> UNITED STATES DISTRICT COURT EASTERN DISTRICT OF LOUISIANA

IN RE: OIL SPILL BY THE
DOCKET NO. MDL-2179
OIL RIG DEEPWATER HORIZON SECTION "J" IN THE GULF OF MEXICO ON NEW ORLEANS, LA APRIL 20, 2010 OCTOBER 17, 2013

IN RE: THE COMPLAINT AND
DOCKET NO. 10-CV-2771
PETITION OF TRITON ASSET SECTION "J"
LEASING GMBH, ET AL

UNITED STATES OF AMERICA DOCKET NO. 10-CV-4536
V.

BP EXPLORATION \& PRODUCTION,
INC., ET AL

DAY 11 MORNING SESSION
TRANSCRIPT OF NONJURY TRIAL PROCEEDINGS HEARD BEFORE THE HONORABLE CARL J. BARBIER UNITED STATES DISTRICT JUDGE

APPEARANCES:

FOR THE PLAINTIFFS: HERMAN HERMAN \& KATZ
BY: STEPHEN J. HERMAN, ESQ.
820 O'KEEFE AVENUE
NEW ORLEANS, LA 70113

DOMENGEAUX WRIGHT ROY \& EDWARDS
BY: JAMES P. ROY, ESQ.
556 JEFFERSON STREET, SUITE 500 POST OFFICE BOX 3668
LAFAYETTE, LA 70502

```
APPEARANCES CONTINUED:
```

LEVIN PAPANTONIO THOMAS MITCHELL RAFFERTY \& PROCTOR BY: BRIAN H. BARR, ESQ.
316 SOUTH BAYLEN STREET, SUITE 600
PENSACOLA, FL 32502

WEITZ \& LUXENBERG
BY: ROBIN L. GREENWALD, ESQ. 700 BROADWAY
NEW YORK CITY, NY 10003

IRPINO LAW FIRM
BY: ANTHONY IRPINO, ESQ.
2216 MAGAZINE STREET
NEW ORLEANS, LA 70130

LUNDY, LUNDY, SOILEAU \& SOUTH
BY: MATTHEW E. LUNDY, ESQ.
501 BROAD STREET
LAKE CHARLES, LA 70601

MORGAN \& MORGAN
BY: FRANK M. PETOSA, ESQ.
188 EAST CAPITOL STREET, SUITE 777 JACKSON, MS 39201

FOR THE STATES'
INTERESTS:
ALABAMA ATTORNEY GENERAL'S OFFICE BY: COREY L. MAZE, ESQ. WINFIELD J. SINCLAIR, ESQ. 500 DEXTER AVENUE MONTGOMERY, AL 36130

```
APPEARANCES CONTINUED:
```

FOR THE STATE OF
LOUISIANA:
STATE OF LOUISIANA
BY: JAMES D. CALDWELL,
ATTORNEY GENERAL
1885 NORTH THIRD STREET
POST OFFICE BOX 94005
BATON ROUGE, LA 70804
KANNER \& WHITELEY
BY: ALLAN KANNER, ESQ.
DOUGLAS R. KRAUS, ESQ.
701 CAMP STREET
NEW ORLEANS, LA 70130
U.S. DEPARTMENT OF JUSTICE
TORTS BRANCH, CIVIL DIVISION
BY: STEPHEN G. FLYNN, ESQ.
POST OFFICE BOX 14271
WASHINGTON, DC 20044
U.S. DEPARTMENT OF JUSTICE
ENVIRONMENT \& NATURAL RESOURCES
DIVISION
ENVIRONMENTAL ENFORCEMENT SECTION
BY: THOMAS BENSON, ESQ.
STEVEN O'ROURKE, ESQ.
SCOTT CERNICH, ESQ.
A. NATHANIEL CHAKERES, ESQ.
ANNA CROSS, ESQ.
BETHANY ENGEL, ESQ.
RICHARD GLADSTEIN, ESQ.
JUDY HARVEY, ESQ.
SARAH HIMMELHOCH, ESQ.
P.O. BOX 7611
WASHINGTON, DC 20044

```
APPEARANCES CONTINUED:
```

FOR BP EXPLORATION \&
PRODUCTION INC.,
BP AMERICA PRODUCTION
COMPANY, BP PLC: LISKOW \& LEWIS
BY: DON K. HAYCRAFT, ESQ.
ONE SHELL SQUARE
701 POYDRAS STREET
SUITE 5000
NEW ORLEANS, LA 70139
KIRKLAND \& ELLIS
BY: J. ANDREW LANGAN, ESQ.
HARIKLIA KARIS, ESQ.
PAUL D. COLLIER, ESQ.
MATTHEW T. REGAN, ESQ.
BARRY E. FIELDS, ESQ.
300 N. LASALLE
CHICAGO, IL 60654
KIRKLAND \& ELLIS
BY: MARTIN BOLES, ESQ.
333 SOUTH HOPE STREET
LOS ANGELES, CA 90071
KIRKLAND \& ELLIS
BY: ROBERT R. GASAWAY, ESQ.
JOSEPH A. EISERT, ESQ.
BRIDGET K. O'CONNOR, ESQ.
655 FIFTEENTH STREET, N.W.
WASHINGTON, DC 20005
COVINGTON \& BURLING
BY: ROBERT C. "MIKE" BROCK, ESQ.
1201 PENNSYLVANIA AVENUE, NW
WASHINGTON, DC 20004

```
APPEARANCES CONTINUED:
```

FOR TRANSOCEAN HOLDINGS
LLC, TRANSOCEAN
OFFSHORE DEEPWATER
DRILLING INC., AND
TRANSOCEAN DEEPWATER
INC.:
FRILOT
BY: KERRY J. MILLER, ESQ.
ENERGY CENTRE
1100 POYDRAS STREET, SUITE 3700
NEW ORLEANS, LA 70163
SUTHERLAND ASBILL \& BRENNAN
BY: STEVEN L. ROBERTS, ESQ.
1001 FANNIN STREET, SUITE 3700
HOUSTON, TX 77002
MUNGER TOLLES \& OLSON
BY: MICHAEL R. DOYEN, ESQ.
BRAD D. BRIAN, ESQ.
LUIS LI, ESQ.
GRANT A. DAVIS-DENNY, ESQ.
ALLEN M. KATZ, ESQ.
335 SOUTH GRAND AVENUE, 35TH FLOOR
LOS ANGELES, CA 90071
FOR HALLIBURTON
ENERGY SERVICES,
INC.:

GODWIN LEWIS
BY: DONALD E. GODWIN, ESQ.
JENNY L. MARTINEZ, ESQ.
BRUCE W. BOWMAN, JR., ESQ. PRESCOTT W. SMITH, ESQ. SEAN W. FLEMING, ESQ.
RENAISSANCE TOWER
1201 ELM STREET, SUITE 1700 DALLAS, TX 75270.

```
APPEARANCES CONTINUED:
```

 FOR ANADARKO
 PETROLEUM CORPORATION,
 ANADARKO E\&P COMPANY LP:
KUCHLER POLK SCHELL
WEINER \& RICHESON
BY: DEBORAH D. KUCHLER, ESQ.
1615 POYDRAS STREET, SUITE 1300
NEW ORLEANS, LA 70112
BINGHAM MCCUTCHEN
BY: WARREN A. FITCH, ESQ.
KY E. KIRBY, ESQ.
2020 K STREET, NW
WASHINGTON, DC 20006
OFFICIAL COURT REPORTER:
SUSAN A. ZIELIE, RMR, CCR
CERTIFIED REALTIME REPORTER
REGISTERED MERIT REPORTER
500 POYDRAS STREET, ROOM HB406
NEW ORLEANS, LA 70130
(504) 589-7781
susan_zielie@laed.uscourts.gov
PROCEEDINGS RECORDED BY MECHANICAL STENOGRAPHY. TRANSCRIPT
PRODUCED BY COMPUTER.
 Cross by Ms. Cross 2903

	1	$P-R-O-C-E-E-D-I-N-G-S$
	2	OCTOBER 17, 2013
	3	M ORN I N G S ES S I O N
	4	(COURT CALLED TO ORDER)
	5	8:00 A.M.
08:07AM	6	
08:07AM	7	THE COURT: Good morning, everyone.
08:07AM	8	Looks like our government workers will be paid
08:07AM	9	after all. The other side of the table is probably very happy.
08:07AM 1	10	These people down here are happy. At least until January when
08:07AM 1	11	we have the next crisis.
08:07AM 1	12	Okay.
08:07AM 1	13	MR. FIELDS: Your Honor, just one administrative
08:07AM 1	14	matter. Barry Fields on behalf of BP.
08:07AM 1	15	I have in my possession a list of the exhibits
08:07AM 1	16	that were used during the examination of Dr. Robert Zimmerman.
08:07AM 1	17	That list of exhibits was circulated to the
08:08AM 1	18	parties a couple of days ago. We did not receive an objection.
08:08AM 1	19	So, at this time, we would offer those exhibits into evidence.
08:08AM 2	20	MS. HIMMELHOCH: No objections.
08:08AM 2	21	THE COURT: Very well. Without objection, those will
08:08AM 2	22	be admitted.
08:08AM 2	23	(Exhibits admitted.)
08:08AM 2	24	MR. FIELDS: Thank you, Your Honor.
08:08AM 2	25	MS. HIMMELHOCH: Your Honor, Sarah Himmelhoch for the

08:08AM	1	United States. Another short housekeeping matter.
08:08AM	2	Last night, BP filed an offer of proof reasserting
08:08AM	3	their arguments on the surrebuttal motion. It is my
08:08AM	4	understanding that we are not supposed to respond to that, but I
08:08AM	5	wanted direction from the Court as to whether you expected a
08:08AM	6	response.
08:08AM	7	THE COURT: I haven't even seen that, so I have no idea
08:08AM	8	what that's about.
08:08AM	9	MS. HIMMELHOCH: Okay. We'll await an order from the
08:08AM	10	Court before filing a response, sir.
08:08AM	11	THE COURT: All right.
08:08AM	12	MS. PENCAK: Good morning, Your Honor. Erica Pencak
08:08AM	13	for the United States. Just one more preliminary matter. I
08:08AM	14	have list of the United States call-outs, demonstratives, and
08:08AM	15	exhibits used in the United States' examination of Drs. Merrill,
08:08AM	16	Gringarten, and Zimmerman.
08:08AM	17	We've circulated these lists to the parties and
08:09AM	18	received no objections.
08:09AM	19	THE COURT: Okay. Any remaining objections?
08:09am	20	Hearing none, those are admitted.
08:09AM	21	(Exhibits admitted.)
08:09AM	22	MS. PENCAK: Thank you, Your Honor.
08:09AM	23	THE COURT: All right. According to our timekeepers,
08:09AM	24	United States has used 16 hours, 33 minutes. There's 28:27
08:09AM	25	remaining. BP has used 21 hours and 49 minutes. They have

08:09AM	1
08:09AM	2

08:09AM 3
08:09AM 4
08:09AM 5
08:09AM 6

08:09AM 7

08:09AM 8
08:09AM 9
08:09AM 10

08:09AM 11

08:09AM 12

08:09AM 13

08:09AM 14

08:09AM 15
08:09AM 16

08:10AM 17

08:10AM 18

08:10AM 19

08:10AM 20

08:10AM 21

08:10AM 22

08:10AM 23
08:10AM 24

08:10AM 25

23:11 remaining.

Good morning, Dr. Zaldivar. You're still under oath.

THE WITNESS: Yes.
MR. CHAKERES: Your Honor, may it please the court? THE COURT: Go ahead.

CROSS EXAMINATION

BY MR. CHAKERES:
Q Nat Chakeres on behalf of the United States. Dr. Zaldivar, I have you on cross examination.

Dr. Zaldivar, your model is a one-dimensional
model; correct?
A That's correct.
Q The results that come out of your modeling that will you present to the Court are mass flow rates; right?

A Those aren't the only results. What I presented to the Court yesterday were volumetric flow rates.

The model itself works in a basis of units that is mass based.

Q Are stock tank barrels a defined unit of mass or a defined unit of volume?

A That's a unit of volume. That's a volumetric flow rate. Q You used a single stage flash process to convert the total mass flow rate in your model for stock tank barrels; correct? A That's correct.

08:10AM	1	Q Before we get too far along, I wanted to make sure we have
08:10AM	2	some terms and definitions out there. That, we're speaking the
08:10AM	3	same language.
08:10AM	4	You had a demonstrative yesterday where you
08:10AM	5	described different flow patterns.
08:10AM	6	Do you remember that?
08:10am	7	A Yes, I do.
08:10AM	8	Q It included stratified flows, stratified wavy flow, slug
08:10AM	9	flow, and other types of flow patterns; right?
08:10AM	10	A Yes, that's correct.
08:10AM	11	Q I might at some point call those flow regimes; that the same
08:10am	12	sort of thing?
08:10AM	13	A Flow patterns and flow regimes are two commonly used words,
08:11AM	14	yes, that's correct.
08:11AM	15	Q Thank you, sir.
08:11AM	16	Now, I want to go back to this mass flow rate
08:11AM	17	issue. For a single phase fluid, we'll stick with that, can we
08:11AM	18	say that mass flow rate is equal to the density of the fluid
08:11AM	19	times its mean velocity times the area through which it's
08:11AM	20	flowing? Is that a definition of mass flow rate?
08:11AM	21	A Could you repeat that?
08:11AM	22	Q Yes.
08:11AM	23	And, actually, I've got a demonstrative just so we
08:11AM	24	don't have to keep all this stuff in our head.
08:11AM	25	MR. CHAKERES: If we could pull up demonstrative

08:11AM	1	D-0221.
08:11AM	2	BY MR. CHAKERES:
08:11AM	3	Q And, again, we'll stick with single phase flow right now.
08:11AM	4	Is this an accurate representation and equation of
08:11AM	5	mass flow rate along one dimension?
08:11AM	6	A Yes, that's correct.
08:11AM	7	Q Okay. And, for multiphase flow, you had multiphase flow in
08:11AM	8	your model; correct?
08:11AM	9	A That's also correct.
08:11AM	10	Q We would have to make this a little bit more involved;
08:11AM	11	right? We would have a mass flow rate for gas phase and a mass
08:12AM	12	flow rate for the liquid phase; right?
08:12AM	13	A Yes, that's correct.
08:12AM	14	Q And the mass in both the gas phase and the liquid phase
08:12AM	15	would have their own densities; right?
08:12AM	16	A Yes.
08:12AM	17	Q And both would have their own velocity; right?
08:12AM	18	A Yes, that's correct.
08:12AM	19	Q And then we would have an area for flow for each of them;
08:12AM	20	right?
08:12AM	21	A Yes. That's also correct.
08:12AM	22	Q And, before we get too far along, you've spoke in your
08:12AM	23	deposition about something called superficial velocity; right?
08:12AM	24	A Um-hum.
08:12AM	25	Q Is it fair to say that, if we are using the word superficial

08:12AM	1	velocity, that's just the velocity of that phase, and then we
08:12AM	2	don't have to worry about how much of the area is taken up for
08:12AM	3	that phase?
08:12AM	4	A It's the average phase velocity.
08:12AM	5	Q The average phase velocity averaged across the entire flow
08:12AM	6	area?
08:12AM	7	A Averaged across the area that it's flowing, yes.
08:12AM	8	Q So this equation is the definition of mass flow rate, but we
08:13AM	9	have mass flow rates for both phases in a multiphase
08:13AM	10	environment; correct?
08:13AM	11	A Yes. You also have the total mass flow rate, so that --
08:13AM	12	Q And that is the sum of the mass flow rate for each phase;
08:13AM	13	right?
08:13AM	14	A Yeah. That equation could apply to the multiphase flow if
08:13AM	15	the velocity itself was the average mixture velocity.
08:13AM	16	Q I appreciate that. Thanks. We can take down that
08:13AM	17	demonstrative.
08:13AM	18	Now, your flow rate estimate that you presented to
08:13AM	19	the Court consists of an estimate of flow out the end of the
08:13AM	20	riser and an estimate of flow out of the kink leaks; correct?
08:13AM	21	A That's correct.
08:13AM	22	Q And you described yesterday how you went through arriving at
08:13AM	23	both of those estimates.
08:13AM	24	For the estimate of the flow out of the riser, you
08:13AM	25	used LedaFlow to predict the flow rates at which observed slug

08:13AM	1	behavior took place; right?
08:13AM	2	A That's correct.
08:13AM	3	Q You looked at two points in time, May 13th and May 16th;
08:13AM	4	correct?
08:13AM	5	A Yes, that's also correct.
08:13AM	6	Q And you also looked at the period after May 20 th to see what
08:14AM	7	flow rates would result in the riser being flat along the floor
08:14AM	8	of the ocean; correct?
08:14AM	9	A No. That's not precisely correct.
08:14AM	10	Q How is that not correct?
08:14AM	11	A I didn't model any time period past May 20 th.
08:14AM	12	I did look at that period with respect to looking
08:14AM	13	at ROV videos to ensure that slug flow was not present after May
08:14AM	14	20th.
08:14AM	15	Q Thanks for that clarification.
08:14AM	16	Now, you don't opine anywhere in your report that
08:14AM	17	the flow out of the end of the riser was changing between May
08:14AM	18	13th and May 20th; do you?
08:14AM	19	A No, I do not.
08:14AM	20	Q You provide the same estimate for each of the days, May 13th
08:14AM	21	through 20th, at the end of the riser; correct?
08:14AM	22	A I provide the same best estimated flow rate, but I do
08:14AM	23	provide a range of flow rates over the full period.
08:14AM	24	Q Okay. Thank you.
08:14AM	25	Now, you testified yesterday about something

08:14AM	1	called a hydraulic diameter, and I'd like to go into that a
08:14AM	2	little bit now.
08:15AM	3	Now, the diameter of the flow path in your model
08:15AM	4	was what you were referring to as the hydraulic diameter;
08:15AM	5	correct?
08:15AM	6	A Yes, that's correct.
08:15AM	7	Q So, in your model, the information you gave LedaFlow about
08:15AM	8	the size of the flow path was the hydraulic diameter; correct?
08:15AM	9	A Yes. That's an input -- you have to input the diameter into
08:15AM	10	the model, and that's the diameter that I used.
08:15AM	11	Q And you testified yesterday that the hydraulic diameter is a
08:15AM	12	standard geometric transform that you use when you have a
08:15AM	13	noncircular flow path; is that correct?
08:15AM	14	A A standard geometric transformation. But, yes, that's
08:15AM	15	correct.
08:15AM	16	Q It's standardly used in fluid mechanics problems; correct?
08:15AM	17	A Yes.
08:15AM	18	Q And it's been used in steady state flow problems; correct?
08:15AM	19	A Yes.
08:15AM	20	Q It's been used in transient flow problems; correct?
08:15AM	21	A Yes, that's correct. Also correct.
08:15AM	22	Q It's used in single phase flow problems; correct?
08:15AM	23	A Yes, that's correct.
08:15AM	24	Q It's used in multiphase flow problems; is that correct?
08:16AM	25	A Yes, that's correct.

