft is suitable here. A variety of aircraft are deployed as 
remote-sensing aircraft. Typically, different types are deployed for routine 
surveillance and for remote-sensing research. The latter requires _flexibility in 
mounting sensors and in access to the outside of the aircraft. Figures 6.39 to 6.42 
show some remote-sensing aircraft and highlight the modifications necessary. 

FIGURE 6.38 A ship viewed from the cockpit of a remote sensing airplane. The ship will be 
overflown to ascertain whether it is discharging oil. Photography by Environment Canada. 
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FIGURE 6.39 A view of a remote-sensing aircraft. The extensive airframe modifications are not 
visible in this photograph. The aircraft has extensive modifications in the interior to provide racks 
for equipment. 

FIGURE 6,40 The bottom of the aircraft shown in Figure 6.39. This particular aircraft has 4 one-
meter ports and one half-meter port. The direct opening in the one port is for a laser beam exit. 
Photography by Environment Canada. 
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FIGURE 6.41 A view of another remote-sensing aircraft. This aircraft carries experimental 
radars, and one of the radomes is visible under the aircraft. Such modification can cost millions of 
dollars and take two years to complete. 

6.15. FUTURE TRENDS 

Advances in sensor technology will continue to drive the use of remote sensors 
as operational oil spill response tools in the future. Cameras and thermal IR 
cameras that offer high sensitivity are cheap and plentiful. This improvement 
not only reduces the size and complexity of the sensor, but also the cost. In the 
next decade, advances in solid-state laser technology, in particular diode-
pumped solid-state lasers, will greatly reduce the size and energy consumption 
of laser-based remote sensors. This will promote the use of these sensors in 
smaller, more economical aircraft within the budget of many more regulatory 
agencies and maritime countries. Rapidly improving computer capabilities will 
allow for true real-time processing. At the present time and for the foreseeable 
future, there is no single "Magic Bullet" sensor that will provide all the 
information required to detect, classify, and quantify oil in the marine and 
coastal environment. An example of the improvement in recent years is that of 
the night-vision camera. It is now possible to use this sensor to visualize oil at 
night. An illustration of this appears in Figure 6.43. 

It will require the combined advances in sensor technologies and computer 
capabilities to gather, integrate, and merge several sources of data into a real-
time format, usable by response crews in the field. If this type of information 
can be made available to response crews in a short enough timeframe following 
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FIGURE 6.42 A view of the other side of the aircraft shown in Figure 6.41. This shows a lateral 

radome on the side of the aircraft as well as the radome on the underside. This aircraft also has 

extensive modifications in the interior to provide racks for equipment and power to- sensors. 

Photogmphy by Environnwnt Canada, 

a spill incident, then it can be used to lessen the potentially disastrous effects of 
a major oil spill on the marine ecosystem. 

As technology in remote-controlled systems evolve, it is possible to employ 
such technology in oil spill remote sensing. First efforts in the deployment of 
remote-controlled sensing aircraft have posted success and will, no doubt, be 
expanded in the future. 222  

6.16. RECOMMENDATIONS 

Recommendations are based on the above considerations and include economy 
as a major factor. Table 6.3 shows the considerations related to the development 
state, cost, and use of the sensor, and Table 6.4 shows the applicability of the 
sensor to various functions. The laser fluorosensor offers the only potential for 
discriminating between oiled and unoiled weeds or shoreline, and for positively 
identifying oil pollution on ice, among ice, and in a variety of other situations. 
This instrument, however, is large and expensive. A cheap sensor recom-
mended for oil spill work is an IR camera. This is the cheapest undiscriminating 
device. This is the only piece of equipment that can be purchased off-the-shelf. 
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FIGURE 6.43 A night-vision display. The annotation shows the various features of the image. 
Photography by Environment Canada. 

All other sensors require special order and, often, development. Radar, though 
low in priority for purchase, offers the only potential for large area searches and 
foul weather remote sensing. Most other sensors are experimental or do not 
offer good potential for oil detection or mapping. Any sensor package should 
include a real-time printer and display, and a downlink. 

In order to respond effectively to major marine oil spills, a combination of 
airborne and satellite-borne sensor systems is recommended. Improvements in 
the resolution of satellite-based systems, particularly SAR systems combined 
with the increased number of such systems and the ability to steer them to 
image the area of the oil spill, will lead to their increased use in a tactical role. 
Being capable of imaging vast areas of the open ocean will ensure that satellite-
borne sensors will also continue to be used in a strategic manner. There are 
a number of commercially available airborne sensor systems that provide near 
real-time information on oil slick location and indications of thicker areas of 
the pollution in an easily interpretable graphical manner. These airborne sensor 
systems are currently being employed by a large number of maritime nations in 
conjunction with satellite-based sensor systems. 

Historically, satellite sensors suffered from problems of low resolution and 
the low frequency of scene observation. These inadequacies are now being 
addressed by higher resolution systems with multiple imaging modes and the 



TABLE 6.3 Attributes for Airborne Sensor Selection 

Sensor 

State of 

Development 

Amount of 

Experience 

in Use 

Specific 

to Oil 

Immunity 

to False 

Targets 

Typical 

Coverage 

(km) 

Acquisition 

Cost Range 

k$ 

Aircraft 

Physical 

Requirements 

Still Camera High High Poor Poor 0.25 to 2 1 to 5 no 

Video High High Poor Poor 0.25 to 5 1 to 10 no 

Night Time 
Vision 
Camera 

Medium Medium Poor Poor 0.25 to 2 5 to 20 no 

IR Camera 
(8-14 1.1m) 

High Medium Medium Medium 0.25 to 2 20 to 50 no 

UV Camera Medium Medium Poor Poor 0.25 to 2 4 to 20 no 

Multi- 
Spectral 
Scanner 

Medium Medium Poor Poor 0.25 to 2 100 to 200 some 

Radar High High Medium Poor 5 to 50 1200 to 
8000 

yes-Dedicated 

Microwave 
Radiometer 

Medium Medium Medium Medium 1 to 5 400 to 1000 yes-Dedicated 

Laser 
Fluorosensor 

Medium Limited Good Good 0.01 to 0.1 300 to 1000 yes-Dedicated 
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TABLE 6.4 Sensor Suitability for Various Missions 
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Sensor 

