From: Merrill, Robert C

Sent: Mon Jul 26 01:29:49 2010

To: Levitan, Michael M. Subject: Please Review Importance: High

Attachments: USGS_Parameters_25July.ZIP; Bob_Match_25July.ZIP; Horner Plot USGS.ZIP;

July25_30mbd_1.ZIP; July25_45mbd_1.ZIP

Mike:

Please review the enclosed presentation for errors or mis-statements. It reflects my own (feeble) efforts to become a

PIE-meister.

I also enclose a PDF, which is what Paul Hsieh will present tomorrow. It follows on with a request from the Government (this is from a note from Cindy Yielding):

So.... Here is a new request from the Science team (Tom Hunter/Secretary Chu):

REQUEST: A plot of the pressure data using the SPE 1978 (or 1987, or 1980: the date was unclear) revision of Horner plot, generating the plot of the changing slope of the line using the derivative of delta pressure, delta T.

TIMING: for 8:00 am deliver for Monday's 11 am meeting.

If you could possibly come in a bit before 8am, it would help. I confirmed with James Dupree (who was at the meeting) that they want to see derivative plots of the data.

Bob

<<...>> <<...>> <<...>>

Bob Merrill

Senior Advisor

Reservoir Engineering Community of Practice

BP EPT, Houston

Phone: -1 281-366-2049 Cell: +1 713-409-7340

email: merrilre@bp.com

Exhibit No. —
Worldwide Court
Reporters, Inc.

CONFIDENTIAL

BP-HZN-2179MDL04890390

BPD344-090822

Draft: PIE Matches of 25-July

MC252

Rectangular Model - No Aquifer; 45 mbd

 Simplest model to capture key observations

	FOR THE SUPPLIES AND ADDRESS.		
Static Input Data:			
Во	2.310 rb/stb		
Oil Viscosity	0.210 0		
Well Bore Radius	0.350 f		
	the second secon		
Well Bore Storage	0.100 b		
Gauge Resolution	5.000 p	SI	
Fluid Compressibility		sips	
Water Compressibility		sips	
Rock Compressibility	6 μ	sips	
Total	23 µ	sips	
Net Thickness	93 f	t	Includes M56D, M56E, M56F (v2)
Porosity	21.6%		NetH weighted Average
Water Saturation	12.2%		NetHxPorosity Average
			,
Initial Pressure	11,856 p	sia	M56E Sand
Initial Pressure (WHP)	8,562		(corrected using 3294 psia)
	-,		(
Model	Linear (homoge	eneous)	
Wellbore Storage	1.07 b		
Permeability	626 n		
Skin	60.0		
Pi	8,562 p	eia	
	0,502 p	Jia	
+X	4,360 f		26,360
-X	22,000 f		20,000
-X +Y	1,740 f		2.490
			3,480
-Y	1,740 f		
Dara Valuma	1 0405 .00 #	10	
Pore Volume	1.843E+09 f		
H/C Pore Volume	288 mmrb		
Original Oil In Place	125 n	nmstb	

Rectangular Model - No Aquifer; 45 mbd

Rectangular Model - No Aquifer; 30 mbd

 Simplest model to capture key observations

Static Input Data:		
Во	2.310 rb/stb	
Oil Viscosity	0.210 cP	
Well Bore Radius	0.350 ft	
Well Bore Storage	0.100 bbls	
Gauge Resolution	5.000 psi	
Fluid Compressibility	14 µsips	
Water Compressibility	3 µsips	
Rock Compressibility	6 µsips	
Total	23 μsips	
Net Thickness	93 ft	Includes M56D, M56E, M56F (v2)
Porosity	21.6%	NetH weighted Average
Water Saturation	12.2%	NetHxPorosity Average
Initial Pressure	11,856 psia	M56E Sand
Initial Pressure (WHP)	8,562	(corrected using 3294 psia)
Model	Linear (homogeneous)	
Wellbore Storage	0.51 bbl/psi	
Permeability	363 mD	
Skin	50.0	
Pi	8,562 psia	
+X	2,810 ft	16,810
-X	14,000 ft	
+Y	1,700 ft	3,400
-Y	1,700 ft	
Pore Volume	1.148E+09 ft3	
H/C Pore Volume	180 mmrb	
Original Oil In Place	78 mmstb	