08:16AM	1	Q It's used in problems where there's constant density;
08:16AM	2	correct?
08:16AM	3	A Most of the time that you're modeling flow, certainly if
08:16AM	4	you're looking at large-scale flow phenomenon, you would expect
08:16AM	5	that the density would be changing because pressure and
08:16AM	6	temperature would be changing.
08:16AM	7	I am sure that it probably has been used; but,
08:16AM	8	certainly, the problems that I'm most familiar looking at are
08:16AM	9	large-scale problems, so you wouldn't presume that the density
08:16AM	10	doesn't change over the model itself.
08:16AM	11	Q Thank you.
08:16AM	12	And my question was just, if I were to perform --
08:16AM	13	look at a problem where, say, it was an incompressible fluid and
08:16AM	14	I didn't have to worry about density changes, you would expect
08:16AM	15	the hydraulic diameter concept to still apply in those types of
08:16AM	16	problems?
08:16AM	17	A I would expect that to be true. But, to be clear, this
08:16AM	18	particular problem is compressible fluid. Gas is quite
08:17AM	19	compressible, and multiphase flow is considered a compressible
08:17AM	20	flow problem.
08:17AM	21	Q I appreciate that.
08:17AM	22	MR. CHAKERES: Now, if we could go to demonstrative
08:17AM	23	D-22210.
08:17AM	24	BY MR. CHAKERES:
08:17AM	25	Q You talked about this a little bit yesterday, and I just

$08: 17 \mathrm{AM}$ 08:17AM	1 2	wanted to go through it again. So I have here on the left a pipe that has the drill pipe inside it.
08:17AM	3	Do you see that?
08:17AM	4	A I do.
08:17AM	5	Q And, for your model of the riser, the large -- there are
08:17AM	6	several different segments that have different diameters of the
08:17AM	7	drill pipe inside of it; right?
08:17AM	8	A Yes, that's correct. The drill pipe did not have the same
08:17AM	9	diameter down the length of the riser.
08:17AM	10	Q The large majority of the riser, though, had 6.625 inch
08:17AM	11	drill pipe inside of it; right?
08:17AM	12	A By large majority, about three-quarters of the riser, or
08:17AM	13	near that amount, had that specific drill pipe diameter.
08:17AM	14	Q We'll take that.
08:18AM	15	And the general form of the equation for a
08:18AM	16	hydraulic diameter is four times the area through which the
08:18AM	17	fluid is flowing divided by perimeter, the wetted perimeter;
08:18AM	18	correct?
08:18AM	19	A That's correct.
08:18AM	20	Q And you describe that in your report; correct?
08:18AM	21	A I do.
08:18AM	22	Q And, specifically for an annular flow, you derived sort of a
08:18AM	23	shortcut, which is true for all annular flows, which the
08:18AM	24	hydraulic diameter is equal to the diameter of the big pipe, the
08:18AM	25	inner diameter of the big pipe, minus the outer diameter of the

08:18AM	1	little pipe; is that correct?
08:18AM	2	A Yeah. I wouldn't describe it as a shortcut. If you apply
08:18AM	3	the formula 4A over P and you simplify that formula, you can
08:18AM	4	simplify it to that specific relationship for flow in any
08:18AM	5	annulus.
08:18AM	6	Q It means the exact same thing as 4A over P for annular flow
08:19AM	7	path; doesn't it?
08:19AM	8	A Yes, that's correct.
08:19AM	9	Q And, if we were to pretend the drill pipe were perfectly
08:19AM	10	centered in the riser, the hydraulic diameter is equal to double
08:19AM	11	the gap between the inner pipe and the outer pipe; isn't it?
08:19AM	12	A Could you repeat that?
08:19AM	13	Q Yes.
08:19AM	14	So presuming the drill pipe is perfectly centered,
08:19AM	15	there's a gap between the drill pipe and the riser; right?
08:19AM	16	A That's correct.
08:19AM	17	2 And the hydraulic diameter would be double that gap; right?
08:19AM	18	A So, if you're asking me in this specific example that if
08:19AM	19	12.875 minus 6.625 is approximately two-thirds, so there would
08:19AM	20	be half of it on both sides, yes, that's correct.
08:19AM	21	Q That wasn't quite my question.
08:19AM	22	My question was, so you have -- the derivation of
08:19AM	23	the hydraulic diameter is the big pipe diameter minus the small
08:20AM	24	pipe diameter; right?
08:20AM	25	A That's correct.

08:20AM	1	Q Half of that would then be the big pipe radius minus the
08:20AM	2	small pipe radius; right?
08:20AM	3	A Half of what specifically?
08:20AM	4	Q Half of the hydraulic diameter.
08:20AM	5	A Half of 12.875 is 6.4 something.
08:20AM	6	Q And I'm not trying to say that this is one-third of the
08:20AM	7	whole thing.
08:20AM	8	I'm saying, for any annular flow path, the gap
08:20AM	9	between the drill pipe and the riser times two is the hydraulic
08:20AM	10	diameter; right?
08:20AM	11	A I am not sure that that's generally true without deriving
08:20AM	12	it. Certainly, you could imagine a pipe that's very small --
08:20AM	13	yeah, it might be true, though.
08:20AM	14	2 So this formula -- and we'll look at that again. So this
08:20AM	15	formula, it's not true just for the annular flow path that you
08:20AM	16	modeled; right? It's true for any annular flow path. That's
08:21AM	17	the hydraulic diameter for that annular flow path; right?
08:21AM	18	A That is true.
08:21AM	19	Q Okay. We can pull that demonstrative. We'll come back to
08:21AM	20	that in a minute.
08:21AM	21	Now, you testified in your deposition that the
08:21AM	22	reason why you use a hydraulic diameter as opposed to the actual
08:21AM	23	-- or the diameter relating to the actual flow area is because
08:21AM	24	you want to maintain the ratio between the cross-sectional area
08:21AM	25	of the flow and the wetted perimeter; correct?

08:21AM	1	A That's correct.
08:21AM	2	Q And is it correct to say that the reason you do this is
08:21AM	3	because the cross-sectional area for flow is proportional to the
08:21AM	4	driving force, there's a pressure drop for the pipe, and the
08:21AM	5	wetted perimeter is proportional to the frictional force acting
08:21AM	6	against flow?
08:21AM	7	A Yes. I would generally agree with that. I don't know that
08:21AM	8	I would say that they're directly proportional, but there is a
08:21AM	9	relationship between those.
08:21AM	10	Q And that relationship is why you need to maintain the ratio
08:22AM	11	between the area in the wetted perimeter; right?
08:22AM	12	A Yeah. In order to correctly capture the relationship
08:22AM	13	between pressure drop and volumetric flow rate or flow rate
08:22AM	14	period.
08:22AM	15	Q Now, you testified in your deposition that LedaFlow uses the
08:22AM	16	hydraulic diameter and calculates the pressure drop based on
08:22AM	17	velocities and frictional losses associated with those
08:22AM	18	velocities; correct?
08:22AM	19	A That's correct.
08:22AM	20	Q And so the fluid velocities in the system are used in
08:22AM	21	conjunction with the hydraulic diameter to calculate pressure
08:22AM	22	drops; correct?
08:22AM	23	A Yes, that's correct.
08:22AM	24	Q You want to accurately capture the pressure drops in the
08:22AM	25	system; right?

08:23AM	1	Macondo riser?
08:23AM	2	A Yes, that's correct. What my model captures correctly is
08:23AM	3	the volumetric flow rate and pressure drops.
08:24AM	4	Q Now, you testified in your deposition that you ran your
08:24AM	5	model for a while, an hour, two hours, to stabilize the velocity
08:24AM	6	profiles, the pressure profiles, temperature profiles, and the
08:24AM	7	density profiles before you imposed the oscillation of the
08:24AM	8	riser. Do you remember that?
08:24AM	9	A I do.
08:24AM	10	Q And you testified that you wanted to have your velocity
08:24AM	11	profiles that were as near as the actual conditions as possible
08:24AM	12	before starting to move the riser; do you recall that?
08:24AM	13	A I do.
08:24AM	14	MR. FIELDS: Your Honor, may I be heard? Barry Fields.
08:24AM	15	The one issue I have is, it's not really
08:24AM	16	appropriate to talk about what he testified in his deposition.
08:24AM	17	You can ask a question and get an answer here, but that's not a
08:24AM	18	proper --
08:24AM	19	THE COURT: That's correct. Wait a minute. Ask the
08:24AM	20	witness a question, and obviously you can phrase your question
08:24AM	21	based on something that was said in the deposition. But phrase
08:24AM	22	it as a question.
08:24AM	23	If he gives an answer that you think is contrary
08:24AM	24	to what he said in his deposition, then you can use his
08:25AM	25	deposition; okay?

08:25AM	1	MR. CHAKERES: I will do so, Your Honor.
08:25AM	2	BY MR. CHAKERES:
08:25AM	3	Q So, when you ran your model, you ran it at a steady state
08:25AM	4	for a certain period of time in order to allow it to stabilize
08:25AM	5	before oscillating the riser; correct?
08:25AM	6	A That's correct.
08:25AM	7	Q And the reason you did that was because you wanted to get
08:25AM	8	representative temperature profiles, pressure profiles, density
08:25AM	9	profiles and velocity profiles that were as near the actual
08:25AM	10	conditions as possible before you started to move the riser;
08:25AM	11	correct?
08:25AM	12	A Yes. So, when you start one of these models, you have to
08:25AM	13	spend some time allowing the model to stabilize. Because, when
08:25AM	14	you jump into the Macondo well on May 13th, well, it had been
08:25AM	15	flowing for some time, which means that it had temperature
08:25AM	16	profiles across the walls. As I described earlier, you have the
08:25AM	17	riser, and there's a temperature gradient; and then there's the
08:25AM	18	buoyancy model, and there's a temperature gradient. And all of
08:25AM	19	those materials hold heat.
08:26AM	20	And so, when you build a model, you run it to
08:26AM	21	steady state or you run it until all the conditions stabilize so
08:26AM	22	that you do have these stable representative pressure profiles
08:26AM	23	and temperature profiles throughout the model.
08:26AM	24	Q But your testimony now is that your velocity profile is not
08:26AM	25	representative of what was actually in the riser; correct?

08:26AM	1	A It wasn't the true velocity. It was a representative
08:26AM	2	profile of a stable profile for those conditions. Yes, that's
08:26AM	3	correct.
08:26AM	4	Q And those conditions means a smaller pipe than what was
08:26AM	5	actually in the Macondo riser; right?
08:26AM	6	A It means, yeah, I used the geometric transformation for
08:26AM	7	hydraulic diameter. And, in doing so, I have to allow my model
08:26AM	8	to stabilize. I have to allow it to start from something that
08:26AM	9	would represent those conditions that Macondo was in, yes.
08:26AM 1	10	Q Now, yesterday you testified a little bit about flow
08:27AM 11	11	patterns; right?
08:27AM 1	12	A I did.
08:27AM 1	13	Q And you stated -- and if we could pull up -- well, we'll
08:27AM 1	14	keep going along.
08:27AM 1	15	You stated that if you have stratified flow, that
08:27AM 1	16	corresponds to slow gas flow and slow liquid flow; right?
08:27AM 17	17	A I don't think I used those exact words.
08:27AM 18	18	Stratified flow is the velocities, we're talking
08:27AM 1	19	about superficial velocities or average phase velocities, and it
08:27AM 20	20	generally is present when the ratio between the gas velocities
08:27AM 21	21	and the liquid velocities are near each other.
08:27AM 2	22	It could be moving quite fast. But, if the gas is
08:27AM 2	23	moving faster than the liquid, you would see waves or ripples on
08:27AM 2	24	the surface of the liquid.
08:27AM 2	25	If they're moving at the same speed, you're going

08:27AM	1	to see liquid at the bottom of the pipe with gas on the top of
08:27AM	2	the pipe, and you won't see much rippling in the surface.
08:28AM	3	THE COURT: No matter what the speed?
08:28am	4	THE WITNESS: No matter what the speed.
08:28AM	5	BY MR. CHAKERES:
08:28AM	6	Q So, if both of them were moving, say, one meter per year,
08:28AM	7	very, very slowly, right, you would not see the ripples on the
08:28AM	8	waves; right?
08:28AM	9	A Not if they were moving at the same speed, no.
08:28AM	10	Q Then let's double the gas to two meters per year. That's
08:28AM	11	still very, very slow; right?
08:28AM	12	A Just the gas portions of the liquid?
08:28AM	13	Q The liquid is still moving at one meter per year.
08:28AM	14	A Yes.
08:28AM	15	Q And the gas is now moving at two meters per year. Very,
08:28AM	16	very slow. Are you going to be seeing waves kicking up there?
08:28AM	17	A I would guess not likely.
08:28AM	18	Of course, to know the answer to that, you would
08:28AM	19	need to model the specifics of the fluid. You'd need to know
08:28AM	20	something about the interfacial friction; you'd need to know
08:28AM	21	something about the particular fluid viscosity. The thicker
08:28AM	22	fluids tend not to ripple as easily.
08:28AM	23	So there's lots of sophistication and complexity
08:28AM	24	to multiphase flow. In that particular example with very
08:298M	25	slow-moving fluids, I would say it's unlikely. But, without a

$08: 29 A M$	1
$08: 29 A M$	2

08:29AM 3

08:29AM 4
08:29AM 5
08:29AM 6

08:29AM 7

08:29AM 8 08:29AM 9

08:29AM 10

08:29AM 11

08:29AM 12

08:29AM 13

08:29AM 14

08:29AM 15

08:29AM 16

08:29AM 17

08:29AM 18

08:30AM 19

08:30AM 20

08:30AM 21

08:30AM 22

08:30AM 23

08:30AM 24

08:30AM 25
specific example, I don't know that.
I can generally answer that question for all problems.

Q Now let's assume the fluids were moving at 10 meters per second. Both the gas and the liquid are moving at 10 meters per second. Are you with me?

A I am.
Q Much faster flow through the riser; right?
A That's correct.
Q Now we double the gas velocity there from 10 meters per second to 20 meters per second.

Do you think it's going to be the same change in flow patterns as you had when the flows were thousands of times smaller?

A No, probably not. Again, you have to look specifically at the fluid conditions in order to draw general conclusions.

MR. CHAKERES: Let's look at demonstrative D-2205. BY MR. CHAKERES:

Q Now, we have here -- over here on the left is the actual riser. We have the outer diameter of 915.5 inches, or diameter of the outer pipe 915.5 inches, diameter of the inner pipe 6.625 inches.

> Do you see that?

A I do.
Q And now we have your model. It's got a hydraulic diameter

08:30AM	1	of 12.875 inches; right?
08:30AM	2	A That's correct.
08:30AM	3	Q Now, I'll just throw out a hypothetical here. I've
08:30AM	4	multiplied my -- the riser by 3, but I've maintained the
08:30AM	5	difference between the diameter of the outer pipe and the inner
08:30AM	6	pipe. So I have the same hydraulic diameter. And we can
08:30AM	7	subtract these if you want. But those should come out to 12.875
08:30AM	8	inches.
08:30AM	9	Do you see that?
08:30AM	10	A I do.
08:30AM	11	Q The flow area for this large pipe is about 1050 square
08:30AM	12	inches.
08:30AM	13	Do you see that?
08:30AM	14	A I do.
08:30AM	15	Q The flow area for your model is about 130 square inches.
08:31AM	16	Do you see that?
08:31AM	17	A I do.
08:31AM	18	Q Now, we have the same hydraulic diameter in both of these
08:31AM	19	cases; don't we?
08:31AM	20	A Yes. That's precisely the point.
08:31.AM	21	Q Precisely the point. I'm sorry. Let you finish.
08:31AM	22	A You can't think of this in terms of -- I mentioned this as a
08:31AM	23	counterintuitive phenomenon. I mean, if you think about it --
08:31AM	24	unfortunately, everything in science isn't intuitive. This is
08:31AM	25	one of those situations where it's not the most intuitive

08:31AM	1	situation.
08:31AM	2	But, in this particular example, yes, it's exactly
08:31AM	3	the same hydraulic diameter. If you have a straw with an
08:31AM	4	obstruction and you're trying to suck fluid into your mouth,
08:31AM	5	that straw requires you to exert more effort.
08:31AM	6	You can take a smaller straw and exert the same
08:31AM	7	amount of effort and get the exact same amount of fluid in your
08:31AM	8	mouth.
08:31AM	9	If you have a big, big straw with a big, big straw
08:31AM	10	in the center of it, in terms of the amount of force to get the
08:32AM	11	same fluid, or the volumetric flow rate, it's the exact same
08:32AM	12	force.
08:32AM	13	Q Well, it's not really counterintuitive when we say that
08:32AM	14	we're maintaining the velocities across these; is it?
08:32AM	15	Because we have here about the same distance from,
08:32AM	16	you know, the inner wall and the outer wall, so we're
08:32AM	17	maintaining the relationship between the area for flow and the
08:32AM	18	wetted perimeter.
08:32AM	19	So, if we say that the frictional pressure drop
08:32AM	20	versus velocity relationship stays the same across all of these,
08:32AM	21	it's not so counterintuitive; is it?
08:32AM	22	A It may not be counterintuitive to you, but it would also be
08:32AM	23	incorrect to do so.
08:32AM	24	Q So is it your testimony that, for a given pressure drop,
08:32AM	25	same pressure drop across each of these three examples -- same

08:32AM	1	fluid, same temperature, everything -- for the same pressure
08:32AM	2	drop, you are going to get the same amount of flow through each
08:32AM	3	of these?
08:32AM	4	A Not the same velocity; but you will get the same volumetric
08:32AM	5	flow rate, yes, that's correct.
08:33AM	6	Q So I can keep expanding this riser over here. I can push
08:33AM	7	this riser out to a thousand; and, as long as I have the same
08:33AM	8	hydraulic diameter, just by pushing my inner pipe out in the
08:33AM	9	same way, I can increase my area for flow up to a thousand.
08:33AM	10	I have the same pressure drop pushing flow through
08:33AM	11	this giant riser as I do through your little model, and I'm
08:33AM	12	going to get the same amount of flow through there?
08:33AM	13	A Well, I don't agree with the premise that you can extend
08:33AM	14	this model to infinity. At some point, and you might actually
08:33AM	15	be approaching that point in this particular example, you
08:33AM	16	approach what's called flow between two parallel plates.
08:33AM	17	But, in general, despite the fact that it's
08:33AM	18	counterintuitive, it is correct.
08:33AM	19	Q If I extend this thing out to a thousand, if I am
08:33AM	20	maintaining a relationship between the velocity and the pressure
08:33AM	21	drop, because every bit of flow has got a similar amount of drag
08:33AM	22	because it's got a similar amount of space to flow through, it's
08:34AM	23	not really counterintuitive if I maintain the velocity but I
08:34AM	24	allow my mass flow rates or volumetric flow rates to vary in
08:34AM	25	this case; is it?