Support for 

Cleanup 

Night & Fog 

Operation 

Detection of Oil 

with Debris 

Oiled 

Shoreline 

Survey 

Spill 

Mapping 

Ship Discharge 

Surveillance 

Enforcement and 

Prosecution 

Still Camera 2 n/a 1 2 2 2 2 

Video 2 n/a 1 2 2 2 2 

Night Time Vision 
Camera 

3 4 1 n/a 2 2 2 

IR Camera 
(8-14 urn) 

4 2 1 n/a 3 3 3 

UV Camera 2 n/a n/a n/a 3 2 1 

UVAR Scanner 4 2 1 n/a 4 3 3 

Multi-Spectral 
Scanner 

1 n/a n/a 1 2 1 1 

Radar n/a 4 n/a n/a 4 3 2 

Microwave 
Radiometer 

1 3 n/a n/a 2 2 1 

Laser 
Fluorosensor 

4 3 5 5 1 5 5 

Key: n/a = not applicable; numerical values represent a scale from 1 = poorly suited to 5 = ideally suited 
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ability to steer the sensor to look in the direction of the target of interest. There 
are an increasing number of satellite-borne SAR and optical sensors, some of 
which currently or soon will operate in constellations to provide increased 
coverage of the Earth's surface. These enhanced capabilities will allow for the 
possible use of these sensors in a tactical mode of operation. In spite of these 
increased capabilities, there remains an essential role for airborne oil spill 
remote-sensing platforms. The ability to collect and deliver real-time oil slick 
location information will ensure the continued use of airborne systems in spite 
of their high operational costs. 

If this type of real-time oil spill remote-sensing information can be made 
available to response crews in a short enough tirneframe following a spill 
incident, the information can be used to mitigate the potentially disastrous 
effects of a major oil spill on the marine ecosystem. 
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11.1. INTRODUCTION: THE IMPORTANCE OF FORECAST 
UNCERTAINTY 

Winds and currents play an important role in oil spill transport; and, occa­
sionally, oil moves in a direction that results in unexpected outcomes. One of the 
most dramatic examples of the latter phenomenon occurred during the 1984 
explosion and subsequent breakup of the TN Puerto Rican. The accident 
resulted in more than 5,678,000 liters of oil spilling into the Gulf of the 
Farallones in "California. Initially, the oil slick moved southerly as forecasted, 
thereby avoiding the large seabird and mammal colonies at the Farallone 
Islands. Oil protection and recovery equipment were deployed to the south, 
leaving the Farallone Islands and the northern California shoreline unprotected 
and exposed. On day 5 of the spill, the slick made a sudden and remarkable 
reversal, and overnight, the oil moved northward approximately 50 km from its 
location on the previous day. The trajectory forecast completely missed the 
reversal. Oiled birds and shoreline oiling were reported on the Farallone 
Islands. 1 By day 10, the spill made landfall along the northern California coast 

Oil Spill Science and Technology. DOl: 10.1016/B978-1-85617-943-0.10011-5 
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at Point Reyes. 2 Oil observations and trajectory forecasts were a critical factor in 
forming daily operational oil recovery and protection decisions. In this instance, 
the consequences of an inaccurate trajectory forecast were devastating. 

· An in-depth analysis of the meteorological and oceanographic data 
collected during the TN Puerto Rican incident suggested that a reversal in the 
outer continental shelf current transported the oil rapidly to the north. This 
"dramatic" reversal was likely related to the onset of the Davidson Current or 
other larger-scale phenomena, which was not predictable with the available 
oceanographic measurement data. 3 Given these sparse real-time environmental 
data, today's models would still have difficulty accurately forecasting the 
current reversal, particularly in the short period required during an emergency 
response. The difference, however, is that current-day modelers now include 
uncertainty as part of the trajectory forecast. Today, emergency responders are 
briefed with both the estimate of the oil movement and alternative possibilities 
that could present a significant threat to valuable resources. 

Most decision makers understand that forecasting is imperfect. The physical 
processes acting on the oil spill are chaotic and complex, and trajectory forecast 
uncertainty is inevitable. As shown in the TN Puerto Rican incident and 
countless other oil spills, there are good practical reasons for disseminating 
trajectory uncertainty and ensuring that the response community understands 
the consequences of uncertainty. 

Figure 11.1 shows a rough representation of the actual and predicted oil 
movement for the TN Puerto Rican incident on the fifth day of the spill. The 
circle is a hypothetical boundary and introduced here for demonstration. The 
circle represents the possible errors in the model input data and plausible 
variations in the transport processes. This includes a possible scenario of 
surface current reversal. In this instance, the area is especially complex and 
difficult to model so that the level of forecast uncertainty is high. 

The large bounded area provides a visual cue to the response community 
about the limitation of the spill model(s). If a high-value resource is within the 
uncertainty but not within the "best estimate," responders should seriously 
consider protecting the resource from oil impact. This example demonstrates 
that communicating uncertainty information can avoid misrepresenting the 
capability of oil spill modeling, better convey "what we do know" and "what 
we don't know," and help responders make more informed decisions and avoid 
problems.4 This is "a minimum regret" approach to protecting high-value 
resources. 

11.2. THE BASICS OF OIL SPILL MODELING 

Responders, particularly those interested in the operational aspects of a spill, 
are often in need of a quick, "back-of-the-envelope" estimate of the spill's 
trajectory. They have a general idea about oil behavior and understand that 
wind and current are important factors in a trajectory forecast. The technique 
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FIGURE 11.1 Actual aud predicted oil movement for the T!V Puerto Rican spill on day 5. 
Bounding circle represents uncertainty. 6 

depicted below is a learning tool. It can be very difficult to get a feel for oil 
spill modeling due to the complicated interactions of the various processes. 
The main characteristic of a "back-of-the-envelope" trajectory is the use of 

1 s:nnJJHttea assumptions for computational simplicity. In this type of estimate, 
there is no oil weathering, oil spreading, or mixing, and the current is assumed 
steady and persistent over time. Before using this type of approach, be mindful 
of these assumptions and recognize that this "best estimate" of the slick 
movement can have significant errors when extrapolating too far out in time. 