USGS Parameters – Increased C_r, 50 mbd

 Simplest model to capture key observations

Static Input Data:		
Во	2.350 rb/stb	
Oil Viscosity	0.168 cP	
Well Bore Radius	0.350 ft	
Well Bore Storage	0.100 bbls	
Gauge Resolution	5.000 psi	
Fluid Compressibility	14.6 μsips	
Water Compressibility	3.0 µsips	
Rock Compressibility	8.0 µsips	
Total	26 μ sips	
rotar	20 μ δίρδ	
Net Thickness	90 ft	Includes M56D, M56E, M56F (v2)
Porosity	21.0%	NetH weighted Average
Water Saturation	10.0%	NetHxPorosity Average
Initial Pressure	11,856 psia	M56E Sand
Initial Pressure (WHP)	8,562	(corrected using 3294 psia)
Model	Linear (homogeneous)	
+X	1,500	3,000
-X	1,500	
+Y	6,000	28,400
-Y	22,400	
Pore Volume	1.610E+09 ft3	
H/C Pore Volume	258 mmrb	
Original Oil In Place	110 mmstb	
9		

Note: +/- X split assumed

USGS Parameters – Increased C_r, 50 mbd

Conclusions

- Observed pressure behaviour consistent with "normal" well behaviour:
 - Elongated reservoir
 - Limited support
- Numerous subsurface realisations can match the data reasonably well, considering:
 - Uncertainty in flow rate
 - Uncertainty in static parameters (C_r, connected volume)
 - Uncertainty in flowing bottom hole pressure
 - Uncertainty in final static bottom hole pressure

Discussion on Shut-In Pressure and Horner Plot

Paul Hsieh, USGS July 24, 2010

For the purpose of illustration, downhole pressure is simulated in a well in a sandchannel reservoir as shown in Figure 1. The well is assumed to produce at a constant rate of 50,000 stb/day. After 85 days, the well is shut in.

Fig. 1. Map view of sand-channel reservoir and well.

Assumed reservoir properties:

Reservoir thickness = 90 ft
Porosity = 21%
Original oil in place = 110 million stock tank barrels
Formation Volume factor = 2.35 reservoir barrels /stock tank barrel
Permeability = 516 md
Rock compressibility = $c_r = 8 \times 10^{-6} \text{ psi}^{-1}$ Oil compressibility = $c_o = 14.6 \times 10^{-6} \text{ psi}^{-1}$ Water compressibility = $c_w = 3 \times 10^{-6} \text{ psi}^{-1}$ Water saturation = Sw = 10%Oil density = 0.568 gm/cc
Oil viscosity = 0.168 cp

During production, the pressure drawdown in the well can be divided into 3 periods, each with its own distinctive characteristics. These periods are also manifested during shut-in.

Radial Flow Period. This occurs for a short period after the start of production. Pressure drawdown occurs in a more-or-less circular region of radius ~1,500 ft and centered about the well. Flow is primarily radial towards the well (Fig. 2). During this period, downhole pressure varies linearly with log(t), where t is time since start of production.

Fig. 2. Radial flow in the vicinity of the well.

For the assumed reservoir properties, the radial flow period lasts for approximately 0.35 day after the start of production. This can be seen in the plot of simulated downhole pressure versus $\log(t)$ (Fig. 3). The derivative curve, $\Delta p/\Delta \log(t)$, is included to help estimate the period when p varies linearly with $\log(t)$ —when the derivative is constant.

Fig. 3. Plot of simulated downhole pressure p, and derivative $\Delta p/\Delta \log(t)$, versus $\log(t)$. The radial flow period occurs when pressure varies linearly with $\log(t)$. During this period, the derivative is constant.

<u>Linear Flow Period</u>. This occurs after the radial flow period ends. Pressure drawdown propagates along the reservoir channel. Although radial flow still occurs in the vicinity of the well, the predominant flow in the reservoir is unidirectional, along the longitudinal axis of the channel (Fig. 4). During this linear flow period, pressure drawdown varies linearly with t^{0.5}.

Fig. 4. Linear flow in the sand channel reservoir.