08:34AM	1	A Yeah. But, unfortunately, that's not what the science tells
08:34AM	2	us to be true.
08:34AM	3	Q So you think the hydraulic diameter concept breaks down
08:34AM	4	around here, but it's still okay over here?
08:34AM	5	A No. I think it's probably okay in the 3 X scenario; however,
08:34AM	6	you cannot extend this riser out bigger and bigger and bigger.
08:34AM	7	Eventually, you're going to get to a situation where the fluid,
08:34AM	8	for instance at the top of the pipe, has no interaction with the
08:34AM	9	fluid at the bottom of the pipe.
08:34AM	0	It would be the equivalent of imaging a pipe the
08:34AM	11	size of the earth with a tiny little layer. Well of course the
08:34AM	2	fluid here would have no idea what the fluid there is doing.
08:34AM	3	There are specific ratios where when you extend
08:34AM	4	this out to large, large system with very large inner pipes
08:34AM	5	where hydraulic diameter is not considered the correct geometric
08:35AM	6	transformation.
08:35AM	7	But, for the purpose of the demonstration, I'm
08:35AM	8	going with it. It is counterintuitive; and, yes, this model is
08:35AM	9	the correct answer.
08:35AM	20	Unfortunately, no, it doesn't give you the true
08:35AM	21	velocities, but it does give you the correct relationship
08:35AM	22	between pressure drop and flow rate.
08:35AM	23	Q So let's go to an expert report from one of your colleagues.
08:35AM	24	It's Exhibit 11488. Page 24.
08:35AM	25	BY MR. CHAKERES: If we could call out figure 9.

08:35AM	1	BY MR. CHAKERES:
08:35AM	2	Q Did you read the expert report of Adrian Johnson?
08:35AM	3	A I did not.
08:35AM	4	Q Do you recognize this as a flow regime map?
08:35AM	5	A I do.
08:35AM	6	Q Now, this represents where flows are going to be in
08:35AM	7	different flow regimes, which we described earlier is going to
08:35AM	8	be something similar to flow patterns.
08:36AM	9	Do you see that?
08:36AM	10	A I do.
08:36AM	11	Q It's a little hard to read, so we can pull out some of the
08:36AM	12	language if we need to.
08:36AM	13	Now, let's look at the axes.
08:36AM	14	We have here on the bottom something called, I
08:36AM	15	believe it's rho liquid/v liquid squares.
08:36AM	16	Do you see that?
08:36AM	17	A I do.
08:36AM	18	Q And then, on the y-axis, we have a rho gas/v gas squared;
08:36AM	19	right?
08:36AM	20	A I do.
08:36AM	21	Q And we can pull out the page. Dr. Johnson was kind enough
08:36AM	22	to define for us what rho and v represent here.
08:36AM	23	If we could go out to the main page. We see here,
08:36AM	24	rho liquid is density of the liquid. v liquid is the
08:36AM	25	superficial liquid velocity. UG is the superficial gas

08:38AM	1	ratio might do something different in terms of what flow regime
08:38AM	2	you're in; won't it?
08:38AM	3	A Yeah, that's correct. And that's consistent with what I
08:38AM	4	said earlier. If I have used the term ratio, I've used it to
08:38AM	5	represent this chart itself.
08:38AM	6	But, in your specific example, you asked me if a
08:38AM	7	ratio at a very low speed was likely to be stratified smooth,
08:38AM	8	and then you took that same ratio and scaled it up to a high
08:38AM	9	speed. Then I said it is likely to result in stratified wavy.
08:38AM	10	So it is consistent with what I've said to you.
08:38AM	11	MR. CHAERES: If we could go back to demonstrative
08:38AM	12	D-2205.
08:38AM	13	MR. CHAERES:
08:38AM	14	Q So, in this case, you're saying that, for a given pressure
08:38AM	15	drop, the velocity up here is going to be different from your
08:39AM	16	model by a factor of 8; right?
08:39AM	17	For a given pressure drop, same hydraulic
08:39AM	18	diameter. You're saying the velocity in this larger shape is
08:39AM	19	going to be 8 times less than the velocity in the model; right?
08:39AM	20	A I didn't say anything about velocity.
08:39AM	21	Q Well, for a given pressure drop, what do you think is going
08:39AM	22	to happen to the velocities between, say, a model with the same
08:39AM	23	hydraulic diameter as this shape right here?
08:39AM	24	A I would need to do some math here. I'm presuming that the
08:39AM	25	ratio of 1053 to 130 is somewhere near 8, which is how you're

08:39AM	1	coming up with this 8 times velocity.
08:39AM	2	Surely, what I'm saying is that the velocity and
08:39AM	3	modeled riser in this example would result in a substantially
08:39AM	4	higher velocity than the velocity in 3 times the riser.
08:40AM	5	And, again, we're really talking about the average
08:40AM	6	mixture velocity. Remember, in multiphase flow, there are
08:40AM	7	multiple different velocities. The gas is moving at a different
08:40AM	8	speed.
08:40AM	9	But, yes, the average velocity certainly is going
08:40AM	10	to be significantly faster in the modeled riser, as you've got
08:40AM	11	it termed.
08:40AM	12	Q The very crux of what you're trying to do in this case is
08:40AM	13	you're trying to provide the Court with an estimate of flow
08:40AM	14	rates based on what flow patterns you observed; correct?
08:40AM	15	A That's correct.
08:40AM	16	Q And the flow patterns that you're determining are based on
08:40AM	17	the velocities, among other things, are based on the relative
08:40AM	18	velocities of each phase; correct?
08:40AM	19	A In general, that is a true statement. But you have to be
08:40AM	20	very careful with these flow regime maps.
08:40AM	21	So what these flow regime maps focus on
08:40AM	22	specifically is what I was talking about, hydrodynamic slugging,
08:41AM	23	which is when slug flow is determined based on those ratio.
08:41AM	24	And, when I described slug flow at the beginning, that's the way
08:41AM	25	I described it.

08:41AM	1	But one of the other mechanisms for slug flow is
08:41AM	2	terrain-induced slugging, which is slugging that's determined
08:41AM	3	based on the position of the riser. So liquid tends to move to
08:41AM	4	the low spots in the riser, and it accumulates there; and then,
08:41AM	5	occasionally, it will burp out liquid in these system.
08:41AM	6	What we have in this particular case is sort of a
08:41AM	7	modification of terrain-induced slugging. So you wouldn't see
08:41AM	8	on a flow map that it would be in the slug flow regime. What
08:41AM	9	would you see is it would likely be in the stratified flow
08:41AM	10	regime.
08:41AM	11	If we can put up video -- I don't know if we can
08:41AM	12	do this. But, yesterday, one of the slugs actually looks quite
08:42AM	13	ke stratified flow. It is oil dominant, but it does still
08:42AM	14	have a gas layer flowing across the top.
08:42AM	15	d so we're really talking about a very unique
08:42AM	16	mechanism of slug flow behavior. We're certainly not talking
08:42AM	17	about hydrodynamic slugging or these flow regime maps or what
08:42AM	18	you get from these flow regime maps.
08:42AM	19	Q Appreciate that. You are still -- you need to wind up in
08:42AM	20	the stratified flow regime ballpark upstream of the buoyant
08:42AM	21	riser in order to model the slugs that you observed; correct?
08:42AM	22	A That's correct.
08:42AM	23	Q The relative velocities of the phases are still relevant to
08:42AM	24	whether you're in a stratified flow regime or flow pattern
08:42AM	25	upstream of the buoyant riser; correct?

08:42AM	1	A That's also correct.
08:42AM	2	Q And the relative velocities of the phases is also important
08:42AM	3	in determining whether the gas can push the oil slugs all the
08:43AM	4	way up the buoyant riser, or you get something to break and you
08:43AM	5	create a double peak; isn't that correct?
08:43AM	6	A That's also correct.
08:43AM	7	Q So the actual relative velocities of both phases is very
08:43AM	8	important in determining whether the slug behavior observed
08:43AM	9	matches your flow rates; right?
08:43AM	10	A Yes, that's correct. We looked specifically at the flow
08:43AM	11	regimes in this particular case. We see almost the entire riser
08:43AM	12	sits in -- when you look at that traditional flow regime map,
08:43AM	13	almost the entire riser sits in a stratified flow.
08:43AM	14	Q And it's your testimony, just so I'm clear, that instead of
08:43AM	15	using the hydraulic diameter to get the right velocity profile,
08:43AM	16	you believe that the hydraulic diameter maintains mass flow
08:43AM	17	rates or volumetric flow rates, and so your model will predict
08:43AM	18	velocities that are incorrect; right?
08:43AM	19	A It's not just what I believe. That's what the science tells
08:43AM	20	us. But, yes, that's also what I believe.
08:44AM	21	Q Okay. Now, let's look at another example. Let's go to the
08:44AM	22	kink leaks for a little while.
08:44AM	23	Now, you also use hydraulic diameters for the kink
08:44AM	24	leaks; correct?
08:44AM	25	A That's correct.

08:44AM	1	Q And, before we get too much farther, there were several
08:44AM	2	leaks that you modeled. There was the leak that you called leak
08:44AM	3	B; correct?
08:44AM	4	A Yes.
08:44AM	5	Q And there was leak D; correct?
08:44AM	6	A Yes.
08:44AM	7	Q And then there are two other leaks that you combined; isn't
08:44AM	8	that right?
08:44AM	9	A No, that's not correct.
08:44AM	10	Q How did you model the other two leaks?
08:44AM	11	A Well, just to be clear, the three leaks or four potential
08:44AM	12	holes that were present were holes B and C. And then D and E
08:44AM	13	were the holes that were, if you remember the drawing, they're
08:44AM	14	almost touching each other. There's a very small sliver of the
08:44AM	15	riser between the two holes.
08:45AM	16	Q Okay. And how did you model those two that were very close
08:45AM	17	to each other?
08:45AM	18	A So I consulted Nesic, and he provided area and wetted
08:45AM	19	perimeter for those holes so that I could calculate the
08:45AM	20	hydraulic diameter for those holes.
08:45AM	21	Q Did you sum the areas and sum the perimeters?
08:45AM	22	A Again, Nesic provided that information.
08:45AM	23	Q Understood.
08:45AM	24	A I got a total area for those holes and a wetted perimeter.
08:45AM	25	Q Okay. And, the total area, did you understand that to be

08:45AM	1	the area of one hole plus the area of the other hole?
08:45AM	2	A I have presumed so, yes.
08:45AM	3	Q And, likewise for the perimeter, it was the perimeter on one
08:45AM	4	hole plus the perimeter of the other hole?
08:45AM	5	A Again, I presume so.
08:45AM	6	Q I'd like to flip to the ELMO and ask you about another
08:45AM	7	hypothetical.
08:45AM	8	And, again, it's your understanding that, using
08:45AM	9	the hydraulic diameter, that will -- well, let me rephrase that.
08:46AM	10	It's your testimony that, for a given pressure
08:46AM	11	drop, two flow paths with the same hydraulic diameter will give
08:46AM	12	the same flow rate; right?
08:46AM	13	A Could you just repeat it just to make sure that I
08:46AM	14	understand?
08:46AM	15	Q Yes.
08:46AM	16	For a given pressure drop, two flow paths with the
08:46AM	17	same hydraulic diameter will give the same flow rate.
08:46AM	18	That's your testimony; right?
08:46AM	19	A Yeah, that the relationship between pressure drop and flow
08:46AM	20	rate is the same.
08:46AM	21	Q It's not your testimony. You're rejecting the idea that,
08:46AM	22	for a given pressure drop, two shapes of the same hydraulic
08:46AM	23	diameter provide the same velocity; right?
08:46AM	24	A Yes, that's correct.
08:46AM	25	Q Okay. I'd like to go through another example.

$08: 46 \mathrm{AM}$	1
$08: 46 \mathrm{AM}$	2
$08: 47 \mathrm{AM}$	3

08:47AM 4
08:47AM 5
08:47AM 6

08:47AM 7

08:47AM 8
08:47AM 9
08:47AM 10

08:47AM 11

08:47AM 12
08:47AM 13

08:47AM 14

08:47AM 15
08:47AM 16

08:47AM 17

08:47AM 18

08:47AM 19
08:47AM 20
08:47AM 21

08:47AM 22
08:48AM 23

08:48AM 24

08:48AM 25

So I'm attempting to draw a water tank. Do you
see that? And let's put a little leak at the bottom of the water tank. We'll make it a square of 1 inch area on the side.

And so, for this square, the hydraulic diameter is
4 times the area over the perimeter; correct?
A That's correct.
Q And the area would be 1 inch times 1 inch; right?
A That's correct.
Q And the perimeter would be 4 inches; right?
A That's correct.
Q Okay. So that comes out to 1 inch for the hydraulic diameter; right?

A That's correct.
Q And, assuming this is water, if we know the height of the water, we can calculate the flow rate out of that leak. That's a straightforward calculation; right?

A I'm sorry. What's the premise, that the tank is --
Q We know the height of the fluid, we know the size of the leak, we can calculate the flow out of the leak; right? A Yes.

Q What if I were to go in there with a grinder and I'm going to expand the size of this leak into a circle that had a diameter of 1 .

What's the hydraulic diameter of the circle of diameter 1 ?

08:48AM	1	A 1.
08:48AM	2	Q So those two shapes have the same hydraulic diameter, the
08:48AM	3	square and the circle; right?
08:48AM	4	A That's correct.
08:48AM	5	Q And, putting aside jokes about squares and circles, the area
08:48AM	6	of the circle is more than 20 percent greater than the area of
08:48AM	7	the square; right?
08:48AM	8	A I will take your word that it's 20 percent. I would have to
08:48AM	9	do calculations to be certain of that.
08:48AM	10	Q It's roughly something related to the ratio between Pi and
08:48AM	11	4.
08:48AM	12	Now, is it your testimony that the flow rate out
08:48AM	13	of the circle is going to be the same as the flow rate out of
08:48AM	14	the square?
08:48AM	15	A In this particular case, if you were using the hydraulic
08:48AM	16	diameter, they would result in the same flow rate given the same
08:48AM	17	pressure drop, yes.
08:48AM	18	Q Well, I understand that if you're using the hydraulic
08:48AM	19	diameter, because we just stated that they have the same
08:49AM	20	hydraulic diameter.
08:49AM	21	My question to you is, what's happening in
08:49AM	22	reality. Do these two orifices have the same flow rate coming
08:49AM	23	out of them for the given pressure drop?
08:49AM	24	A I think the answer is yes. I haven't looked specifically at
08:49AM	25	this problem; but, when you have a square hole, you've

08:49AM	1	introduced a very different frictional relationship between flow
08:49AM	2	out the bottom of that tank.
08:49AM	3	What the science says is that, yes, they would
08:49AM	4	result in the same fundamental flow rate despite the fact that
08:49AM	5	the area is bigger. I know it's counterintuitive, but that
08:49AM	6	doesn't make it incorrect.
08:49AM	7	Q Okay. It's not so counterintuitive if we just say that the
08:49AM	8	velocities through both of these are the same, and the area
08:49AM	9	change is changing the flow rates; is it? That's not so
08:49AM	10	counterintuitive?
08:49AM	11	A It may not be counterintuitive to you, but it would be
08:49AM	12	incorrect.
08:49AM	13	MR. CHAERES: We're going to label this as
08:49AM	14	demonstrative D-22485.
08:50AM	15	I'd like to draw one more water tank, with the
08:50AM	16	Court's indulgence.
08:50am	17	BY MR. CHAERES:
08:50AM	18	Q Again, we have a gap, a leak, with a 1 inch square. Do you
08:50AM	19	see that?
08:50AM	20	A I do.
08:50AM	21	Q And we've established the hydraulic diameter of this leak is
08:50AM	22	1 inch; right?
08:50AM	23	A Yes.
08:50AM	24	Q Okay. Now, let's say we plunk a hole on the opposite side
08:50AM	25	of this tank, same size. Hole's on the opposite side of the

$08: 50 \mathrm{AM}$	1
$08: 50 \mathrm{AM}$	2

08:50AM 3

08:51AM 4
08:51AM 5
08:51AM 6
08:51AM 7

08:51AM 8
08:51AM 9
08:51AM 10

08:51AM 11

08:51AM 12

08:51AM 13

08:51AM 14

08:51AM 15

08:51AM 16

08:51AM 17

08:51AM 18

08:51AM 19

08:51AM 20
08:51AM 21

08:51AM 22
08:52AM 23

08:52AM 24

08:52AM 25
tank.

Is the flow rate going to stay the same?
A When you mean on the opposite side of the tank --
Q On the other side of the tank, a hole of the same size.
A Is that whole hole at the bottom?
Q Both of these holes are at the bottom of the tanks of water.
A I guess, if you could draw it. I'm not sure what you mean.
But, yes, if you add another hole --
Q We'll add another hole here on the side.
A -- you'll have additional volume or fluid leaking out of the tank.

Q Okay. What if I move that hole right next to our hole?
Would we have additional flow coming out of the tank?
A Yes, you do.
Q Okay. And, this hole, let's say this is 1 inch. Okay?

Now, if we wanted to use a hydraulic diameter to calculate the flow out of these orifices, if they're right next to each other, we can use a hydraulic diameter to do that.