The calculation is explained in Figure 11.2 and involves plotting the wind 
and surface vectors on a nautical chart. The sum of the two vectors, the 
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resultant vector, is the distance traveled by the spill (Figure 11.3). Oil drifts 
with the surface current at 100% of the current speed, but only at a fraction of 
the wind speed. Perhaps one of the best known rules of thumb in oil spill 
modeling is the "3% rule."6

•
7 This rule has some theoretical basis and has 

1. Plot the last known location of the spill on a nautical chart. Note the time of the 
observation. 

2. Determine the direction and velocity of the surface current. Using oceanographic 
convention, the surface current is reported as the direction 'to'. 

3. Calculate the length of the surface current vector by multiplying the velocity by hours 
of drift. The hours of drift will be the total duration of the trajectory forecast period. For 
example, if the surface current velocity is 5 cm/s and the forecast period (hours of drift) 
is 3 hours, then the length of the surface current vector 0.6 km. 

4. Draw a line on the chart extending from the last known location of the spill in the 
direction of the surface current. Use the compass rose on the chart to orient the line. 
The length of the line is the length of the surface current vector. In the example, the 
length of the line would be 0.3 nautical miles. To properly scale the line, use either 
the scale on the chart or use the latitude as a scale (1degree of latitude equals 
approximately 111 km). 

5. Using the following table, collect the wind data. 

Wind No. of Wind Wind *Leeway Vector 
Time Period Hours Directior Veloci!Y _iO.O~ Contributi~ 

km 

km 

km 

km 

The time field is time of the observation (or forecast); wind period is start and end time 
for wind speed and direction; number of hours is duration in hours; wind direction is 
direction the wind is coming from; wind velocity is wind speed in miles per hour. For 
these calculations, 3% of the wind speed (0.03) is the leeway or wind drift factor for an 
oil spill. Multiply wind velocity by 0.03 and enter the value in *leeway field. The vector 
contribution is the length of the wind vector. It is calculated by multiplying *leeway by 
number of hours (similar to step 3). 

6. Returning to the nautical chart, draw a line extel')ding from the end of the surface 
current vector (from step 4) in the direction and distance of the first entry ifl the vector 
contribution field. At the end of this vector, draw a line in the direction and distance of 
the second entry in the vector contribution field. Continue this process until all wind 
vectors are plotted on the chart. 

7. The predicted location of the slick is at the end of the last vector plotted. The time 
for the predicted location is the sum of the number of hours added to the time of the 
last reported location of the slick. Remember, the surface current is assumed constant 
for this time period 

FIGURE 11.2 A simple prediction of the oil slick movement using vector addition of the 
components due to wind and current. Modified from USCG. 16 
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FIGURE 11.3 The sum of the surface 
current and wind drift vectors are the 
resultant oil movement. 

been verified in the field and laboratory experiments.8
•
9 The 3% rule has been 

successfully used as wind drift factor or leeway for most fresh oil spills. 
Uncertainty can be calculated by considering other possible factors. For 

instance, suppose the spilled oil is a viscous residual fuel oil. The 3% rule 
represents average conditions, but the actual factor ranges from 1 to 6%. 10 

Viscous oils are often subject to overwash by waves. While submerged, viscous 
oils will only drift at the speed of the water current and, hence, will have a net 
lower drift speed than that given by the 3% rule. On the other hand, oil caught in 
ilie convergences in windrows will move faster than the average 3%. 11 To use 
uncertainty in the rough estimate, do the calculation with 1% and then 6% of 
the wind speed. For a 6-hour forecast at a constant 7.7 m/s wind speed, the oil 
will travel between 1.6 km at 1% and 10 km at 6%. The resulting forecast will 
be a best guess of a 5 km (3%) displacement with an uncertainty spanning 
1.6 km, 1%, to 10 km, 6%. Similar calculations could be employed for 
uncertainty in the location and direction and speed of the current and wind. 
Rather quickly, rough calculations using simple vector addition become 
unwieldy. At this point, serious consideration should be given to applying a 
more sophisticated approach to the problem. 

But what oil spill model( s) should be used? Without a grasp of the underlying 
· principles and assumptions, the mere use of a model does not necessarily lead to 
a good or better answer. Depending on the spill incident, more than one model 
may be used because a particular model may perform better in certain situations. 
Performance varies because models assume different things, represent the 
physics in different ways, have different resolutions, are initialized differently, 
and often solve the equations in different ways. Therefore, one model's simu­
lation of a particular aspect of the spill fate and behavior may be rigorous, but it 
is likely to be weaker in other aspects. A key point to remember is that a model's 
uncertainty will vary over time as environmental conditions change, and also 
spatially due to resolution and boundary limitations. Discussions of the strengths 
and weaknesses of oil spill models can be found in the literature. 12

-
15 

In general, oil spill models use a combination of Eulerian and Lagrangian 
to simulate oil behavior. The velocity field for winds and currents are 

using Eulerian techniques and are represented as individual velocity 
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!FIGURE 11.4 Examples of current velocity field (A) and particles (B). 

vectors at fixed points in the model domain l I Oil patches are 
represented as individual particles that may be referred to as Lagrangian 
elements spillets, or splots. 17

• 
18 The paths of the particles are tracked as 

they move along the map (Figure 11.4B). Algorithms may vary but most 
models will need to account for winds, currents, turbulence, and spill details 
as input data to initialize and move the In most instances, these 
processes are parameterized from other models or suhmodels. and they all 
come with their own uncertainty. 

11.3. MODEL UNCERTAINTIES 

Oil spill models are very sensitive to errors in the initial input data, such as the 
details of the release and the wind and current forecasts. Furthermore, the 
mathematical calculations used to simulate oil movement arc likely based on 
empirical approximations and assumptions and are subject to time step and grid 
limitations. Trajectory model uncertainty refers to in the forecast as 
a result of these errors. Unfortunately, quantitative assessment of the errors in 
trajectory modeling is difficult and limited. In addition, oil spills are notorious 
for occurring in areas where the environmental data are temporally and 
spatially incomplete. This leads to a forecast process that often relies on the 
forecaster's subjective judgment and approximated input. The ranking of 
uncertainty as low, medium, and high for trajectory forecasts ,and the model 
inputs presented here are subjective. But the forecaster's subjective judgment 
can be an invaluable resource, and, at least as anecdotal data suggest, it may be 
better than a model alone at estimating errors. 