For the assumed reservoir properties, the linear flow period occurs from approximately t = 0.35 day to 12 days. This can be seen in the plot of simulated downhole pressure and the derivative $\Delta p/\Delta(t^{0.5})$ versus $t^{0.5}$ (Fig. 5).

Fig. 5. Plot of simulated downhole pressure p, and derivative $\Delta p/\Delta(t^{0.5})$, versus $t^{0.5}$. The linear flow period occurs when pressure varies linearly with $t^{0.5}$.

<u>Pseudo-Steady State</u>. During this period, pressure everywhere in the reservoir drops at a constant rate. In other words, pressure is a linear function of time. For the assumed reservoir properties, pseudo-steady state begins at about t = 12 days (Fig 6).

Fig. 6. Plot of simulated downhole pressure p, and derivative $\Delta p/\Delta t$, versus t. Pseudo-steady state occurs when pressure varies linearly with t.

Fig. 7 shows simulated pressure profiles along the longitudinal axis of the channel reservoir. These profiles illustrate the pressure at the start and end of the three periods discussed above.

Fig. 7. Simulated pressure profiles along the longitudinal axis of the channel reservoir during production.

Profile A: t = 0. Reservoir pressure prior to production

Profile B: t = 0.35 days. End of radial flow period. Pressure drawdown occurs primarily within a distance of about 1,500 ft of the well (vertical dashed lines).

Profile C: t = 12 days. The propagation of pressure drawdown from profile B to profile C occurs during the linear flow period.

Profile D: t = 35 days. Note that profile D is essentially a downward translation of profile C. This uniform drop in pressure throughout the reservoir occurs during pseudo steady state.

Shut-in Pressure

Fig. 8 shows pressure profile during shut-in. These profiles are have a direct correspondence to the profiles during production (Fig. 7).

Fig. 8. Simulated pressure profiles along the longitudinal axis of the channel reservoir during shut-in. Time since shut-in is indicated by t'.

Profile A': t' = 0. Reservoir pressure at shut-in.

Profile B': t' = 0.35 day. Pressure recovery from profile A' to B' occurs primarily within a distance of about 1,500 ft of the well (vertical dashed lines). This is analogous to the radial flow period.

Profile C': t' = 12 days. The propagation of pressure recovery from profile B' to profile C' occurs throughout the length of the reservoir. This is analogous to the linear flow period.

Profile D': t' = 100 days. Pressure recovery from profile C' to profile D' occurs gradually as the entire reservoir reaches the final shut-in pressure.

BPD344-090844

Fig. 9 shows the simulated shut-in downhole pressure on a Horner Plot. The "upward deflection" of the curve to the left of the straight-line segment occurs at t' = 0.35 day, which corresponds to the transition from pressure recovery in a circular region (radius = 1500 ft) around the well to pressure recovery along the entire length of the channel reservoir.

At t' = 12 days, pressure throughout the reservoir is close to the final shut-in pressure and the curve approaches a flat line.

Fig. 9. Horner plot of simulated downhole pressure. Time of production (85 days) is indicated by tp, Time since shut-in is indicated by t'.

Comparison with Observed Shut-in Pressures at Well Head

The simulated downhole pressures are converted to wellhead pressures by subtraction of 3350 psi (= 13,000 ft x 0.257 psi/ft). Fig. 10 compares simulated wellhead pressures with observed wellhead pressures as recorded by gage PT_3K_2. The simulated pressures match the observed pressures for $(t_p + t')/t' > 20$, which corresponds to t' < 4.5 days, after which the simulated pressures are lower than the observed pressures.

Fig. 10. Comparison between simulated and observed pressures at wellhead during shut in.

To obtain a better match, the well is displaced towards one end of the channel (Fig. 11), permeability is reduced to 490 md, and rock compressibility (r_e) is increased to $14 \times 10^{-6} \text{ psi}^{-1}$.

Fig. 11. Reservoir and well setting for the revised model. The match using the revised model is shown in Fig. 12. The revised model suggests that the wellhead pressure could eventually rise to 7,250 psi. However, there are likely many other models that can fit the data equally well.

Fig. 12. Comparison between observed and simulated wellhead pressures using revised model.

File not printable

CONFIDENTIAL

BP-HZN-2179MDL04890416 BPD344-090848

File not printable