That's what you did with two of the leaks on the
kink; right?
A I did.
Q Okay.
A Now, please bear in mind, this was an exceptionally conservative assumption of mine. Again, when we looked at the kink leaks, we were focused on maximum flow rates. We used very

08:52AM	1	conservatively -- since it wasn't clear which hole or if both
08:52AM	2	holes were present, we used both holes in that scenario or the
08:52AM	3	area and wetted perimeter for both holes.
08:52AM	4	Q Appreciate that.
08:52AM	5	But the use of the hydraulic diameter for two
08:52AM	6	holes that were near each and saying they're combined areas and
08:52AM	7	they're combined perimeters, could be used to make one hydraulic
08:52AM	8	diameter. That's what you did in your model for those holes;
08:52AM	9	right?
08:52AM	10	A I did.
08:52AM	11	Q And you believe that the science supports you in that;
08:52AM	12	right?
08:52AM	13	A It does.
08:52AM	14	Q Now, let's figure out what the hydraulic diameter of these
08:52AM	15	two holes is. It's 4 times the area over the perimeter; right?
08:52AM	16	You agree?
08:52AM	17	A Yeah. That's the formula for hydraulic diameters.
08:52AM	18	Q Now, the area we multiply by 2, so it's going to be 2 square
08:52AM	19	inches now; right?
08:53AM	20	A You're calculating -- sorry, the hydraulic diameter for
08:53AM	21	those combined holes?
08:53AM	22	Q Yes. Yes.
08:53AM	23	A That's not what was provided to me.
08:53AM	24	Q That's not what was provide to you.
08:53AM	25	A I was provided a combined area and a combined wetted

08:53AM	1	perimeter. I then took the irregular-shaped hole and converted
08:53AM	2	that into a circular hole which is required by the models in
08:53AM	3	order to accurately characterize the volume of flow out of the
08:53AM	4	riser in this case.
08:53AM	5	Q So you created a diameter of the actual -- you created a
08:53AM	6	hole with a diameter corresponding to the actual area for flow
08:53AM	7	for those depths?
08:53AM	8	A Yeah. Again, I was provided an actual area of those two
08:53AM	9	holes and an actual combined perimeter for those two holes. I
08:53AM	10	did not take those two holes, combine them with the hydraulic
08:53AM	11	diameter.
08:53AM	12	Q Let's walk through what you did; okay? So the area of hole
08:53AM	13	1 and the area of hole 2, you were given those as a combined
08:53AM	14	number; right?
08:53AM	15	A That's correct. I was given a combined area and a combined
08:54AM	16	wetted perimeter for those two holes. I then take that combined
08:54AM	17	ea -- so, in this case, the 4A. The A is already given and
08:54AM	18	the wetted perimeter is also given -- that is the combined area
08:54AM	19	and the combined wetted perimeter for those two holes.
08:54AM	20	Then I convert using the hydraulic diameter those
08:54AM	21	holes into a circular geometry, which is what the hydraulic
08:54AM	22	diameter transformation does. And then I was able to calculate
08:54AM	23	the flow rate using those holes.
08:54AM	24	Q Let's do that -- sorry, I didn't mean to cut you off. Were
08:54AM	25	you done?

08:54AM	1	A Yeah.
08:54AM	2	I was able to calculate the flow rate using those
08:54AM	3	holes using a multiphase flow simulator.
08:54AM	4	Q So let's walk through -- if what I'm doing over here is
08:54AM	5	incorrect, so what's the combined area of the two holes here?
08:54AM	6	If both holes have a size of 1 inch.
08:54AM	7	A I think it would be 2 inches.
08:54AM	8	Q Squared; correct?
08:54AM	9	A That's correct.
08:54AM	10	Q And what's the combined perimeter of both of these holes?
08:54AM	11	A It's going to be 8.
08:55AM	12	Q And so you took the combined area and combined perimeter and
08:55AM	13	then you calculated a hydraulic diameter using the combined area
08:55AM	14	and the combined perimeter?
08:55AM	15	A That's correct.
08:55AM	16	Q So the combined area we just said was 2 square inches;
08:55AM	17	right?
08:55AM	18	A That's correct.
08:55AM	19	Q And the perimeter you said was 8 inches; right?
08:55AM	20	A Yes, that's correct.
08:55AM	21	Q And that equals 1 inch; doesn't it? Right? For this
08:55AM	22	example, the hydraulic diameter is 1 inch; right?
08:55AM	23	A Yes, that's correct.
08:55AM	24	Q So we just doubled the size of our flow path. You just said
08:55AM	25	that if we double it we're going to increase our flow. Yet, we

08:55AM	1	have the exact same hydraulic diameters we had with just one
08:55AM	2	hole there; don't we?
08:55AM	3	A Right. But you have all of this additional frictional force
08:55AM	4	associated with the additional walls. It is unintuitive, but it
08:55AM	5	is the correct thing to do. It is the best available geometric
08:55AM	6	transformation for the modeling of the these problems.
08:55AM	7	There are numerous texts. You arguing with me
08:56AM	8	doesn't take away from the fact that there is decades of
08:56AM	9	scientists looking specifically at this geometric
08:56AM	10	transformation, and they all conclude it is the correct
08:56AM	11	geometric transformation.
08:56AM	12	Q You say it's the correct geometric transformation to get the
08:56AM	13	right velocities of out the holes; don't they?
08:56AM	14	A That is absolutely not correct.
08:56AM	15	Q I can keep on drawing these things; right? I can draw
08:56AM	16	another one over here; right?
08:56AM	17	A If you can show me one paper that says that the hydraulic
08:56AM	18	diameter, one text or any sort of body, because the science --
08:56AM	19	and I went to school studying these things -- and, really, the
08:56AM	20	science does tell you, despite the fact its unintuitive, it is
08:56AM	21	the correct answer.
08:56AM	22	Q With all due respect, sir, just answer my question.
08:56AM	23	I can put another leak over here, right next to
08:56AM	24	these other leaks; right? Same size, we'll pretend. And these
08:56AM	25	three leaks combined will have the same hydraulic diameter;

08:57AM	1	right?
08:57AM	2	A But I did not combine the holes. So, when I modeled the
08:57AM	3	kink section of the riser outside of D and E, which was provided
08:57AM	4	to me by Dr. Nesic as a combined area and perimeter.
08:57AM	5	All of the other holes were modeled independent of
08:57AM	6	one another.
08:57AM	7	Q Now --
08:57AM	8	A Now, each of those holes were converted to a circular
08:57AM	9	geometry, but they were all independently modeled.
08:57AM	10	Q But you just said that, if the holes had been close to each
08:57AM	11	Other, as in fact D and E were, it would be appropriate to
08:57AM	12	combine their areas, combine their perimeters, and get a
08:57AM	13	hydraulic diameter corresponding to those areas and perimeters;
08:57AM	14	right?
08:57AM	15	A I believe that's what I said. I didn't catch the full
08:57AM	16	question. If you could repeat it just to make sure.
08:57AM	17	Q Just wanted to confirm, you said if the holes are close to
08:57AM	18	each other, you can use their combined areas and the combined
08:57AM	19	perimeters and come up with a hydraulic diameter corresponding
08:58AM	20	to the combined area and the combined perimeter; correct?
08:58AM	21	A I don't know that I made any general statements. What I
08:58AM	22	specifically did is I was provided the area and perimeter by
08:58AM	23	Dr. Nesic. It was a combined area and perimeter because these
08:58AM	24	holes were so close to one another.
08:58AM	25	I then took that area and used the hydraulic

08:58AM	1	diameter for D/E, which I correctly labeled, and I treated that
08:58AM	2	as one hole in this case.
08:58AM	3	The other holes, B and C, were modeled
08:58AM	4	independently.
08:58AM	5	Q Understood.
08:58AM	6	But, here, if all these holes are very close to
08:58AM	7	each other, I can keep on drawing holes that are very close to
08:58AM	8	each other; right? I can keep doing that for a long time. I
08:58AM	9	can put holes all the way around the bottom of our water tank,
08:58AM	10	and the combined areas and the combined perimeters will give you
08:58AM	11	a hydraulic diameter that's the same for -- it's the same as
08:58AM	12	just one hole; won't it?
08:58AM	13	A In this particular example, I did not do that. You're
08:58am	14	asking me to indulge in your hypothetical here. If you're
08:59AM	15	asking me, if you continue to draw holes and then try to combine
08:59AM	16	them into one hydraulic diameter, yes, that's the case.
08:59AM	17	That's not what I did.
08:59AM	18	Q All I was asking you is, if you keep drawing holes, you're
08:59AM	19	not going to increase your hydraulic diameter; will you?
08:59AM	20	A In this particular case or in the Deepwater/Macondo/Horizon?
08:59AM	21	Q In this particular case.
08:59AM	22	A In this particular case, if you keep drawing the holes and
08:59AM	23	you keep trying to combine them and to create one hydraulic
08:59AM	24	diameter, yes, that's what will occur.
08:59AM	25	Q All right. We are going to put this as D-22486.

$08: 59 \mathrm{AM}$	1
$08: 59 \mathrm{AM}$	2
$09: 00 \mathrm{AM}$	3

09:00AM 4
09:00AM 5
09:00AM 6

09:00AM 7

09:00AM 8
09:00AM 9

09:00AM 10

09:00AM 11

09:00AM 12

09:00AM 13

09:00AM 14

09:00AM 15

09:00AM 16

09:00AM 17

09:00AM 18

09:00AM 19

09:00AM 20

09:00AM 21

09:01AM 22

09:01AM 23

09:01AM 24

09:01AM 25

Let me give you one more water tank. I want to be clean here.

So what if, instead of drawing the holes separate,
I actually bring them together, just a little bit, so it's one hole.

You see that?

A I do.
Q And so now it's one hole with this complex geometry you're talking about. There's all sorts of frictional interactions going on with this complex geometry.

If I bring these holes together -- again, I can still do the same thing. One hole now, essentially the same hydraulic diameter is just one square; isn't it? Because the ratio between the areas of all this space and the perimeter stays the same; doesn't it?

A I think that would be correct, yes.
Q And is it your testimony that the flow -- I can put a ring around the whole bottom of the tank. Is the flow rate out of the bottom of the tank with our little daisy-chain of holes here as it would just a 1 inch square hole?

A Again, I didn't --
THE COURT: Or a 1 inch round hole; is that what you're equating this to?

THE WITNESS: Yes. It would be -- if you were to take this string of holes and you were to compute the area, and then

09:01AM	1	you would take the wetted perimeter, a 1 inch round hole would
09:01AM	2	roughly calculate to be the same flow rate out of the bottom of
09:01AM	3	the tank.
09:01AM	4	Despite the fact that it's unintuitive, that would
09:01AM	5	be correct.
09:01AM	6	BY MR. CHAKERES:
09:01AM	7	Q And is that what would actually happen if I took a water
09:01AM	8	tank and I punched all these holes around slightly overlapping
09:01AM	9	with each other? Would I have the same flow rate out of the
09:01AM	10	tank as if I just punched one hole?
09:01AM	11	A Again, I've not studied this particular problem.
09:01AM	12	Intuitively, it sounds counterintuitive, but the science would
09:01AM	13	tell you that's what would happen.
09:01AM	14	Q Okay. We're going to label this as D-22487.
09:01AM	15	MR. CHAERES: Now, if we could pull up Exhibit 10650.
09:01AM	16	BY MR. CHAERES:
09:02AM	17	Q You were provided in your considered materials some
09:02AM	18	calculations that BP performed of flow out of the kink leaks
09:02AM	19	during the response; weren't you?
09:02AM	20	Let's blow up the top half of this. Call-out
09:02AM	21	10650.1.1.US.
09:02AM	22	You were provided this as part of your
09:02AM	23	consideration materials; weren't you?
09:02AM	24	A Yeah. I recognize the material.
09:02AM	25	Q Do you understand that Tim Lockett was calculating flow out

09:02AM	1	of kink leaks here?
09:02AM	2	A He appears to be, yes.
09:02AM	3	Q And he's calculating flow out of a circular orifice; right?
09:02AM	4	He's converting the original geometry to a circular flow path;
09:02AM	5	right?
09:02AM	6	A He appears to be, yes.
09:02AM	7	Q And the area of that circular flow path is not an area
09:02AM	8	corresponding to the hydraulic diameter, but it's actually a
09:02AM	9	circle that has the same area as what he believed the kink leaks
09:03AM	10	to have; isn't that true?
09:03AM	11	A Could you repeat the question one more time?
09:03AM	12	Q Isn't it true that the circular flow path that Tim Lockett
09:03AM	13	modeled had the same area as he believed the kink leaks actually
09:03AM	14	had?
09:03AM	15	A He seems to be taking irregular geometry holes, calculating
09:03AM	16	the cross-sectional area for those, and then converting them
09:03AM	17	into what's called an equivalent area transformation.
09:03AM	18	Q And an equivalent area transformation will give you a circle
09:03AM	19	or the diameter corresponding to a circle with the same area as
09:03AM	20	the regular geometry; right?
09:03AM	21	A That's correct.
09:03AM	22	Q Okay. We can pull that down.
09:03AM	23	And, again, it's your testimony that any two
09:03AM	24	geometries with the same hydraulic diameter will, for the same
09:04AM	25	pressure drop, give you the same flow rate; right?

09:04AM	1	A Yes, That's correct.
09:04AM	2	Q It's not your testimony that the velocities will stay the
09:04AM	3	same.
09:04AM	4	A No. The velocities certainly will not stay the same.
09:04AM	5	MR. CHAERES: Okay. Let's go to Exhibit 130712.
09:04AM	6	130712. Might be 130713.
09:04AM	7	BY MR. CHAERES:
09:04AM	8	Q Ever seen this book before?
09:05AM	9	A I have.
09:05AM	10	Q You have?
09:05AM	11	A Yes.
09:05AM	12	Q What is it?
09:05AM	13	A It's a book on flow. It's a textbook.
09:05AM	14	Q And, for your demonstrative yesterday where you posited that
09:05AM	15	hydraulic diameter maintains the relationship between flow rates
09:05AM	16	and pressure drops, this book was one of the sources that you
09:05AM	17	cited for that proposition; wasn't it?
09:05AM	18	A That's correct.
09:05AM	19	Q All right. Let's see what this book has to say about the
09:05AM	20	topic.
09:05AM	21	MR. CHAERES: If we could go to 130713, page 35.
09:05AM	22	BY MR. CHAERES:
09:06AM	23	Q Now, we're in chapter 3, calculation of system pressure flow
09:06AM	24	or size. Do you see that? It's a chapter where they tell you
09:06AM	25	how to calculate flow?

09:06AM	1	A I see this, yes.
09:06AM	2	Q Let's pull out the portion of the page under Equations For
09:06AM	3	Losses.
09:06AM	4	Now, we see here, we have equations for losses.
09:06AM	5	And you recognize delta H represents head; is that what it
09:06AM	6	appears to you?
09:06AM	7	And delta PR represents pressure?
09:06AM	8	A Yes, that's what it says.
09:06AM	9	Q Okay. And it says that delta P is equal to K times rho
09:06AM	10	times v squared over 2; right?
09:06AM	11	A That's correct.
09:06AM	12	Q And rho typically denotes density; right?
09:06AM	13	A Typically, it's density, yes, that's correct.
09:06AM	14	Q And v-- that's a term for velocity; isn't it?
09:06AM	15	A It could be.
09:06AM	16	Q Is that your understanding? Are you familiar with this
09:07AM	17	equation?
09:07AM	18	A Yeah. In this context, I suspect that it is the velocity.
09:07AM	19	Q And then we've got K over here; right? And they say K is a
09:07AM	20	loss coefficient; don't they?
09:07AM	21	A They do.
09:07AM	22	Q And, under the Loss Coefficient, they say K is equal to FL
09:07AM	23	over D; right?
09:07AM	24	A Right.
09:07AM	25	Q And D, in that loss coefficient -- if we could pull out --

09:07AM	1	let's actually go down to the equation below it.
09:07AM	2	They're talking about the hydraulic diameter with
09:07AM	3	that D with the loss coefficient; right?
09:07AM	4	A Yes, that's correct.
09:07AM	5	Q And we can actually go on to the next page, just to confirm
09:07AM	6	it.
09:07AM	7	Up here at the top, D is equal to hydraulic
09:07AM	8	diameter 4 times the cross-sectional area divided by the
09:08AM	9	perimeter; right?
09:08AM	10	A That's correct.
09:08AM	11	Q So, sure enough, as you stated, the hydraulic diameter is an
09:08AM	12	accepted principle in fluid dynamics; right?
09:08AM	13	A That's correct.
09:08AM	14	Q And it's used in this context, again, in equation relating
09:08AM	15	pressure drops to velocities; right?
09:08AM	16	A Specifically used in the frictional relationship.
09:08AM	17	Q Right.
09:08AM	18	Now, let's go ahead to page 44, 130713.44.
09:08AM	19	All right. Now let's see what the book says about
09:08AM	20	noncircular cross-sections.
09:08AM	21	MR. CHAERES: We can call out all the way down to the
09:08AM	22	bottom? Thank you.
09:08AM	23	BY MR. CHAERES:
09:08AM	24	Q Here, again, they introduce the concept of a hydraulic
09:08AM	25	diameter; don't they?

09:08AM	1
$09: 08 \mathrm{AM}$	2
$09: 08 \mathrm{AM}$	3

09:08AM 4
09:09AM 5
09:09AM 6

09:09AM 7

09:09AM 8
09:09AM 9

09:09AM 10

09:09AM 11

09:09AM 12

09:09AM 13

09:09AM 14

09:09AM 15

09:09AM 16

09:09AM 17

09:09AM 18

09:09AM 19

09:09AM 20

09:09AM 21

09:09AM 22
09:09AM 23

09:09AM 24

09:09AM 25

A They do.
Q And they say above it: For many noncircular cross-sections a satisfactory procedure for calculating head losses is to replace the pipe diameter in the friction and Reynolds number equations by the hydraulic diameter.

You see that?
A I do.
Q And, again, this book is saying that you use the hydraulic diameter when you want to get your frictional pressure losses right and in the Reynolds number equation; right?

A Yes, that's correct.
Q And, the Reynolds number equation, that's one of those dimensionless parameters you mentioned a while back; isn't it? A Yes.

Q And the dimensionless parameters help tell you what flow regime or flow pattern you're in if you're in multiphase flow; right?

A The Reynolds number specifically focuses on the difference between laminar and turbulent follow. It is not associated with the flow patterns that we were discussing earlier.

THE COURT: Pull the microphone a little closer.
BY MR. CHAKERES:
Q Take that correction. The Reynolds number tells you how turbulent your flow is?