The fact that the initial estimates are inaccurate and the model itself has 
inadequacies leads to forecast errors that grow over time. For this reason short­
range forecasts usually have less error than long-range forecasts (Table 11.1). 

For larger spill events, the model input data should contain fewer errors due 
to better field observations, such as remote sensing and visual overflights of the 
spill. The result is that the multiple forecasts produced daily should actually 
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TABLE 11.1 Uncertainty for Trajectory Forecasts 

Oil Spill Trajectory Forecast Uncertainty 

24-hrs Low- Medium 

24 to 48-hrs Medium 

48 to 72-hrs Medium - High 

72+ hrs High 

improve over time. On the first day of a big spill, the uncertainty for the initial 
forecast will likely range from low to high. On the second day, with more on­
scene observations, the uncertainty typically ranges from low to medium. By 
the third day, the uncertainty should be lower. 

A sophisticated model with extensive data input requirements does not 
, necessarily produce a better forecast. There are an optimal number of input 
parameters that will determine the total model uncertainty. The model output is 
only as good as the largest error input. This is the reason that the performances of 
complex models are often no better, and sometimes worse, than the predictions 
of the simpler models. The back-of-the-envelope calculation in Section 2 used 
only a one-time surface current measurement with a constant speed and direction 
lasting for a few hours. This approach has serious limitations in regard to time 
and spatially varying currents. The advantage is that the results can be quickly 
passed on to the decision maker. In contrast, an oil spill model that uses forecast 
currents from a hydrodynamic model with extensive input data requirements 
(e.g., real-time salinity and temperature data at various depths) may not yield 
a successful result or be as useful because, for most emergency spill incidents, 
the input data to initiate a three-dimensional hydrodynamic model is not 
available in a timely manner. In fact, the three-dimensional model may have to 
rely on historical data rather than input conditions specific to the spill event. 
Complex models work well only when the extensive data requirements are 
satisfied, which rarely can be fulfilled at an oil spill response. 

11.3.1. Release Details 

In 1987, the barge Hana encountered rough seas while transporting Bunker C 
oil to the Maui power plant in Hawaii. On the southwest side of Molokai 

Island, the barge reported spilling approximately 11 ,360 liters of oil. At the 
time of the incident, the wind forecast was northeast at 13 to 15 rn/s for the next 
24 hours. Using this information, the trajectory forecast did not indicate any 

·beaching of the oil and indicated the slick would move to the southwest and out 
to sea. The next day, "a lot of oil" came ashore on Oahu. How could the 
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TABLE 11.2 Uncertainties for Oil Spill Release Details 

Release Details Uncertainty 

Location Low- Medium 

Time Low- Medium 

Day Low 

Night Low- Medium 

Oil Properties Medium - High 

Potential Spill Volume Low- Medium 

Actual Spill Volume High 

Leak Rate High 

trajectory be so wrong? First, the trajectory forecaster was given incorrect 
information about the release. In fact, the location of the actual release site was 
off by 18.5 km. Second, the spill volume was later determined to be over 
227,000 liters of oil and not 11,360 liters as initially reported. The larger spill 
volume affected the trajectory as more oil was spread out over a larger area. 
Third, the overnight winds were actually from the east and not the northeast as 
initially forecasted. 

Unfortunately, there is no reliable way to quantify the errors related to the 
details of a release. Table 11.2 provides uncertainty for oil spill releases based 
on decades of experience. If the spill occurs during daylight and there is an 
experienced overflight observer who can provide coordinates for the spill with 
a description of the slick, confirmation about the likely spill volume, and a 
source, then the uncertainty is relatively low. Conversely, release details for 
a spill occurring at night during a storm or in fog without confirmation from an 
experienced observer will likely carry a high uncertainty. 

11.3.2. Wind 

Discussions with the local meteorologist can provide valuable insight about the 
availability of atmospheric models for a specific area and the model limitations. 
Ideally, time-dependent and spatially varying wind field from an atmospheric 
model is imported directly into the oil spill model. However, careful consid­
eration is needed before bringing in the wind forecast. Localized phenomena, 
which are at a smaller scale than the resolution of the atmospheric model, may 
have a great influence on the oil spill trajectory. Oil spills spread out quickly, 
but, even for the larger spills, the slick dimensions are frequently smaller than 
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the resolution of many atmospheric models. This means, for instance, that the 
wind at the source of the spill could be different from the wind at the leading 
edge of the slick. A coarse-resolution atmospheric model may have only one 
wind vector to represent the entire spill area, much like the back-of-the­
envelope calculation in Section 2. Table 11.3 provides examples of typical 
atmospheric model resolutions. Nested grid systems use a low-resolution, 
global weather model to provide boundary conditions for high-resolution, 
regional models. A review of a specific atmospheric model will likely reveal 
qualitative errors. The other challenge is the time resolution of models. The oil 
trajectory model may have time steps of 15 minutes, but the wind model may be 
resolving winds at every hour. 

For most spills in estuaries, the regional models are suited for oil spill 
trajectory modeling. But even with regional models, local effects, such as the 
land-sea breeze, may not be sufficiently resolved. This can wreak havoc with 
a trajectory forecast. Shoreline oiling is enhanced with an onshore wind and 
a falling tide (Figure 11.5A); accurately forecasting the onshore wind is 
important to getting the trajectory forecast correct. As the tide ebbs, the 
intertidal areas are exposed, and, if the wind is blowing onshore, the oil adheres 
and smears down the beach face (Figure 11.5B ). 