A That's correct. I mean, this is all focused on single phase

09:09AM	1	flow as a context.
09:09AM	2	Q And you testified before, the hydraulic diameter concept
09:09AM	3	should apply to single phase flow just like it should apply to
09:10AM	4	multiphase flow; right?
09:10am	5	A It's used in single phase flow, that's correct.
09:10AM	6	Q And this is a book that you cited in support of the
09:10AM	7	proposition that every geometry with the same hydraulic diameter
09:10AM	8	will have the same flow rate for a given pressure drop; isn't
09:10am	9	it?
09:10AM	10	A I have referred to this book with regards to the use of
09:10AM	11	hydraulic diameter in industry, yes.
09:10AM	12	Q Let's skip ahead to page 46 now?
09:10AM	13	45 is a bunch of pictures with noncircular
09:10am	14	geometries.
09:10AM	15	Let's go down here to section, all the way up to
09:10AM	16	Substituting. So, here, they're solving H - and, again, that's
09:10AM	17	head -- and they say substitute -- again, Q, that's flow rate;
09:10AM	18	right? Q is typically flow rate in these kind of equations?
09:10AM	19	A That should be the volumetric flow rate, yes.
09:10AM	20	Q And, A, we just saw in our hydraulic diameter derivation
09:10AM	21	that A is the actual cross-section area available for flow;
09:10AM	22	didn't we? It's the same A as we saw in the hydraulic diameter
09:11AM	23	equation; right?
09:11AM	24	A Yeah, that's correct. I don't know if it's the actual
09:11AM	25	cross-section in this particular section without reading it.

09:11AM	1	But I think it is; yes, that's correct.
09:11AM	2	Q They say substituting v -- which is velocity, we decided;
09:11AM	3	right?
09:11AM	4	A Yes.
09:11AM	5	So that's the definition between in single phase
09:11AM	6	flow the velocity and volumetric flow in an area.
09:11AM	7	Q When you want to solve for the flow rate instead of the
09:11AM	8	velocity in that equation we saw before, you don't divide by an
09:11AM	9	area corresponding to the hydraulic diameter, you divide by the
09:11AM	10	actual cross-sectional area; don't you?
09:11AM	11	A No, that's not correct. This is what's referred to in
09:11AM	12	science as a definition. This relates variables to one and the
09:11AM	13	other inside the context of whatever assumptions that you've
09:11AM	14	made.
09:11AM	15	So, in my model, when I used the hydraulic
09:11AM	16	diameter, you could take the velocity in that model, you could
09:12AM	17	take the area calculated by the hydraulic diameter and you could
09:12AM	18	come to the volumetric flow rate.
09:12AM	19	It's just the relationship between variables.
09:12AM	20	This is not a formula that you would use then to determine
09:12AM	21	something.
09:12AM	22	Q This is the formula you'd use to determine something; isn't
09:12AM	23	it?
09:12AM	24	A In this particular case, this is a formula that looks to be
09:12AM	25	calculating -- I'm surprised it's delta H -- but some sort of

09:12AM	1	pressure drop with frictional and flow rate, yes.
09:12AM	2	Q And, when you stick in the flow rate, you stick in the flow
09:12AM	3	rate based on the velocity in the actual cross-sectional area;
09:12AM	4	don't you?
09:12AM	5	A No. I think, if you go back a page, actually what's
09:12AM	6	happening is they've taken a frictional relationship. Now what
09:12AM	7	they're doing is saying, Hey, we now have a relationship or a
09:12AM	8	definition between volumetric flow rate and area, and if you
09:13AM	9	substitute that in to this previous frictional relationship then
09:13AM	10	you now have a calculation for pressure drop.
09:13AM	11	Or that's what I assume the H is here. This
09:13AM	12	actually emphasizes the point that the ratio here of perimeter
09:13AM	13	to area is quite important. And that comes directly from the
09:13AM	14	hydraulic diameter, and it is that ratio that is important.
09:13AM	15	Q All right. We can do some addition, subtraction,
09:13AM	16	multiplication over here and see if the hydraulic diameter is
09:13AM	17	$l y$ what the area you're flowing that flow rate through
09:13AM	18	there.
09:13AM	19	But we don't have to do that up here, because the
09:13AM	20	flow rate, area Q, is flowing through A; isn't it?
09:13AM	21	A So, I think, if you just go back to the previous equation,
09:13AM	22	we could walk you through how they get here. But this really
09:13AM	23	is, if my memory is right from the equation that you showed me
09:13AM	24	earlier, this is just a substitution of the hydraulic diameter
09:14AM	25	into that previous equation.

$09: 14 \mathrm{AM}$	1
$09: 14 \mathrm{AM}$	2

09:14AM 3
09:14AM 4

09:14AM 5

09:14AM 6

09:14AM 7

09:14AM 8

09:14AM 9

09:14AM 10

09:14AM 11

09:14AM 12

09:14AM 13

09:14AM 14

09:14AM 15

09:14AM 16

09:14AM 17

09:14AM 18

09:14AM 19

09:15AM 20

09:15AM 21

09:15AM 22

09:15AM 23

09:15AM 24

09:15AM 25

This in fact emphasizes that the ratio of wetted perimeter and area are what is important, despite the fact that it's counterintuitive.

Q What's important is to get the right frictional coefficient; isn't it?

A In this case, it's what's important to get the right pressure drop. That's the equation we're looking at.

Q So it's your testimony -- you got to get the right pressure drop -- you got to use the hydraulic diameter to get the right pressure drop; right?

A Yeah, that's correct. And specifically, I mean, when you think about this pipeline, pressure drop is very important, resistance to flow is very important. It determines how the pressure and temperature change down the length of the pipe.

In multiphase flow, that changes the ratio of gas to liquid, that changes the velocities as they move down the pipes.

It's very important.
Q Okay. But it's your testimony that the hydraulic diameter concept, everything with the same hydraulic diameter, no matter how large the actual area is, even if the modeled area -- let me start that question again.

It's your testimony that, no matter how large the actual area is, if you have the same hydraulic diameter and the same pressure drop, you're going to get the same flow rate;

$09: 15 \mathrm{AM}$	1
$09: 15 \mathrm{AM}$	2
$09: 15 \mathrm{AM}$	3
$09: 15 \mathrm{AM}$	4
$09: 15 \mathrm{AM}$	5
$09: 15 \mathrm{AM}$	6

09:15AM 7

09:15AM 8
09:15AM 9

09:15AM 10

09:15AM 11

09:15AM 12

09:15AM 13

09:15AM 14

09:15AM 15
09:16AM 16

09:16AM 17

09:16AM 18

09:16AM 19

09:16AM 20

09:16AM 21

09:16AM 22
09:16AM 23
09:16AM 24

09:16AM 25

right?

MR. FIELDS: Objection. Asked and answered, Your Honor.

THE COURT: Overruled.
BY MR. CHAERES:
A Yes, that's correct. I mean, again, we put some bounds when we were talking about it and you were talking about infinitely large riser pipes. You start to get in a very specialized situation where now the fluid doesn't interact with certain -the other fluid in the pipe.

But, yes, in the examples you gave, despite the fact there's a large difference in cross-sectional area, yes, it will result in the same pressure drop and the same volumetric flow rate.

Q If that's the definition of flow rate, how does that thing change with your hydraulic diameter? That thing is your velocity times your actual area; right?

A Again, so this v equals QA. This is a definition. So this is just an interrelationship between variables calculated from the same model. This is not something that could be then used to calculate a new number.

So, for example, in my model you can't calculate a velocity and then say, oh, I want to take the velocity out of this model, and then use that relationship to calculate a new volumetric flow rate using a bigger cross-sectional area.

$09: 16 \mathrm{AM}$	1
$09: 16 \mathrm{AM}$	2
$09: 16 \mathrm{AM}$	3

09:16AM 4
09:17AM 5
09:17AM 6

09:17AM 7

09:17AM 8
09:17AM 9

09:17AM 10

09:17AM 11

09:17AM 12

09:17AM 13

09:17AM 14

09:17AM 15

09:17AM 16

09:17AM 17

09:17AM 18

09:17AM 19

09:17AM 20

09:17AM 21

09:18AM 22

09:18AM 23

09:18AM 24

09:18AM 25

What this tells you is that, given a solution to the equations, that that's how those variables are related. So a velocity using the hydraulic diameter is related to the volumetric flow rate by the velocity equals Q over A.

And, in the construct of a model that is all using the hydraulic diameter, that will be exactly true.

MR. CHAERES: Okay. If we could pull down the call-out.

BY MR. CHAERES:
Q Now, let's go back to page -- actually, I'll hold this down for a moment.

So it's not counterintuitive if you have the same -if you maintain the velocities to pressure drop's relationship across all shapes of the same hydraulic diameter; is it? That's not a counterintuitive thing; is it?

A To me, it is, as an expert. I've read the literature. I'm now a believer in hydraulic diameter. I've used it multiple times throughout my career. It matches and is accepted in industry.

Q And after your model is predicting velocities that are one-half the actual velocities in this -- excuse me -- your model would have to model velocities, or double the velocities in the system; wouldn't it?

A They'll be faster.
Q They'll be double.

09:18AM	1	A Well, this is multiphase flow. So, again, we've tried to
09:18AM	2	simplify this, and probably for the sake of this conversation
09:18AM	3	that's probably best.
09:18AM	4	But multiphase flow is really incredibly
09:18AM	5	complicated. You have multiple velocities. You have a gas
09:18AM	6	velocity; you have a liquid velocity. They're moving at
09:18AM	7	different speeds at different portions of the pipe. You have an
09:18AM	8	average mixture velocity.
09:18AM	9	But, yes, probably -- or the average measured of
09:18AM	10	velocities should be faster in general than the measured
09:18AM	11	velocity in the true system.
09:18AM	12	Q And it would have to be double if your area is off by half;
09:18AM	13	wouldn't it?
09:18AM	14	A It's not exactly half, and there are different area drill
09:18AM	15	pipes. So, no, it's not an exact $2: 1$ ratio. Remember, you
09:198M	16	w, the drill pipe example that you've used, which is a large
09:198M	17	section of the riser. There's also a drill pipe upstream of
09:19AM	18	that which is much smaller which results in a different ratio.
09:19AM	19	Q And then there's another segment upstream of that which
09:198M	20	results in a larger ratio; isn't there?
09:19AM	21	A A 22-foot section, yes, of a 45,000 foot riser.
09:19AM	22	Q So 75 percent of your riser has 2.03 , as I think the ratio
09:19AM	23	of the area of the -- the area in the actual system to the area
09:19AM	24	in your model.

Does that sound about right?

09:19AM	1	A There were 264 over 130, yes.
09:19AM	2	Q Now, you also testified yesterday that the user manuals say
09:19AM	3	what you did with the hydraulic diameter is correct.
09:19AM	4	MR. CHAERES: I'd like to look at Exhibit 130544.
09:19AM	5	BY MR. CHAERES:
09:19AM	6	Q This is the most recent OLGA user manual I can get my hands
09:20AM	7	on. Do you recognize this document?
09:20AM	8	A Yeah, this is -- it's certainly not the most recent user
09:20AM	9	manual. There's version 7.2, which I used in this particular
09:20AM	10	investigation. And now, just recently, a few days ago, 7.3 was
09:20AM	11	released.
09:20AM	12	Q Okay. Now, let's go to page 444 of this document.
09:20AM	13	All right. If we could call out the table
09:20AM	14	beginning with pipes.
09:20AM	15	This is telling me how to input various inputs;
09:20AM	16	right? And it says here: For diameter for pipe.
09:20AM	17	Again, hydraulic diameter. That's what's used to
09:20AM	18	input for your pipe; right?
09:20AM	19	A Sorry, where are you specifically?
09:20AM	20	Q Diameter. It says input the hydraulic diameter of the pipe;
09:20AM	21	right?
09:20AM	22	A Yep, that's correct.
09:20AM	23	Q And then, above that -- and, again, this is consistent if
09:21AM	24	you want to maintain a relationship between pressure drops and
09:21AM	25	velocities; right?

09:21AM	1	A Yes. This is for the pipe keyword in OLGA. This is a
09:21AM	2	specific keyword when you're modeling the pipe. This particular
09:21AM	3	input in diameter is one of the inputs, and this manual is
09:21AM	4	confirming the use of hydraulic diameter.
09:21AM	5	Q And, again, you need the hydraulic diameter because you want
09:21AM	6	to maintain your relationship between the wetted perimeter and
09:21AM	7	the area; right?
09:21AM	8	A Yes, that's correct.
09:21AM	9	Q And that will get you the right pressure drops for a given
09:21AM	10	velocity; correct?
09:21AM	11	A No. That will give me the right pressure drops or the right
09:21AM	12	relationships between flow rate and pressure drop.
09:21AM	13	Q It's more intuitive if you say that it gives you the right
09:21AM	14	relationship between the pressure drop and the velocity; isn't
09:21AM	15	it?
09:21AM	16	A No, I don't believe that it is.
09:21AM	17	Q Okay. Now, let's look up above diameter to this area entry.
09:21AM	18	So this area 1. It gives you an opportunity to enter correct
09:22AM	19	total flow area; doesn't it?
09:22AM	20	A So this particular keyword is when you're using multiple
09:22AM	21	pipes. They call them equivalent pipes that are flowing in
09:22AM	22	parallel with one another.
09:22AM	23	This particular keyword is only used, again, in a
09:22AM	24	special case where you have multiple pipes flowing in parallel.
09:22AM	25	This keyword is not used for a single pipe situation.

09:22AM	1	Q What's the real number? Is it -- well, let me withdraw that
09:22AM	2	question.
09:22AM	3	So an integer is where you're counting 1, 2, 3, 4,
09:22AM	4	5; right?
09:22AM	5	A That's correct.
09:22AM	6	Q With a real number, you can have decimals. You can say 1.5,
09:22AM	7	1.75, that kind of thing; right?
09:22AM	8	A Yes.
09:22AM	9	Q 2.03.
09:22AM	10	Now, the number of equivalent pipes down here, you
09:22AM	11	can input a real number for that; can't you?
09:22AM	12	A Again, this is a section of the manual that's referring to
09:22AM	13	parallel pipes flowing next to each other. This would not be
09:23AM	14	the correct use of the software in this particular case. This
09:23AM	15	would take a real number input, or that's what it says in the
09:23AM	16	manual.
09:23AM	17	Q Like a half a pipe or, you know, sort of a like a Pacman
09:23AM	18	shape of a pipe, that's not something you'd actually be modeling
09:23AM	19	in reality; right?
09:23AM	20	You would only input a real number for the number
09:23AM	21	of equivalent pipes in a fraction form if you from were
09:23AM	22	transforming something that was different from what was going on
09:23AM	23	in your model; wouldn't you?
09:23AM	24	A Again, the situation that they're trying to address in this
09:23AM	25	particular section with these particular keywords -- so what you

$09: 23 A M$	1
$09: 23 A M$	2
$09: 23 A M$	3

09:23AM 4
09:23AM 5
09:23AM 6

09:24AM 7

09:24AM 8
09:24AM 9

09:24AM 10

09:24AM 11

09:24AM 12

09:24AM 13

09:24AM 14

09:24AM 15

09:24AM 16

09:24AM 17

09:24AM 18

09:24AM 19

09:24AM 20

09:24AM 21

09:24AM 22

09:24AM 23

09:25AM 24

09:25AM 25
shouldn't take from this is that all of these keywords are used at any given time. It depends very specifically on the model that you create.

And, when they say number of equivalent pipes, in production fields you oftentimes have three or five pipes running in parallel. This is -- the area and the number of equivalent pipe is what they're referring to.

Q You ever have 2.5 pipes running in parallel in reality?
A No. And, in general, I've never seen it used that way. I mean, it does say that it would accept a real number, but there are numerous problems with this manual.

It could in fact accept a real number, but I have never seen it used that way.

Q Okay. Let's look at page 429 of this document, and let's call out the table beginning with leak.

So we were just talking about how to input pipes; right?

Now we're talking about how to input leaks. Do you see that?

A Yes. So this is the section of a model that looks like it's focused on the leak key, yes.

Q Okay. Now, let's go down to see what they say about diameter in the leak key.

Maximum equivalent diameter of leak area. There's
no mention of hydraulic diameter there; is there?

09:25AM	1	A No. So what they're asking you to input is the maximum
09:25AM	2	equivalent diameter.
09:25AM	3	Now, the equivalent diameter is, again, this
09:25AM	4	transformation. In this case, hydraulic diameter.
09:25AM	5	Q It said hydraulic diameter in the pipe thing; didn't it?
09:25AM	6	A Yeah. There was no definition per maximum equivalent
09:25AM	7	diameter. So what they are asking you to do is calculate an
09:25AM	8	equivalent diameter, hydraulic diameter.
09:25AM	9	Hydraulic diameter is one such diameter, and then
09:25AM	10	put that into the model.
09:25AM	11	Q So you think that they meant hydraulic diameter when they
09:25AM	12	wrote equivalent diameter here?
09:25AM	13	A No, I'm not saying that. I'm saying equivalent diameter is
09:25AM	14	a word that refers to these geometric transformations. They
09:25AM	15	were not specific about which transformation that they were
09:26AM	16	asking users to use.
09:26AM	17	There are of a number of empirically derived
09:26AM	18	transformations when you're looking at irregularly shaped holes.
09:26AM	19	So, an example as, sometimes they're much smaller than the
09:26AM	20	hydraulic diameter.
09:26AM	21	But, in this particular case, we used the
09:26AM	22	hydraulic diameter as the equivalent diameter in this section.
09:26AM	23	Q And they specified what geometric transformation they wanted
09:26AM	24	you to use in the pipe section when they said hydraulic
09:26AM	25	diameter; didn't they?

09:26AM	1	A Yes. Specifically, in that section, they confirmed the use
09:26AM	2	of hydraulic diameter.
09:26AM	3	Q And they didn't here; did they?
09:26AM	4	A No. Again, I think this has to do with a context. So a
09:26AM	5	leak hole can be very irregularly shaped. And there's a large
09:26AM	6	body of research around characterizing leak holes and the
09:26AM	7	specific diameter or transformation that would correctly
09:26AM	8	characterize that, some of which are smaller than the hydraulic
09:27AM	9	diameter.
09:27AM	10	This is just, we don't know which correlation
09:27AM	11	you're going to use. We don't know enough about the leak holes.
09:27AM	12	Certainly, pipes aren't star-shaped or anything like that, so
09:27AM	13	they can safely say hydraulic diameter. When you're looking at
09:27AM	14	a hole, it could be any irregular shape.
09:27AM	15	So, at this particular section, I think they
09:27AM	16	stayed safely more generic.
09:27AM	17	Q When Tim Lockett was modeling the leak, he did not use a
09:27AM	18	hydraulic diameter; did he?
09:27AM	19	A I didn't see Tim Lockett modeling anything. I just saw an
09:27AM	20	email where he was calculating an equivalent area diameter. I
09:27AM	21	don't know what he actually used in his calculations.
09:27AM	22	MR. FIELDS: Your Honor, I'm sorry. May I approach and
09:27AM	23	give the witness some water?
09:27AM	24	THE COURT: Sure.
09:27AM	25	BY MR. CHAKERES:

09:27am	1	Q In the email that Tim Lockett -- from Tim Lockett that you
09:27AM	2	saw, he was discussing calculating leaks; right? Calculating
09:28AM	3	flow through leaks; wasn't he?
09:28AM	4	A Yes. That's what he was discussing.
09:28AM	5	Q And the area transform that he used for that was an area
09:28AM	6	transform that was going to give him the equivalent of the area
09:28AM	7	as was actually flowing through leaks; wasn't it?
09:28AM	8	A So, as I think in this email, he's again trying to
09:28AM	9	transform, and he uses a transform that would calculate the
09:28AM	10	diameter of the equivalent area of that leak, yes.
09:28AM	11	MR. CHAERES: Okay. We can pull this down.
09:28AM	12	So if we could just go real quickly back to
09:28AM	13	demonstrative D-22201.
09:28AM	14	BY MR. CHAERES:
09:28AM	15	Q Again, we were talking here about at the beginning, this is
09:28AM	16	approximation for multiphase flow, but it actually holds true
09:28AM	17	for each phase. Mass flow rate with a density times the
09:29AM	18	velocity times the area; right?
09:29AM	19	A Yeah, that's correct. If the velocity is an average mixture
09:29AM	20	velocity, that would hold true.
09:29AM	21	Q Okay. And the difference between your model and reality, at
09:298M	22	least for the sake of the -- the large majority of the riser, is
09:29AM	23	that the area available flow through the riser with a 6'65"
09:29AM	24	drill pipe is about double what the area was in your model;
09:29AM	25	isn't that true?

09:29AM	1	A That's correct.
09:29AM	2	Q And the velocity, you state, drops by an equivalent amount
09:29AM	3	in order to keep the mass flow rate the same; isn't that true?
09:29AM	4	A It changes. I think the velocity in my model would be
09:29AM	5	faster than the velocity.
09:29AM	6	Q I stand corrected.
09:29AM	7	The area drops in your model so the velocity
09:29AM	8	increases in your model; correct?
09:29AM	9	A That's correct.
09:29AM	10	Q Now, if the velocity were to have stayed the same and your
09:29AM	11	model was within reality, then the mass flow rate in reality
09:29AM	12	would have been double what the mass flow rate was in your
09:30AM	13	model?
09:30AM	14	A No. Again, that's really incorrect. Again, you're now
09:30AM	15	taking definitions and you're trying to make them predictive.
09:30AM	16	What I've used is the best available technology.
09:30AM	17	I've made an approximation that's based on science and that's
09:30AM	18	backed by a large body of literature. You cannot then
09:30AM	19	cherry-pick one number that you like out of my model and then
09:30AM	20	plug it into a relationship. This is just the definition. And
09:30AM	21	then try to predict something else. It's just not correct to do
09:30AM	22	that.
09:30AM	23	Q So, to sum up, you claim that for any -- well, you claim
09:30AM	24	that this definition is being taken out of context. This
09:30AM	25	definition has to hold true; right?

09:30AM 1 09:31AM 2 09:31AM 3

09:31AM 4

09:31AM 5

09:31AM 6

09:31AM 7

09:31AM 8
09:31AM 9

09:31AM 10

09:31AM 11

09:31AM 12

09:31AM 13

09:31AM 14

09:31AM 15

09:31AM 16

09:31AM 17

09:31AM 18

09:32AM 19

09:32AM 20

09:32AM 21

09:32AM 22

09:32AM 23

09:32AM 24

09:32AM 25

A Yeah. The definition holds true given the construct of a particular model. So, if you were to take my model and you were to use my area, my velocity, and my density, of course then you would get the same mass flow rate that my model's predicting.

What I am saying is that you can say, Oh, I like this one result from your model, let me take that and let me take an area that wasn't used in the model, and then expect to get the correct mass flow rate. That's just not the way it's done.

There's nothing in the literature that would say that. There's nothing in the OLGA manual that says: Oh, by the way, you need to scale your numbers by a factor of 2 . It's just not correct.

Q The OLGA manual allows you to input real numbers for equivalent pipes in order get the total correct area for flow; right?

A No. Again, equivalent pipes is a scenario where you have multiple pipes flowing in parallel. This is quite common in the oil and gas industry, and that's why that was introduced.

What the manual says, quite clearly, is use the hydraulic diameter when you're modeling flow through a pipe. Q And you use the hydraulic diameter to get the right pressure drops and the right velocities; isn't that true?

A No. That's not what the manual says, and that's not the purpose of the hydraulic diameter. The hydraulic diameter is

$09: 32 \mathrm{AM}$ $09: 32 \mathrm{AM}$	1 2	intended to correctly relate flow rates and pressure drops. It's not intended to correctly relate velocities
09:32AM	3	and pressure drops.
09:32AM	4	MR. CHAERES: Dr. Zaldivar, I have no further
09:32AM	5	questions.
09:32AM	6	THE COURT: Redirect.
09:33AM	7	REDIRECT EXAMINATION
09:33AM	8	BY MR. FIELDS:
09:33AM	9	Q Good morning, Dr. Zaldivar. Barry Fields, and I have you on
09:33AM	10	redirect examination on behalf of BP and Anadarko.
09:33AM	11	Just us a few questions to follow-up.
09:33AM	12	MR. FIELDS: If we pull up TREX-130544.444.
09:33AM	13	BY MR. FIELDS:
09:33AM	14	Q We were just looking at this.
09:33AM	15	I want to specifically look at the example that
09:33AM	16	you were asked about equivalent pipes. And that's under Area.
09:33AM	17	Do you see that?
09:33AM	18	A Yes, I do.
09:33AM	19	MR. FIELDS: If Your Honor doesn't mind, just so that
09:33AM	20	we're clear, could Dr. Zaldivar go down to the chart and sort of
09:33AM	21	draw an example of equivalent pipes as compared to the situation
09:33AM	22	we're dealing with here?
09:33AM	23	THE COURT: Okay.
09:33AM	24	BY MR. FIELDS:
09:33AM	25	Q So would you draw what -- when you talk about what are

09:34AM	1	equivalent pipes, what is that and what we're dealing with in an
09:34AM	2	equivalent pipe situation?
09:34AM	3	THE COURT: He'll need a microphone because nobody will
09:34AM	4	be able to hear him where he is.
09:34AM	5	THE WITNESS: Can you hear me?
09:34AM	6	MR. FIELDS: Yes.
09:34AM	7	THE WITNESS: So just go ahead?
09:34AM	8	So, again, what we're describing here -- didn't
09:34AM	9	work very well.
09:34AM	10	What we're describing here is a single pipe. This
09:35AM	11	is the riser with a drill pipe flowing through it. What they're
09:35AM	12	referring to in the manual is multiple pipes flowing in
09:35AM	13	parallel.
09:35AM	14	This is quite common in the oil and gas industry.
09:35AM	15	As they find new oil, they might lay another pipe identical to
09:35AM	16	the one right next to it. So, oftentimes, you see this where
09:35AM	17	you have multiple pipes.
09:35AM	18	It wouldn't be convenient to model each pipe
09:35AM	19	independently. It would result in bigger models. So this is a
09:35AM	20	shortcut that allows you to combine these pipes together.
09:35AM	21	BY MR. FIELDS:
09:35AM	22	Q In the situation that you were modeling, were you modeling a
09:35AM	23	situation that involved equivalent pipes?
09:35AM	24	A No.
09:35AM	25	Q Now, on cross examination, you were asked a series of

$09: 35 \mathrm{AM}$	1
$09: 35 \mathrm{AM}$	2

09:36AM 3

09:36AM 4

09:36AM 5

09:36AM 6

09:36AM 7

09:36AM $\quad 8$
09:36AM 9

09:36AM 10

09:36AM 11

09:36AM 12

09:36AM 13

09:36AM 14

09:36AM 15

09:37AM 16

09:37AM 17

09:37AM 18

09:37AM 19

09:37AM 20

09:37AM 21

09:37AM 22

09:37AM 23

09:37AM 24

09:37AM 25
questions regarding a water tower. And I guess my first question was, was that hypothetical example, was that dealing with a single phase fluid or a multiphase fluid?

A I understood it to be a single phase fluid.

Q And, when you're dealing with multiphase flow or multiphase fluids, are there other factors beyond the hydraulic diameter that matter?

A Yes.
Q What are other examples or factors that matter?
A So, again, the ratio of gas to oil, the gas moves a little bit faster. It can create a choking affect on the liquid. There's lots of complexity here. The extent that the liquid touches the particular surface.

But, yeah, there's lots of complexity here.
Q Is one of the factors that matters something called a discharge coefficient?

A Oh, yes.
Q And what is a discharge coefficient?
A Discharge coefficient is a characterization of the pressure recovery through a particular diameter.

Q And did you use discharge coefficients in your work?

A I did.
MR. FIELDS: Pull up TREX-11683.57 and 58.
BY MR. FIELDS:

Q What discharge coefficient did you use, if you recall, in

09:37AM	1	dealing with the kink leaks?
09:37AM	2	A So I used 0.84 for the kink leaks.
09:37AM	3	Q Okay. We don't need that then. Good memory.
09:37AM	4	Is that for a circular hole, or was it for a
09:37AM	5	rectangular hole?
09:37AM	6	A No. It's a circular hole. If you were to use a rectangular
09:37AM	7	hole, you would have to use a much lower discharge coefficient,
09:38AM	8	something on the order between 0.61 and 0.5.
09:38AM	9	Q And, in your view, was it a conservative assumption, to use
09:38AM	10	a discharge coefficient in that manner?
09:38AM	11	A Yes. To assume discharge coefficient of 0.84 , it was a
09:38AM	12	conservative assumption. Actually, it's a consistent assumption
09:38AM	13	with the use of hydraulic diameter.
09:38AM	14	Had I taken a different approach and used the
09:38AM	15	equivalent area, then I would have had to greatly reduce the
09:38AM	16	discharge coefficient by almost 40 percent actually.
09:38AM	17	Q Now, you indicated on cross examination that the velocities
09:38AM	18	in your model, or that were predicted by your models, are not
09:38AM	19	the correct velocities when you use the hydraulic diameter?
09:38AM	20	A That's correct.
09:38AM	21	Q Now, is that something that's unique to your model, or is
09:38AM	22	that something that occurs whenever you're using the hydraulic
09:38AM	23	diameter in a multiphase flow simulator?
09:39AM	24	A No, this isn't unique to my model. The use of hydraulic
09:39AM	25	diameter is standard transformation. It would be used in any

09:39AM	1	situation like this.
09:39AM	2	Q And why do these models generate velocities that are
09:39AM	3	different than the actual velocities in the pipe?
09:39AM	4	A The purpose, again, is to accurately capture the
09:39AM	5	relationship between pressure drop and flow rate. You have an
09:39AM	6	increased velocity to get the correct pressure drop or to get
09:39AM	7	that correct resistance to flow.
09:39AM	8	Q And why can't you take the velocities out of your model or
09:39AM	9	the velocities that are generated from a multiphase flow
09:39AM	10	simulator when you're using the hydraulic diameter, and use that
09:39AM	11	velocity in another equation or in another model?
09:39AM	12	A Well, at least in the context -- I mean, in general, your
09:39AM	13	models are self-consistent. You're solving many equations. And
09:39AM	14	all of those equations relate the variables inside that model.
09:40am	15	It would be very incorrect to then take one
09:40AM	16	parameter and then try to use that in another situation. In
09:40am	17	particular, with like definitional sort of things, which is just
09:40AM	18	the relations of variables.
09:40AM	19	MR. FIELDS: Can we pull up D-24688.
09:40AM	20	BY MR. FIELDS:
09:40AM	21	Q You indicated on cross examination that you're aware of
09:40AM	22	literature out there that talks about why it's appropriate to
09:40AM	23	use the hydraulic diameter, and this is a slide you helped us
09:40AM	24	prepare.

Can you just provide the Court briefly with what

$09: 40 \mathrm{AM}$	1
$09: 40 \mathrm{AM}$	2
$09: 40 \mathrm{AM}$	3

09:41AM 4
09:41AM 5
09:41AM 6
09:41AM 7
09:41AM 8
09:41AM 9
09:41AM 10
09:41AM 11
09:41AM 12
09:41AM 13
09:41AM 14
09:41AM 15
09:41AM 16
09:42AM 17
09:42AM 18
09:42AM 19
09:42AM 20
09:42AM 21
09:42AM 22
10:08AM 23
10:08AM 24
10:08AM 25
this shows about the use of hydraulic diameter in multiphase flow modeling?

A Yes. So, on the left, this is an excerpt of the OLGA manual that specifically focuses on flow in an annulus exactly like the situation we have in the Deepwater Horizon.

It says the correct thing to do is to use the hydraulic diameter. In the center, we have the textbook that the government placed before us, the Miller textbook, also recommending the use of hydraulic diameter.

And then last we have an article by Koch which has a very strong statement which says: Until a proven relationship for equivalent diameter is forthcoming, there is to other choice than to use the hydraulic diameter.

Q Thank you.
MR. FIELDS: No further questions, Your Honor.
THE COURT: Thank you, sir, you're done.
Who is your next witness?
MR. BROCK: Our next witness is Dr. Nesic.
THE COURT: Who is next, Mr. Brock?
MR. BROCK: Dr. Nesic.
THE COURT: Let's go ahead and take a 15 minute recess.
(Proceedings in recess.)
THE COURT: Please be seated.
Go ahead, Mr. Brock.
SRDJAN NESIC, Ph.D., being first duly sworn,
10:08AM $\quad 1$ 10:08AM 2

10:08AM 3

10:08AM 4

10:08AM 5

10:08AM 6

10:08AM 7

10:08AM 8

10:08AM 9

10:09AM 10

10:09AM 11

10:09AM 12

10:09AM 13

10:09AM 14

10:09AM 15

10:09AM 16

10:09AM 17

10:09AM 18

10:09AM 19

10:09AM 20

10:09AM 21

10:09AM 22

10:09AM 23

10:09AM 24

10:09AM 25

```
testified as follows:
THE CLERK: Will you take a seat. State and spell your name for the record, please.
THE WITNESS: My name is Srdjan Nesic, \(S-R-D-J-A-N\), last name \(\mathrm{N}-\mathrm{E}-\mathrm{S}-\mathrm{I}-\mathrm{C}\).
MS. CROSS: Your Honor, Anna Cross on behalf of the United States.
I just want to remind the Court that there is a Daubert motion pending against Dr. Nesic. It's Docket No. 11508. And we're happy to argue it or leave it on the papers.
THE COURT: Yeah, I've looked at it. I'm going to deny the -- I think the issues that you raise in your motion are more properly subject of cross examination and will go to the weight of this expert's testimony.
So I'll deny the motion.
MS. CROSS: Understood. Thank you.
MR. BROCK: Can I proceed now?
THE COURT: Yes.
```


DIRECT EXAMINATION

BY MR. BROCK:

Q Mike Brock on behalf of BP and Anadarko. And this will be your direct examination, Dr. Nesic.

Would you begin by stating your full name for the record and tell Judge Barbier where you live and work.

A My name is Srdjan Nesic, and I live and work in Athens,

10:09AM	1	Ohio.
10:09AM	2	Q What were you asked to do by BP, Dr. Nesic?
10:09AM	3	A I was asked by BP to offer my opinions as to what were the
10:09AM	4	effects of erosion on the change of flow rate through the BOP.
10:10am	5	MR. BROCK: I'm going to call up now D-23626. And
10:10AM	6	could I have the first slide, please.
10:10AM	7	BY MR. BROCK:
10:10AM	8	Q Dr. Nesic, can you use this slide to describe for Judge
10:10AM	9	Barbier your educational background, please?
10:10AM	10	A I have a Bachelors and Masters in mechanical engineering
10:10am	11	from the University of Belgrade. And I also have a Ph.D. in
10:10am	12	chemical engineering from the University of Saskatchewan in
10:10AM	13	Canada.
10:10am	14	Q Did you study the issue of erosion as part of your graduate
10:10AM	15	degrees?
10:10AM	16	A I have. And, actually, erosion was one of the key topics in
10:10AM	17	the course of my Ph.D. work.
10:10AM	18	Q Now, after you received your Ph. D. degree, where did you
10:10AM	19	work?
10:10AM	20	A Straight after my Ph.D., I went and worked for the Institute
10:10AM	21	For Energy Technology in Norway, in Oslo, Norway.
10:11AM	22	Q What is the Institute For Energy and Technology?
10:11AM	23	A It is the largest research institute in the country, and
10:11AM	24	used to be a nuclear institute. But, when I was there, it had
10:11AM	25	already switched and did all its work almost on problems related

10:11AM	1	to oil and gas production in the North Sea.
10:11AM	2	Q What was your position with the Institute For Energy
10:11AM	3	Technology?
10:11AM	4	A I was a principal research scientist over there.
10:11AM	5	Q What does that mean?
10:11AM	6	A That means I was a project leader on numerous projects which
10:11AM	7	mostly related to the issues of multiphase flow and metal loss
10:11AM	8	by erosion and corrosion in the facilities in the North Sea.
10:11AM	9	That is, the oil and gas facilities in the North Sea.
10:11AM	10	Q Can you describe the work that you were doing in the area of
10:11AM	11	erosion during the period of time that you were with the
10:11AM	12	Institute For Energy Technology?
10:11AM	13	A There were a number of different projects that dealt with
10:11AM	14	the various modes of metal loss, and all of them were
10:12AM	15	exclusively related to so-called internal metal loss. That
10:12AM	16	means from the inside of the pipe. And most of them were
10:12AM	17	lated to offshore oil and gas production.
10:12AM	18	Q Why is this an issue that's of importance to the oil and gas
10:12AM	19	industry?
10:12AM	20	A Well, it is hugely important to the oil and gas industry
10:12AM	21	because, whether in the design stage or the operational stage of
10:12AM	22	any given field, there is an enormous pressure on all the
10:12AM	23	engineers to design things and operate things in a way that
10:12AM	24	there aren't any breaches of the pipe wall, whatever the
10:12AM	25	mechanism is, so there is no uncontrolled release. And they