An example of the land-sea breeze phenomenon and the difficulty fore­
casting the timing of shoreline oiling occurred during the 1990 TN American 
Trader incident. The vessel ran over its anchor, punctured the hull, and spilled 
over 1.5 million liters of North Slope crude oil. The spill occurred about 1.5 km 
off Huntington Beach, California. The net oil slick drift was small due to light 
winds and a weak surface current. The trajectory forecast repeatedly missed the 
timing of the shoreline oiling due to the interaction of the land-sea breeze and 
tide. For a few days, the tides and winds were synchronized such that the falling 
tide coincided with an offshore wind due to the sea breeze. The oil floated up 
the beach face with the rising tide, but the oil did not adhere as an offshore wind 
(land breeze) pushed the oil out to sea. This pattern continued for several days 

TABLE 11.3 Grid Resolutions of Atmospheric Models 
(Modified from Kalnay 19

) 

Atmospheric Models Grid Resolution 

Climate Several hundred kilometers 

Global weather 50-100 km 

Regional meso-scale 10-50 km 

Storm scale 1-10 km 
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' - Onshore wind 

FIGURE 11.5 Falling tide and onshore wind (A), and shoreline oiling due to falling tide and 
onshore wind (B). 

until the tides and land breeze were no longer synchronized, and then the oil 
stranded on the beach. When local details are important, a higher spatial 
resolution model should be used and the uncertainty should be carefully 
conveyed. 

If a suitable atmospheric model is unavailable, the marine forecaster can 
provide details about the wind forecast and its likely error bounds. This requires 
a good verbal briefing by the meteorologist. The meteorologist can provide 
information about wind shift timing, the strength of the pressure gradient, 
location of high/low fronts, and local effects. The result can be a wind data file 
containing the meteorologist's best estimate and error estimate, which can then 
be fed directly into the model. As an example, the wind forecast may indicate 
wind from the south at 7.7 m/s for 12 hours, becoming southwest at 5 m/s. This 
data is used to compute the best estimate of the wind and is entered into the spill 
model. If the meteorologist indicates that the forecast wind shift could be off by 
3 the wind direction off by 20 degrees, and the speeds 2.5 m/s, the 
original wind file is modified or an additional file is created with this data. This 
represents uncertainty in the wind forecast. 

The accuracy of the forecast depends, among other things, on special 
weather features, length of the forecast period, and ability of the forecasters to 
localize their prediction to the spill site (Table 11.4). Optimum wind forecast 
periods are usually between 6 and 24 hours. For a wind forecast beyond five 

serious consideration should be given to using climatological winds and 
generating a probability guidance product as a trajectory forecast. 

11.3.3. 

In some regions, oil spill modelers have the capability to import time and 
varying surface current forecasts ti-um ocean circulation models. 

These models are updated every few hours in a manner similar to atmospheric 
models. Figure 11.6 shows the expected movement of a hypothetical spill from 
a continuous release of oil. In this scenario, there are no winds, or turbulent 
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Low~ Medium 

Medium 

processes. There are only surface currents from five different sources: 
Navy Coastal Ocean Model,20the Global Layered Ocean 

21 
the Global Hybrid Coordinate Ocean Model, California High 
Radar,

23 
and the Global Sea Surface Height (SSH 2010) model. 24 

NCOM, NLOM, and HyCOM models have similar physics but were 
with different data, have different grid resolutions, and different 
methods. The HFR and SSH model forecast currents from obser-

It is interesting to note that the HyCOM and NLOM circulation models 
the spill in opposite directions, whereas in the short term, a consensus 

11.6 Particle tracking of a hypothetical spill using multiple current models. 
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begins to take shape with the HFR, SSH, and NCOM forecasts as the oil is 
moved offshore. The five-model runs display the uncertainty in the trajectory 
forecast using just the surface currents from different sources. Further explo­
ration by the forecaster is needed to seek out an explanation of why the model 
runs differ. Another word of caution: because a model yields results that 
compare favorably with observations one day or one week, doesn't mean it will 
do well another day or week. For example, the model may perform better if the 
surface wind speed is within a specific range. In addition, a model that does 
well in a certain region may not do well in another region. 

In coastal areas without a regional circulation model, simulating the current 
may become a challenge. Three-dimensional hydrodynamic models will 
require extensive oceanographic data for input. In a spill response situation, 
acquiring relevant real-time data is highly unlikely. To work around this 
problem, modelers may use a combination of real-time observations (e.g., 
overflights), astronomical tidal predictions, and historical data for the ocean 
currents, along with a simplified approach to generating currents. All of this 
takes time to collect and enter into a model. In an emergency response, decision 
makers need a forecast quickly. 

Typically, simplified two-dimensional and one-dimensional models can be 
more easily calibrated to fit the actual movement of the oil from day to day. It is 
not unusual that these simple approaches that calibrate currents to daily 
observations provide better results than large sophisticated models that are 
difficult to adjust and calibrate. Large, complicated models are often calibrated 
with historical records that are often short and are collected under environ­
mental conditions very different from those of the spill. 

Table 11.5 provides a subjective assessment of the uncertainty in the surface 
circulation of various water bodies. Closer inspection of a specific hydrody­
namic model will likely reveal quantitative error assessment. Many rivers are 
gauged and controlled by locks and dam systems, so that the uncertainty in the 
predicted flow is generally low. If the river forecaster provides uncertainty in the 
flow, this information can be included in the analysis. For spills that occur in 
tidal-driven estuaries or an ungauged river system, the uncertainty in direction is 
relatively low (Table 11.5), but the strength of the current may not be accurately 
known; hence, the overall uncertainty is low to medium. A few coastal areas in 
the United States have the Physical Oceanographic Real-Time System network 
that combines real-time monitoring of the water level and meteorological 
conditions with numerical circulation models for water-level forecasting. 

The inner continental shelf extends from the shoreline to where the depth 
increases to about 120 m. In this area, most of the oil releases result in shoreline 
impacts, and the uncertainty, unfortunately, is medium to high (Table 11.5). 
Currents in this zone are dominated by long-shore winds, freshwater runoff, 
and tides. In the 2002 oil recovery operation of the sunken vessel SS Jacob 
Luckenbach, all of these forces were apparent over the course of the oil 
removal. The vessel sank in 1953, approximately 30 km southwest of the 
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TABLE 11.5 Uncertainties in Surface Current 

Surface Current Uncertainty 

River 

Gauged Low 

Un-gauged Low- Medium 

Lake Low- Medium 

Shallow water lagoon Low- Medium 

Tidally dominated estuary Medium 

Inner continental shelf Medium- High 

Deep ocean (off continental shelf) High 

Under ice cover High 

Golden Gate Bridge, San Francisco, California. During the course of the 
operations, when the winds were particularly light, smaller slicks moved to 
the south and, a few hours later, moved to the north with a weak tide. Without 
a dominant mechanism forcing the circulation, it became difficult to predict the 
overall transport of the oil. In contrast to the TN Puerto Rican incident, the 
inability to predict strong, large-scale forces responsible for the abrupt changes 
in the current direction and speed resulted in an erroneous forecast on the scale 
of a few kilometers over the time span of a few hours. 