10:12AM	1	have to make sure that doesn't happen for 30 to 50 years,
10:12AM	2	typically.
10:12AM	3	Q Now, you show here on this slide that you were with the
10:12AM	4	Institute For Energy Technology from 1991 to 1996, and then you
10:12AM	5	went to the University of Queensland. And we list here senior
10:13AM	6	lecturer of mechanical engineering.
10:13AM	7	Can you describe for Judge Barbier what you did
10:13AM	8	during this time and how that work is relevant to your opinions
10:13AM	9	here today.
10:13AM	10	A Sure.
10:13AM	11	Your Honor, I moved from a pure research position
10:13AM	12	in Norway to a combined teaching-research position in the
10:13AM	13	University of Queensland. There, I had shared duties. I taught
10:13AM	14	courses on fluid mechanics, corrosion, erosion, computation of
10:13AM	15	fluid dynamics.
10:13AM	16	I also guided Ph.D. students to do their research
10:13AM	17	projects on the Master's and Ph. D. level in those exact same
10:13AM	18	fields. So I had computation of fluid dynamics thesis; I had
10:13AM	19	erosion thesis, et cetera.
10:13AM	20	Q Will you be using your knowledge and experience with regard
10:13AM	21	to erosion and computational fluid dynamics to present to the
10:13AM	22	Court today your opinions about erosion within the BOP and the
10:13AM	23	kink riser?
10:13AM	24	A Yes, I will.
10:14AM	25	Q Now, at the end of your tenure at the University of

10:14AM	1	Queensland, we show here that you moved to Ohio University in
10:14AM	2	2002.
10:14AM	3	Would you describe for Judge Barbier what your
10:14AM	4	position is at Ohio University? And maybe just start with some
10:14AM	5	of the courses that you teach and the work that do you in the
10:14AM	6	field of erosion.
10:14AM	7	A I moved in 2002. January 2nd, I started at Ohio University
10:14AM	8	as a full professor there. So, I had my share of teaching
10:14AM	9	duties.
10:14AM	10	But I also took at the same time a directorship of
10:14AM	11	the Institute For Corrosion and Multiphase Technology. On the
10:14AM	12	teaching side, I continued with courses along the fluid
10:14AM	13	mechanics, computation of fluid mechanics, corrosion, erosion
10:14AM	14	type of classes that I taught at both undergraduate and graduate
10:14AM	15	level.
10:14AM	16	And, on the research side, I was directing work at
10:14AM	17	the Institute For Corrosion and Multiphase Technology.
10:15AM	18	Q Now, you mentioned this briefly in that answer, the
10:15AM	19	Institute For Corrosion and Multiphase Technology. Can you
10:15AM	20	describe for Judge Barbier what that institute is and what it
10:15AM	21	does.
10:15AM	22	A The institute is the largest, and I would say one of the
10:15AM	23	leading institutes, for studying problem of metal loss by
10:15AM	24	erosion and corrosion in the world. That's the main reason
10:15AM	25	actually I moved to Ohio University.

10:15AM	1	We have the biggest projects and lots of different
10:15AM	2	industrial sponsors. Whereas, all our activities are directed
10:15AM	3	towards problems seen in the oil and gas industry. We are
10:15AM	4	hundred percent sponsored by the industry, and all my graduate
10:15AM	5	students and other research staff are focused on problems of
10:15AM	6	metal loss in multiphase flow in that industry.
10:15AM	7	Q What type of research does the institute do for major oil
10:15AM	8	companies and engineering companies that support the oil
10:16AM	9	companies?
10:16AM	10	A We do research that is sounding very narrow, but it's a very
10:16AM	11	important area. We focus on various modes of metal loss within
10:16AM	12	the different pipes and other equipment they have.
10:16AM	13	So it's so-called internal corrosion in the oil
10:16AM	14	and gas industry, starting from corrosion down -- and erosion as
10:16AM	15	ll -- down in the well. Then erosion and corrosion in the
10:16AM	16	so-called surface equipment. Then in the very long pipelines.
10:16AM	17	So we exclusively do that kind of work.
10:16AM	18	Our sponsors are, as I already alluded, oil and
10:16AM	19	gas companies, engineering companies, as well as chemical
10:16AM	20	companies that support the previous ones.
10:16AM	21	Q Does your role as the director of the institute give you
10:16AM	22	expertise to help answer the question of erosion in the Macondo
10:16AM	23	BOP end riser?
10:16AM	24	A Oh, indeed, yes.
10:16AM	25	Q And why is that so?

10:16AM	1	A Because, starting even with my Masters about 30 years ago, I
10:17AM	2	have worked with issues of computation fluid dynamics.
10:17AM	3	Actually, my Ph.D. thesis was the pioneering work in application
10:17AM	4	of computation of fluid dynamics in erosion. That was the first
10:17AM	5	time that was ever done.
10:17AM	6	And I've continued since to be active in that
10:17AM	7	area. I have conducted many research studies myself. I've
10:17AM	8	guided numerous students who looked at this combination of
10:17AM	9	affect -- how flow affects erosion.
10:17AM	0	So, therefore, I feel I'm directly applying all
10:17AM	1	that knowledge in my opinions when I offer them to the Court
10:17AM	2	here.
10:17AM	13	Q Thank you.
10:17am	14	We've used this term here in the slide with regard
10:17AM	15	to your qualifications, computational fluid dynamics, and you've
10:17AM	16	just mentioned that to the Court.
10:17am	17	What is computational fluid dynamics, and how does
10:17AM	18	it assist you in evaluating a case like the one we're looking at
10:17AM	19	here?
10:18AM	20	A Your Honor, I know you heard a lot about very sophisticated
10:18AM	21	computer-based techniques to resolve problems, and this is one
10:18AM	22	of them.
10:18AM	23	Computational fluid dynamics is a mathematical
10:18AM	24	technique that's then implemented in computers to solve
10:18AM	25	equations of fluid flow and any associated effect in a way that

$10: 18 \mathrm{AM}$	1
$10: 18 \mathrm{AM}$	2
$10: 18 \mathrm{AM}$	3

10:18AM 4

10:18AM 5
$10: 18 \mathrm{AM} 6$

10:18AM $\quad 7$

10:18AM 8
10:18AM 9

10:18AM 10

10:18AM 11

10:19AM 12

10:19AM 13

10:19AM 14

10:19AM 15

10:19AM 16

10:19AM 17

10:19AM 18

10:19AM 19

10:19AM 20

10:19AM 21

10:19AM 22

10:19AM 23

10:19AM 24

10:19AM 25
we cannot do otherwise.
Using this technique, we can get very detailed information of what flow does through complicated geometries. And, in the case that we're looking at here in the Macondo well, we are having very complex geometries. So the computational fluid dynamics is the only way that can give us the insight of what the fluid did, the hydrocarbons did, as well as any particles that were carried with it.

Q Thank you.
Now, just last question on this topic. We've listed here on this slide: Co-authored over 70 peer-reviewed papers, 100 conference papers and book articles in the field.

In terms of your work with regard to corrosion, erosion, and CFD, are you published in all of those areas? A Yes. Those three topics you mentioned were the main topics that I ever published about.

Q Right. Thank you.
MR. BROCK: Your Honor, at this point, we would tender Dr. Nesic as an expert witness in the computational fluid dynamics and metal erosion.

MS. CROSS: Under our Daubert motion and on cross examination, no objection.

THE COURT: All right. He's accepted.
BY MR. BROCK:
Q Let's go now, Dr. Nesic, to an overview of just the basic

10:19AM	1	concept of erosion, what we're talking about. I've called up
10:198M	2	D-24603, and I'll just ask you, first of all, what is metal
10:19AM	3	erosion? What are we talking about when we talk about the
10:19AM	4	concept of erosion?
10:19AM	5	A Metal erosion is a name for a phenomena where metallic
10:20AM	6	surface is mechanically removed by repeated impact of solid
10:20AM	7	particles. Very frequently, those solid particles are sand.
10:20AM	8	I have a little animation here that I would like
10:20am	9	to start. It is a simplification of the situation, but I think
10:20AM	10	it illustrates the point. Here, it shows one individual
10:20AM	11	particle striking the surface and causing damage by these
10:20AM	12	repeated impacts. In reality, we have large numbers of
10:20AM	13	particles impacting any given area and causing the metal to be
10:20AM	14	lost.
10:20am	15	So, again, to summarize, it's a mechanical mode of
10:20AM	16	metal loss that's often seen in the field.
10:20am	17	Q What are the factors that must be present in order for
10:20AM	18	erosion to occur?
10:20AM	19	A They stem directly from this animation. As you can imagine
10:20AM	20	just by looking at this still picture, we have to have enough
10:20AM	21	particles there, enough sand in this case, to cause erosion.
10:21AM	22	The second important parameter is that those
10:21AM	23	particles, the sand, must impact the surface with sufficient
10:21AM	24	energy. Translated into simple terms, it has to move fast
10:21AM	25	enough so that it can dig into the surface.

$10: 21 \mathrm{AM}$	1
$10: 21 \mathrm{AM}$	2
$10: 21 \mathrm{AM}$	3
$10: 21 \mathrm{AM}$	4
$10: 21 \mathrm{AM}$	5
$10: 21 \mathrm{AM}$	6
$10: 21 \mathrm{AM}$	7
$10: 21 \mathrm{AM}$	8
$10: 21 \mathrm{AM}$	9

So, therefore, it's not sufficient to say in a straight line you could have a lot of particles moving fast, but if they just barely scrape the surface and roll over they don't cause erosion. Erosion is caused when particles hit at a particular angle with a particular intensity.

Q You have described that to us before as angle of impact.
A Correct.
Q And that has significance in terms of evaluating how much erosion will occur given other conditions?

A That is true.
Q Okay. Now, based on your knowledge, education, and experience, does erosion occur as long as solid particles are moving in the system?

A One can say that. Given that the conditions are conducive to corrosion -- that is, the angle of impact is there and the velocity is there -- one can then safely assume that as long as the particles are there, corrosion -- sorry -- erosion is going to continue. That is a very logical extension of the previous arguments I just gave.

Q Now, you have prepared a report that has been submitted in this case; correct?

$10: 22 \mathrm{AM}$	1
$10: 22 \mathrm{AM}$	2
$10: 22 \mathrm{AM}$	3
$10: 22 \mathrm{AM}$	4
$10: 22 \mathrm{AM}$	5
$10: 22 \mathrm{AM}$	6
$10: 22 \mathrm{AM}$	7
$10: 22 \mathrm{AM}$	8

10:23AM 10

10:23AM 11

10:23AM 12

10:23AM 13

10:23AM 14

10:23AM 15

10:23AM 16

10:23AM 17

10:23AM 18

10:23AM 19

10:23AM 20

10:23AM 21

10:23AM 22

10:23AM 23

10:24AM 24

10:24AM 25

A That's right.
Q And let me just ask you, first, what information or background materials did you use to analyze the effect of metal erosion on flow for the period you studied?

A Well, to summarize on a very high level, I needed the geometries that I was interested in. I needed the description of those geometries in a very precise way. I need information about the fluids that were passing through those geometries. And, finally, I needed information about the presence of sand in that system.

Q I'm going to call up now $D-23648$, which I think in some ways summarizes what you just shared with the Court.

But, in terms of your approach to the issue that we're talking about today, Dr. Nesic, what was your overall methodology or approach to looking at this issue?

A Your Honor, I know I'm going to talk about these four points in great detail, but I think it's helpful if we summarize now what I have done.

So one of the first things that I had to determine is to find the period of erosion. In other words, to put boundaries on the time that I looked at the erosion and what effects it may have caused and did cause actually to flow.

Then I went on to the geometries that were eroded. So I focused on those geometries that did make a big difference, that did restrict the flow, and then opened up as time went

10:24AM	1	because of erosion. And, fortunately, we had not only the
10:24AM	2	pre-eroded geometries, the pristine ones that were deployed, but
10:24AM	3	we also had recovered most important components of the eroded
10:24AM	4	geometries. So I used both of those.
10:24AM	5	And I then finally went to my computational fluid
10:24AM	6	dynamics. It's a complicated technique, as you'll get a glance
10:24AM	7	of in a minute. But we were able -- I was able to get answers
10:24AM	8	as to how restrictive were these geometries exactly one-by-one,
10:24AM	9	and then also able to determine what kind of effect they had on
10:24AM	10	flow before they eroded and after they eroded.
10:24AM	11	Those are the two important signposts in time I
10:24AM	12	will come back to.
10:24AM	13	And, finally, the last thing I did was, once I
10:24AM	14	determined those restrictions and how they changed, I answered
10:25AM	15	the question how would the flow then -- flow rate change based
10:25AM	16	on that procedure.
10:25AM	17	MR. BROCK: Okay. I'm going to call out No. D-23629,
10:25AM	18	which is TREX-11529R.
10:25AM	19	BY MR. BROCK:
10:25AM	20	Q I'll ask you if this is the cover page to your report?
10:25AM	21	A Yes, it is.
10:25AM	22	MR. BROCK: Your Honor, at this time, we would move
10:25AM	23	Dr. Nesic's report into evidence.
10:25AM	24	THE COURT: All right. That's admitted.
10:25AM	25	(Exhibit admitted.)

10:25AM	1	BY MR. BROCK:
10:25AM	2	Q Now, Dr. Nesic, have you formed opinions in this case, and
10:25AM	3	will D-23631 on the slide that I have just put up, help you to
10:25AM	4	explain at a high level to Judge Barbier what your opinions are
10:25AM	5	here?
10:25AM	6	A Yes. I did form opinions, and this slide is a fair summary
10:25AM	7	of that.
10:25AM	8	Q Just, at a high level, would you walk through your opinions
10:25AM	9	about erosion that took place in the blind shear ram and to the
10:26AM	10	kink riser -- to the BOP and the kink riser?
10:26AM	11	A Yes.
10:26AM	12	Your Honor, I've kind of went in very high level
10:26AM	13	at what I set to do, and we are now jumping right to the end.
10:26AM	14	We are going to elaborate. I'm showing you here the main
10:26AM	15	findings that I reached in my work. These are not all the
10:26AM	16	findings, but these are the things that made the biggest
10:26AM	17	difference.
10:26AM	18	The first bullet point here says that the blind
10:26AM	19	sheer rams and the casing sheer rams were significant
10:26AM	20	restrictions in flow when they were activated and before they
10:26AM	21	were actually eroded. Blind sheer rams more so than the casing
10:26AM	22	sheer rams, but they were both significant restriction to flow.
10:26AM	23	And I have calculated that, and I'll show you
10:26AM	24	actually some evidence later on.
10:26AM	25	I've also concluded that this erosion that

10:26AM	1	proceeded over about a five-week period of time significantly
10:26AM	2	changed the flow restrictions in the BOP, and that the
10:26AM	3	resistance they offered has gone down tremendously due to
10:27AM	4	erosion.
10:27AM	5	Then I've actually been in a position to put
10:27AM	6	numbers to these points that I just described. I was able to
10:27AM	7	calculate how much exactly that this resistance change, by what
10:27AM	8	factor. And, therefore, I was able to say that the flow
10:27AM	9	approximately doubled, with an assumption that the BOP was the
10:27AM	10	main restriction in flow. That was my focus. I did not have
10:27AM	11	focus on the rest of the flow path.
10:27AM	12	And, finally, what I've determined by my
10:27AM	13	simulations was that this increase from the beginning when
10:27AM	14	everything was in its pristine state to the end was a gradual
10:27AM	15	process. I'm not saying linear, like a straight line process,
10:27AM	16	but it was a gradual process that for the most part it just went
10:27AM	17	progressively from the initial state to the last state.
10:27AM	18	So that's a high level summary of what I found.
10:28AM	19	Q Thank you, Dr. Nesic.
10:28AM	20	I'm going to go now to D-23632. And ask you,
10:28AM	21	Dr. Nesic, to describe for Judge Barbier which geometries you
10:28AM	22	studied to determine the effects of metal erosion on flow rate
10:28AM	23	at the Macondo well.
10:28AM	24	A Sure.
10:28AM	25	Your Honor, you've seen probably these name and

10:28AM 1 10:28AM 2

10:28AM 3

10:28AM 4

10:28AM 5
$10: 28 \mathrm{AM} 6$

10:28AM 7

10:28AM 8

10:28AM 9

10:28AM 10

10:28AM 11

10:29AM 12

10:29AM 13

10:29AM 14

10:29AM 15

10:29AM 16

10:29AM 17

10:29AM 18

10:29AM 19

10:29AM 20

10:29AM 21

10:29AM 22

10:29AM 23

10:29AM 24

10:29AM 25
these images many times. But, just to summarize, after a very careful analysis of what should I look at, I've singled out these four main geometries within the BOP and the kinked riser to be, A, the most restrictive to flow; and, B, the ones that change. Not equally, but the ones that change most over this period of time.

And, there, if you go from bottom up, the casing sheer rams, the blind sheer rams which I already mentioned, then to some upper annular and the kinked riser.

So those were the four geometries that I identified. Q Why did you select those four geometries?

A Well, there were two main criteria, one which is very obvious. I have gone to Michoud twice. I have seen the pictures. I've seen the actual pieces. Indeed, I did focus on those elements that have shown a high level of erosion. So they became an immediate candidate.

But, on top of that, I had to make sure that I understood and analyzed the flow path to see where was the fluid going at any given point in time.

So, therefore, it wasn't always the case when something eroded a lot that it affected the flow a lot. So I kind of have to have both. That, A, there were restrictions which are important; and, B, that they have eroded.

So, once I've kind of used those two criteria, I

10:31AM 1 10:31AM 2

10:31AM 3

10:31AM 4
$10: 31 \mathrm{AM} \quad 5$

10:31AM 6

10:31AM 7
$10: 31 \mathrm{AM} \quad 8$

10:31AM 9

10:31AM 10

10:31AM 11

10:31AM 12

10:31AM 13

10:31AM 14

10:31AM 15

10:32AM 16

10:32AM 17

10:32AM 18

10:32AM 19

10:32AM 20

10:32AM 21

10:32AM 22

10:32AM 23

10:32AM 24

10:32AM 25
draw your attention to April 29th. That's a week later when the casing shear rams activated. So they're in an intact pristine condition before they were activated, withdrawn in their cavities, and then they were pushed into the flow. They were designed to cut everything in between and severe everything that's in their way, but not to seal the well.

That's what they did. They closed entirely, but they did not seal the well. And they eroded, too.

So we know from that perspective, without any modeling, without any real sophisticated analysis, that since they were only activated April 29 th and they eroded, that erosion must have been going on.