The deep ocean, off the continental shelf, is dominated by drifting oceanic 
eddies. These density-driven currents have a slow net drift and typically do not 
affect the currents on the inner shelf. Therefore, their uncertainty is of less 
importance for most oil spills unless they occur where the shelf is short or 
nonexistent (e.g., Hawaii). Figure 11.7 shows a snapshot of the SSH-derived 
currents with large oceanic eddies with current velocity ranging from 5 to 
13 cm/s. 

11.3.4. Turbulent Diffusion 

To the spill modeler, processes smaller than the resolution of the model and 
timescale motions are most often represented as turbulent mixing and present 
a challenging problem in oil transport. Virtually all oil spill models use 
simplified formulas to simulate the horizontal and vertical "mixing" of oil. This 
term could also be considered the "ignorance coefficient" because it represents 
the effects of mechanisms that are poorly understood and represented. 26 

A common approach is to represent turbulence using a constant diffusion 
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FIGURE 11.7 SSH derived currents. Modifiedfi-om Coast Watch. 24 

coefficient,26 but there are other options27
·
28 The effects of turbulence will 

mask small errors in the surface circulation and winds and smooth out the 
effects of subgrid-scale processes (e.g., Langmuir circulation and convergence 
zones). The consequence of this turbulent diffusion approach is a loss of 
resolution that increases over time. 

11.3.5. Oil Weathering 

The rate and degree with which an oil weathers affects its wind-drift factor (or 
leeway) and hence, its trajectory. As oil weathers, its chemical properties 
change. Density will increase as the light fractions evaporate, and both 
viscosity and density will increase if the oil emulsifies. These property changes 
will affect wind drift and the oil's ability to disperse. Uncertainty in weathering 
predictions is generally lower for spills of light refined products, which rapidly 
dissipate and do not form stable emulsions (e.g., gasoline and diesel). A few 
crude oils have also been studied, both in the lab and in field trials for 
weathering behavior. This extra information makes prediction about their 
behavior more reliable. For other types of oils, such as intermediate fuel oils, 
where the available data only vaguely characterizes their weathering charac­

uncertainty is high for the transport, fate, and effects of the oil, and the 
uncertainty grows over time. For the best estimate trajectory, the modeler may 
select the oil in the model that best represents the product spilled. To define 
uncertainty bounds, the oil can be modeled as a conservative quantity, which is 
neither evaporated nor dispersed into the water column. Field observations can 
be used to help calibrate weathering of the oil, which in turn will help improve 
trajectory estimates. 

The slick drift factor or leeway changes over time because, initially, the spill 
appears as a large cohesive film but eventually tears apart into smaller patches 
or tarballs. Table 11.6 shows different wind drifts for various oils and the 
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TABLE 11.6 Wind Drift Uncertainty and Distance Traveled for Various Oils 

No. of Wind Velocity Wind Drift or Vector 

Hours (m/s) Leeway(%) Contribution (km) 

24 7.7 3 to 4 22-30 

24 7.7 3 to 4 22-30 

Fresh IFO 24 7.7 3 22 

Fresh crude oi I 24 7.7 3 to 4 22-30 

Weathered IFO 24 7.7 2 to 3 13-22 

Emulsified oi I 24 7.7 1 to 2 5.5-13 

Scattered tarballs 24 7.7 0.5 to 2 3.7-13 

distance likely to travel with a 7.7 rn/s wind for 24 hours. The drift factors are 
estimates based on the modeler's experience matching visual observations of 
the slick with the trajectory forecast. For oils with ranges, like the scattered 
tarballs, this represents the uncertainty in the wind drift and can be modeled by 
randomly selecting a slick drift between 0.5 and 2% of the wind speed for each 
patch of oil at each model time step. Since the wind speed is not likely constant, 
this modeling technique can also simulate wind gusts. 

Weathering of oil will also determine the type and severity of impacts 
expected from the oil spill and, consequently, the amount of response personnel 
and equipment. For example, if the expected impact from a spill were scattered 
coin-sized tarballs every 10 m along the shoreline, the cleanup response effort 
would be very different than that for a spill resulting in a 2-m-wide band of 
emulsified oil. Therefore, it is important to not only forecast where and when 
oil will go but what type of impact to expect. Any uncertainty related to the fate 
of the oil should be conveyed with the trajectory forecast. 

11.3.6. Ensemble Forecasting 

The 1976 Argo Merchant grounding off Nantucket Island, Massachusetts, was 
one of the most studied oil spills in history with over 200 scientists participating 
in the response effort. Five independent research teams provided operational 
forecasting of the oil distribution.Z9

•
30 The on-scene commander was presented 

with five forecasts; each displaying different trajectories. This was the begin­
ning of ensemble forecasting in spill response. Ensemble forecasting involves 
generating a collection of forecasts based on varying initial conditions, model 
parameters, and physics. The forecasts can be a compilation of outputs from 
different models31 or from the same model using different boundary conditions 



Behaviour of Oil in the Environment and Spill Modeling 

and data . Ensemble forecasting has developed into the 
means of presenting trajectory forecast uncertainties. 

The results of ensemble forecasting must be communicated so that the deci­
sion maker can interpret and understand the information. Figure 11.8A shows an 

a visual graphic of the trajectory forecast that uses the best available input 
data. particles simulating oil movement are converted so that darker 
contours indicate a higher concentration of particles.4 The forecast provides only 
one prediction of the future, with no information about uncertainty. Decision 
makers are likely to move much of the available oil recovery and protection 
resources to the area where the contour contacts the shoreline. This is often the 
type of forecast requested by emergency responders to support operational 

even though it is not the complete picture needed for optimum response. 
ll.8B shows a visual representation of ensemble forecasting. The 

confidence limit represents the output from a series of trajectory forecasts. In 
addition to output from multiple models, the forecaster may have used his or 
her subjective judgment and considered other plausible, what-if, scenarios. The 
scenarios may have included what if the weather forecast of a frontal passage is 
off 12 hours; the release time is off l hour, and the surface current 
off 20 em/ s? How would this affect the oil movement? The confidence limit 
is a visual cue to the decision maker that represents the boundary of the output 
from multiple models and/or output from multiple runs from one model. The 

conveys the likely locations of oil and provides with not 
a best estimate trajectory, but also other possibilities that could result in 

ficant threat. 

FIGURE 11.8 Examples of a trajectory forecast without uncertainty (A) and with tll1Cer­

tainty (B). 
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11.3.7. Communicating Trajectory Forecast Uncertainty 

Communicating the uncertainty of the trajectory forecast is critical to users. It 
allows them to make decisions based on the reliability of the forecast and the 
consequences from inaccuracies in the forecast. The general public is familiar 
with probabilities associated with forecasts thanks in large part to National 
Oceanic and Atmospheric Administration's (NOAA's) National Weather 
Service producing forecasts for hurricanes, tornadoes, and precipitation in 
terms of probabilities. However, for spill movement, it is not possible to 
compute the uncertainty probabilities for where and when the oil will come 
ashore. The number of spills with adequate field observations is not sufficient 
for statistical analysis. Well-documented marine oil spills with robust data sets 
are the exception, and experimental spills in the ocean are quite few in number. 
Ocean-surface current drifter studies cannot provide probabilities of the oil 
movement for any given day, under any given condition. Given the environ­
mental variability and model shortcomings, there is not enough data to generate 
probabilities for oil spill trajectory forecast. As a result, the oil spill trajectory 
forecast uncertainty must be conveyed in a way other than with probabilities. 

Galt proposed a digital standard that presents uncertainty of the trajectory 
forecast that alleviates the "language of probabilities" problem.4 The trajectory 
model is first used with the best available input data. It is then run a second time 
to set the uncertainty or confidence bounds. In the uncertainty model run, each 
of the particles can be thought of as a centroid of an independent spill and is 
assigned its own wind and current data. The resultant spread of the particles 
represents an ensemble of spills. The distribution is not related to oil con­
centration but represents an ensemble of different spills. However, to make 
this work, the expert forecaster needs to specify uncertainty bounds for the 
currents, winds, and other various inputs parameters. A standardized method 
does not exist, and the approach relies on the forecaster's subjective judgment. 
Figure 11.9 shows an example of the NOAA standard for visually representing 
uncertainty. The graphic is designed to express the amount of complexity and 
uncertainty in a particular forecast without presenting probabilities. Post­
processing software, independent of the oil spill model, was used to generate 
the graphic. The product includes a base map, contoured particles, and an outer 
confidence limit. The bottom of Figure 11.8 contains a scale with eight patterns 
of oil distribution. By looking at the scale bar, emergency responders can 
quickly determine how the light, medium, and heavy contours relate to the oil 
distribution observed on-scene and, from this, develop response options. 

Regardless of the way uncertainty is expressed to the decision maker, it 
needs to be done. To do this successfully, the forecaster realistically expresses 
uncertainty for every input parameter as well as the numerical uncertainty 
inherent with the model. This is a daunting task, particularly for estimating 
uncertainty with oil type, oil volume, spill location, spill time, and oil slick 

' observational data. 
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NOAA/NOS/OR&R 

Estimate for: 1800 CDT, Wednesday, 5112.1 I 0 
Date Prepared: 2100 CDT, Sunday, 5/09110 

from being from tbc ~E toE to SE by Monday morning. Continued 
lhc E or SE Tuesday have the pcnential to move nc\v oi! onshore. 

lsiands and area:> direct!;,: north have a 

Forecast: 
May lOth PM 

FIGURE 11.9 Sample trajectory forecast product. 

How accurate are oil spill models? The question is an obvious one but difficult 
to answer. The back-of-the-envelope calculation presented in Section 2 is 
a place to start. For demonstration purposes, the hypothetical calculation 
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or forecast indicates that the oil spill remains offshore. Field observation data is 
needed for verification, and for this demonstration, the location of every piece 
of oil is known. Suppose the field data indicates the bulk of the oil remained 
offshore and only a small amount of oil came ashore. Was the model or, in this 
case, the calculation accurate? The skills of a trained forecaster in this process 
are important. The forecaster can make multiple calculations or multiple 
models runs and include uncertainty. If the small amount of oil onshore was 
within the uncertainty of the calculation, then the forecast was accurate. 

Model errors can occur for various reasons and are not consistent over time 
or space; therefore, it is important to have a skilled forecaster verify the model 
output. Oil spill models cannot precisely predict the movement of every patch 
of oil. Some models may perform better than others under different conditions, 
but, inevitably, oil spill models will be wrong. Quantifying the model's error is 
not easy due to the constraints found at most oil spill incidents (e.g., obser­
vations of surface oil that are both temporally and spatially incomplete). This 
contrasts with forecasting in other fields. For example, NOAA's National 
Hurricane Center has precise metrics to measure hurricane forecasts versus 
observations. At this time, precise metrics to measure oil spill trajectory 
forecasts do not exist. Ideally, a formal methodology would be developed for 
the comparison of the trajectory forecast with observed field data. Such 
a comparison would provide a means for assessing the model's performance 
relative to other spill models. A challenge for the oil spill trajectory forecaster 
is determining whether a model, despite its uncertainties, can be used to make 
a useful forecast. The challenge for decision makers is to determine how to use 
the forecast and its inherent uncertainties to make an informed decision. This 
section provides a brief description within which a forecaster and decision 
maker can determine a model's performance for accurately predicting the oil 
movement. 

Field observation data are the basis of model verification. However, col­
lecting data from field experiments and during an emergency response is not 
simple. It is extremely difficult and often illegal or impossible to stage 
experimental oil spills in the open ocean. If permission is granted, the exper­
iments are small-scale and conducted over a short time period: usually hours, 
not the days needed for characterizing a specific set of conditions. This makes it 
difficult to test models against field data due to the varying environmental 
conditions and a mismatch between model scales and experiment scales. 
Attempts to use data from emergency response are always problematic because 
the on-scene observations of the oil distribution contain significant errors. It is 
not always known how much of the oil was spotted by the observer or what part 
of the slick was seen. Overflights of the spill may not be conducted due to poor 
weather or aircraft availability resulting in large time gaps between observa­
tions. Observational errors can also result from observers reporting "false 
positives" such as kelp beds, silt plumes, algae, and jellyfish, to name but a few. 
Remote-sensing techniques are imperfect as well because of limitations of the 
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sensor, availability of assets (aircraft and satellite), and weather conditions. 
Due to these constraints, other approaches need to be developed to evaluate the 
performance of oil spill models. 

A common approach for evaluating an oil spill model's performance is 
a hindcast. In a hindcasting, the release details of wind and current data at the 
time of the incident are entered into a model to see how well the output matches 
the reported location of oil. If the hindcast accurately shows the oil movement 
as known to have occurred, the model is considered successful. The comparison 
between the hindcast and observations mostly consist of visual inspection 
rather than statistical evaluation due to the problems with collecting oil 
observation data. 34

-
37 Hence, there is a need for an experienced forecaster who 

understands the uncertainty associated with oil fate and observations. 
Oil observations can be used to make model adjustments so that the hindcast 

matches the observed distribution of the oil. This is model calibration, and an 
example can be found in Turrell?8 Parameters within the model are calibrated 
to match the movement of the spill. Again, the process is subject to error due to 
problems in collecting field observations and requires a knowledgeable fore­
caster who knows which model parameters to modify for a best fit. Other 
approaches are to compare model estimates and measurements to field data on 
a spill-by-spill basis and then calibrate a model with that comparison. 17

•
39 

However, caution is needed in this approach to avoid using a calibrated model 
for different geographic locations and environmental conditions. Every spill is 
a unique event, and every location has its own environmental challenges. 

The remaining technique for evaluating oil spill model performance that 
appears in the literature is validation. Oil spill trajectory models can never be 
conclusively validated because they never completely simulate reality.40 In 
general, validated models are those that have shown correspondence to 
experimental data. A more accepted approach is a model evaluation process in 
which the results of the model are determined to be sufficient and, that despite 
the uncertainties, can be used in decision making.41 In all cases, the model's 
documentation should provide clear understanding of why and how the model 
can be used. 

11.4.1. Diagnostic Verification 

Forecast verification is an integral part of the forecast process in an emergency 
response as the spill situation and environmental conditions can change very 
rapidly. As an example, the vessel(s) involved in the accident may be unstable. 
A submerged pipeline may have a small continuous leak with a potential for 
a much larger release of oil. The weather is constantly changing, and the 
currents are changing with tides and coastal events. Therefore, the model 
results need to be continuously compared to observed data by a skilled fore­
caster during a spill response. The forecaster needs to compare the predictions 
with field reports and decide if the model parameters are sufficiently correct or 
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require modifications to match the field data. Calibrating the model(s) with the 
previous day's overflight observations does not ensure that the forecast will 
match the next day's overflight, but it will give the forecaster an idea of which 
model parameters to monitor. During the TN Puerto Rican incident, discussed 
in Section 1, daily adjustments were made to the model, but the forecasters 
never anticipated a reversal in the surface current, not even with a predicted 
wind shift. 

The more serious the consequence of forecast error, the more important 
monitoring and collection of field data. Essentially, the forecaster is calibrating 
the model to the spill during the response. Figure 11.1 OA shows an example of 
a map of the oil distribution for an oil spill. The map was used to verify the spill 
model. The model is run from the start of the spill and stopped at the time of the 
overflight observation. Since no model can simulate reality perfectly, visual 
inspection of the overflight map and the model run likely indicates differences 
in the oil location. Adjustments are likely made to model parameters so that the 
model matches the overflight map. The calibrated model can then be used to 
generate a forecast (Figure 11.10B). In a spill, forecast verification is an inte­
gral part of the forecast process. 

11.5. SUMMARY AND CONCLUSIONS 

In this chapter, the fundamentals of uncertainty related to oil spill fate and 
transport forecasting were presented. The TN Puerto Rican incident was used 
as an example of the importance of uncertainty in the trajectory forecast. This 
event showed that an estimate of the uncertainty in the forecast provides more 
information than a single best estimate that uses the initial model input data. 
Decision makers, who only consider the single best estimate and largely ignore 
the forecast uncertainty, tend to make less than optimal decisions. If an incident 
similar to the TN Puerto Rican were to occur today, close monitoring of the 
spill by field observations (e.g., overflights, surface current buoys, and remote 
sensing) and communicating the trajectory forecast uncertainty will help 
responders make more informed decisions and avoid problems. 

Presenting both the best estimate and the uncertainty in the trajectory 
forecast provides the decision maker the opportunity to support a minimum­
regret decision-making strategy.42 At nearly every spill, there is always 
a limited amount of resources available for shoreline protection and cleanup. 
With both the best estimate and uncertainty, decision makers can weigh the 
wisdom of directing the cleanup toward the most likely spot for oil as opposed 
to defending less likely but more environmentally important locations.43

.4
4 

Overflight operations can conduct more intelligent surveillance, using uncer­
tainty or confidence forecast boundaries to determine their flight paths and 
prevent any oil from sneaking past the response efforts. The public can be 
provided with a more realistic representation of what is known about the slick 
location, avoiding false expectations concerning trajectory accuracy. 



FIGURE 1 .10 Map of oil distribution (A) and oil spill trajectory forecast (B). 
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Oil Spill Trajectory Forecasting Uncertainty 

The conclusions from this chapter are simple but important. Oil spill fate 
and transport forecasting contains errors and, under certain circumstances very 
large errors. As a result, it is important to convey uncertainty bounds with the 
forecast. Good field data and a skilled forecaster are needed to adequately 
calculate, portray, and communicate the uncertainty in the predictions. 
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