Likewise, if we now fast-forward to May 19th, a third hole in the kink riser appeared. I will show some of that footage later on. Another hole appeared just beyond the bend. We knew that was erosion hole. So that was an another signpost for me to say sand production and erosion must have been occurring until May 19th, and surely beyond. Because there was no reason to assume that everything was eroded until May 19th, the hole was made, and then stopped. So I knew it went beyond. I didn't know exactly how far and how long.

And, finally, based on the expert opinions of Dr. Vaziri, who is a sand expert, sand production expert, he suggested that sand production lasted at least until the end of May.

$10: 32 \mathrm{AM}$	1
$10: 32 \mathrm{AM}$	2
$10: 32 \mathrm{AM}$	3

$10: 32 \mathrm{AM} \quad 4$ $10: 32 \mathrm{AM} \quad 5$ $10: 32 \mathrm{AM} 6$ $10: 32 \mathrm{AM} \quad 7$
$10: 33 \mathrm{AM} \quad 8$ 10:33AM 9

10:33AM 10

10:33AM 11

10:33AM 12

10:33AM 13

10:33AM 14

10:33AM 15

10:33AM 16

10:33AM 17

10:33AM 18

10:33AM 19

10:33AM 20

10:33AM 21

10:33AM 22

10:33AM 23

10:33AM 24

10:34AM 25

So I've used that and moved it a little forward to be on the safe side, and I picked May 27 th as a day when erosion in any significant way has ceased. I don't say it has stopped then, but that's conservative. It lasted at least until May 27th.

Q All right. Thank you very much.
I want to turn now to some of the components of the BOP that you analyzed, and we're going to start with the blind shear ram.

Okay, are you with me?
A Yes.
Q So you've just mentioned to Judge Barbier that they were activated on April the 22 nd.

And I've called out now D-23635-A. And I'll ask you first, you mentioned that you traveled to Michoud. Did you actually analyze or look at the rams from the BOP?

A Yes, I have.
Q Now, this is a couple of pictures of the blind shear ram; correct?

A Yes.
Q And can you tell Judge Barbier what you're seeing in these pictures and what is significant to you as an expert in erosion?

A Well, Your Honor, again, these pictures are quite drastic examples of massive erosion. What you see there on the screen are two blocks of the blind sheer rams.
10:34AM 1

10:34AM 2

$$
10: 34 \mathrm{AM} \quad 3
$$

$$
10: 34 \mathrm{AM} \quad 4
$$

$$
10: 34 \mathrm{AM} \quad 5
$$

$$
10: 34 \mathrm{AM} \quad 6
$$

10:34AM $\quad 7$
$10: 34 \mathrm{AM} \quad 8$

10:34AM 9

10:34AM 10

10:34AM 11

10:34AM 12

10:34AM 13

10:34AM 14

10:34AM 15

10:34AM 16

10:34AM 17

10:34AM 18

10:34AM 19

10:34AM 20

10:35AM 21

10:35AM 22

10:35AM 23

10:35AM 24
$10: 35 \mathrm{AM} 25$

May I pick up the prop at this stage? I think it helps, rather than looking at the pictures, which I'm sure you've seen a million times.

Q Which one are you going to pick up?
A Of the blind shear rams, I'll start with the ones before they eroded.

Q So this would be D-24200, which is a pre-eroded blind shear ram 3D model.

Just tell the judge how this was created; and then, if you have something that will be a good teaching point, please share that.

A Sure. This is a replica, a very realistic replica of the real blocks that were present in the BOP before they have eroded.

So we have obtained detailed design files from Cameron, and then used them to make this model here that I'm going to open up in a second.

The same information from Cameron was used to create the geometries I simulated. So, if you can imagine, I've been able to create these two geometries in their virtual form and pull them into my study. So I operated with exactly the same geometries like these within my computational environment. Q Go ahead.

A And, in going back to the point, so what you see in front of you, Your Honor, is pretty much these two pieces. But you see

10:35AM	1	them there on the screen after they eroded. This is what they
10:35AM	2	kind of would have looked before they eroded as they were just
10:35AM	3	activated.
10:35AM	4	So, when they close and tried to seal the well,
10:35AM	5	they didn't go all the way through, and that there was a gap
10:35AM	6	left, and that led to erosion that you can see on your screen.
10:35AM	7	So that's probably the easiest way to show how
10:35AM	8	massive, just by comparing before -- and if I may pick up the
10:35AM	9	other set, these two are identical as --
10:35AM	10	Q Just one second. So you're holding up now D-24202, which is
10:35AM	11	the eroded blind shear ram 3D model; correct?
10:36AM	12	A Correct. Thank you.
10:36AM	13	So these two are actually virtually identical or
10:36AM	14	totally identical to the ones you see on the picture there.
10:36AM	15	So you can see there -- actually, anyone can
10:36AM	16	recognize, there was massive erosion that took place here.
10:36AM	17	These were in their closed state, so one can observe immediately
10:36AM	18	without doing any calculations that it must have been much
10:36AM	19	easier for the fluid to push through these holes on the sides
10:36AM	20	even when they push like that than it was the case before they
10:36AM	21	eroded.
10:36AM	22	Q Now, as an erosion expert, do you have an opinion as to
10:36AM	23	whether this erosion demonstrates that the blind sheer rams were
10:36AM	24	acting as a restriction to flow?
10:36AM	25	A Yes, I do.

10:36AM	1	Q What is that opinion?
10:36AM	2	A Well, again, I will pick up the noneroded version of the
10:36AM	3	blind sheer rams. And they clearly show that, even if they
10:36AM	4	didn't close completely, they closed sufficiently so that the
10:36AM	5	flow could not pass through the middle.
10:37AM	6	The flow had to swing sideways; because, when you
10:37AM	7	look at the eroded version of them, the damage is pretty much
10:37AM	8	all on the sides. It's not so much in the middle of the blades.
10:37AM	9	So that means that these rams have obstructed the flow in the
10:37AM	10	middle.
10:37AM	11	And, by the way, that's what our simulations are
10:37AM	12	going to show that I'll stream in a second.
10:37AM	13	But, even without them, one can conclude that this
10:37AM	14	must have been the restriction in the flow, and therefore the
10:37AM	15	flow kind of pushed its way through the sides.
10:37AM	16	Q Let's turn our attention now to your analysis of the casing
10:37AM	17	sheer rams. And, very quickly -- I've called up D-23637A -- we
10:37AM	18	show here, consistent with your timeline, that they were
10:37AM	19	activated on April the 29th.
10:37AM	20	And if you would just speak to Judge Barbier about
10:37AM	21	your findings from your analysis of the casing shear ram.
10:37AM	22	A Sure, I can.
10:37AM	23	May I also ask for permission to pick up the
10:38AM	24	physical models?
10:38AM	25	Q Yes.

10:38AM	1	A So I'm picking up D-24201, which is --
10:38AM	2	Q Thank you, by the way.
10:38AM	3	A My pleasure. I thought this was faster.
10:38AM	4	And if I can pull them apart. They are not easy
10:38AM	5	to pull apart. Actually, that's realistic, because it takes
10:38AM	6	some force to push these things together, significant force, in
10:38AM	7	reality. So it's not that it's not been a well-made model.
10:38AM	8	But, going back to our story, this is the version
10:38AM	9	of the pristine uneroded casing sheer rams. Now, you saw how
10:38AM	10	hard it is. I can't push them together in front of you here,
10:38AM	11	but they were designed when they closed to sheer and to cut
10:38AM	12	everything in their way.
10:38AM	13	Yet, these blades were not so tight so that the
10:38AM	14	flow would not pass through them. There was some flow in
10:38AM	15	between those blades even in a closed arrangement.
10:38AM	16	Therefore, what you see there on the screen, Your
10:38AM	17	Honor, is what I have on this other prop. It is D-24203, which
10:39AM	18	is identical. If I open it up, these two pieces are identical
10:39AM	19	to the ones you see there on the screen in this arrangement.
10:39AM	20	Now, again, we see some erosion. Although it's
10:39AM	21	with a naked eye, it's clear that it's not massive like it was
10:39AM	22	in the BSR. And I'll come back to that. But we can clearly see
10:39AM	23	effects of erosion.
10:39AM	24	Q Now, can you just describe the evidence of erosion that you
10:39AM	25	see there on the casing sheer rams? What do you see?

10:39AM	1	A Indeed, the easier one to describe is the so-called top
10:398M	2	blade. So, if I may orient you here, so that blade was in a
10:39AM	3	horizontal position when it closed on the other one and severed
10:39AM	4	the drill pipe. That was the only thing between the blades.
10:39AM	5	And so that severed drill pipe was still producing
10:39AM	6	sand, which is clear by this almost circular pattern that was
10:40AM	7	created by the impact of the particles that couldn't make that
10:40AM	8	very sudden and sharp bend. The fluid went like this and then
10:40AM	9	between the blades and out.
10:40AM	10	The particles didn't -- weren't so quick to turn,
10:40AM	11	so they made an imprint because of these numerous impacts that
10:40AM	12	you see there.
10:40AM	13	The interesting thing is that that level of damage
10:40am	14	is much less than what we see on the blind sheer rams, and that
10:40AM	15	is because of that direct impact the particles had.
10:40am	16	If you will recall, Your Honor, I described to
10:40am	17	e the best, quote, unquote, erosion, one needs to come at an
10:40AM	18	angle to chisel out a piece of metal. So just pounding at it
10:40AM	19	more or less directly is not as effective. It does erode, but
10:40AM	20	it doesn't lead to dramatic effects.
10:40AM	21	Q Now, the casing sheer rams were activated on April the 29th.
10:40AM	22	Did they create an obstruction to flow?
10:40AM	23	A Yes, they did. If not sealed the well, they definitely
10:40AM	24	posed an obstruction to flow.
10:40AM	25	Q Now, let's turn to a discussion of the upper annular

$10: 41 \mathrm{AM}$	1
$10: 41 \mathrm{AM}$	2

10:41AM 3

10:41AM 4

10:41AM $\quad 5$

10:41AM 6

10:41AM 7

10:41AM 8
10:41AM 9

10:41AM 10

10:41AM 11

10:41AM 12

10:41AM 13

10:41AM 14

10:42AM 15

10:42AM 16

10:42AM 17

10:42AM 18
10:42AM 19

10:42AM 20

10:42AM 21

10:42AM 22

10:42AM 23
10:42AM 24

10:42AM 25
preventer, D-23639A.
And, before I go to that, let me just ask one question. From looking at these photographs and the models that you've just shown to Judge Barbier, can you tell the Court whether or not there was sand still being produced in the system as of April the 29th?

A For sure, not on April 29th, because they were activated. They were new, if you want, pristine, when they were activated.

This must have been produced beyond April 29th, because it has happened well into May and I think all the way out to the end of May, this sort of damage. This is sort of unambiguous, I think, in this case.

Q Thank you. Now, let's look at the upper annular preventer, D-23639A.

Did you personally inspect the recovered upper annular preventer and drill pipe?

A Yes, I did.
Q Is this the drill pipe we've referred to in this case as the 1B1?

A I think that's correct.
Q Okay. Now, when we talk about 1B1, what are we referring to?

A Well, Your Honor, we're talking about the first valve, to call it a valve, that closes the upper annular. It squeeze onto the drill pipe, as you've heard probably so many times. The

$10: 42 \mathrm{AM}$	1
$10: 42 \mathrm{AM}$	2

10:42AM 3

10:42AM 4
10:42AM 5

10:42AM 6

10:42AM 7

10:42AM 8
10:42AM 9

10:43AM 10

10:43AM 11

10:43AM 12

10:43AM 13

10:43AM 14

10:43AM 15

10:43AM 16

10:43AM 17

10:43AM 18

10:43AM 19

10:43AM 20

10:43AM 21

10:43AM 22

10:43AM 23
10:43AM 24

10:43AM 25
seal that they formed wasn't perfect. It was a leaky seal.
The fluid was squeezing by that tool joint, as they call it, that's shown here on that bottom picture, and it was going so intensely through there that it eroded this 1B1 section of pipe.

We can see two locations, the one where we have an imprint, and then the completely severed section at the end there.

Q Do these photographs that we're looking at here demonstrate that the upper annular preventer was acting as a restriction to flow?

A Yes. For the short period that this pipe was held in place, it was a restriction to flow.

Q Thank you.
Let's now talk about the kinked riser for a few
minutes. Just for the record, when we use the term kinked riser, what are we talking about?

A It's a term for a bent pipe. But a pipe that went, when it bends, it's sort of neck-down in that section where it was actually turning 90 degrees. So the cross-section was much smaller than the normal full-bore section.

Q When the riser kinked on April 22 nd, did it create flow restriction?

A Yes, it did.
Q And why do you say that?

10:43AM 1 10:43AM 2

10:43AM 3

10:44AM $\quad 4$

10:44AM 5
10:44AM 6

10:44AM 7

10:44AM 8
10:44AM 9

10:44AM 10

10:44AM 11

10:44AM 12

10:44AM 13

10:44AM 14

10:44AM 15

10:44AM 16

10:44AM 17

10:44AM 18

10:44AM 19

10:44AM 20

10:44AM 21

10:44AM 22

10:44AM 23

10:44AM 24

10:45AM 25

A Well, for the simple fact that I just mentioned: The cross-sectional area right there in that kink, in that 90-degree bend, was much smaller than the cross-sectional area of the pipe, of the riser.

So, therefore, just that restricting of flow was -- and then the fact that it bent. So that, every bend is a restriction as well, even a full-bore bend.

But this was a double restriction from that point of view.

Q Okay. Did your analysis of the photographs and materials indicate whether or not that flow restriction changed over time, that is referring to the kinked riser?

A The kinked riser changed over time somewhat because of the holes that appeared at various points in time that were caused by erosion, and that has changed the hydrodynamics there.

Q Let's look at that D-24452. Do you see, we have here photographs of the kinked riser taken at three time points? Do you see that?

A Yes.
Q Can you describe for Judge Barbier what these photographs demonstrate and why they are important to you in your analysis of this case.

A Yes.
Your Honor, if I may really draw your attention to the big screen, because that's where I can only point with my

$10: 45 \mathrm{AM}$	1
$10: 45 \mathrm{AM}$	2
$10: 45 \mathrm{AM}$	3

10:45AM $\quad 4$
10:45AM 5

10:45AM $\quad 6$

10:45AM 7

10:45AM 8
10:45AM 9

10:45AM 10

10:45AM 11

10:45AM 12

10:45AM 13

10:45AM 14

10:45AM 15

10:45AM 16

10:45AM 17

10:45AM 18

10:46AM 19

10:46AM 20

10:46AM 21

10:46AM 22

10:46AM 23
10:46AM 24

10:46AM 25
laser.

You see three very important points in time: April $22 n d$ there's the kink seen from the back and the fluid is going through and exiting on the other end of the riser, but there's no holes.

Fast-forward to April 28th, so-called first two holes appear. One there in the middle of the pipe just past the bend, which is an erosion-caused hole.

And then another one here that at the very side where there was some squishing and stretching of the pipe which could have been implicated in the erosion hole that formed there.

But the one that's most important is a signpost for everything I did. That third hole, these two on May 19th are the same, even if the color is different, as April 28th. So these two here are the same holes, probably slightly larger.

But this third one right there, so-called third hole, is the one that appeared on May 19th.

So it was critical for us to have that piece of information, as it tells us that sand production and erosion was happening on that date and well beyond that date.

Q Now, I want to talk a little more about this kinked riser and the holes, and I'm going to go to our next callout which is $D-23644 B$.

Dr. Nesic, the first thing I'd ask you to do is to

10:46AM	1	orient Judge Barbier to what he's looking at here. Probably the
10:46AM	2	best way to do it is if you can sort of describe for him, if he
10:46AM	3	was looking at this, where would it be here in relation to the
10:46AM	4	riser at the top of the BOP.
10:46AM	5	A So, Your Honor, this picture on the left, the large image,
10:46AM	6	would be obtained if you can imagine standing where it says
10:46AM	7	kinked riser and looking in the direction of the red arrow.
10:46AM	8	In other words, this photograph is at a 90-degree
10:47AM	9	rotation from what you see there on this sketch. So it is
10:47AM	10	really looking at the kink, where that kink is. Not from the
10:47AM	11	side like on this little animation, but actually looking at it
10:47AM	12	sort of front-on. And that's what you would see.
10:47AM	13	Q Let me see if I understand this. So the picture that we're
10:47AM	14	looking at here, if we rotated it and put it on the top of the
10:47AM	15	kinked riser there, that's what the orientation would be?
10:47AM	16	A That is correct.
10:47AM	17	Now, it looks like --
10:47AM	18	THE COURT: It would line up with the arrow?
10:47AM	19	THE WITNESS: Yes. You can imagine yourself standing
10:47AM	20	where it says kinked riser, looking in the direction of the
10:47AM	21	arrow, this is what you would see.
10:47AM	22	is looks odd because this was taken in Michoud
10:47AM	23	when it was on the ground. The picture is from the bottom-up so
10:47AM	24	it doesn't appear natural. But that's what we're looking at.
10:47AM	25	BY MR. BROCK:

10:47AM	1	Q Do you have an opinion as to whether or not these holes are
10:48AM	2	caused by erosion?
10:48AM	3	A Oh, I know for sure they were caused by erosion.
10:48AM	4	Q And how do you know that, Dr. Nesic?
10:48AM	5	A Well, even without looking from the inside of the -- this is
10:48AM	6	just an outside view. There's two important pieces of
10:48AM	7	information that without any doubt tell me that this is erosion.
10:48AM	8	And let me start first with the orientation of
10:48AM	9	these holes. These holes are aligned with the flow. If you
10:48AM	10	look -- the flow is coming from the bottom, going through, and
10:488M	11	then continuing upwards in this photograph.
10:48AM	12	So these holes are exactly -- their shape is oval,
10:48AM	13	and it goes in the direction of the flow.
10:48AM	14	If these holes were created by anything else, say
10:48AM	15	by cracking, which I heard, the cracks wouldn't be going in that
10:48AM	16	rection. The cracks would be going in the perpendicular
10:48AM	17	direction, sort of across. Cracks would look like that.
10:48AM	18	This would be where most of the stretching is
10:48AM	19	going on. Which we all know, if we take something and bend,
10:49AM	20	it's going to break like this, not like that. So, to me, that
10:498M	21	was the sort of the first clue that was very convincing.
10:49AM	22	There's another one that, if you look at the
10:49AM	23	locations of these two holes, is actually past the bend. The
10:498M	24	bend, the axis of the bend is somewhere there.
10:49AM	25	So, again, if it was some sort of

10:49AM	1	cracking-induced, as I've heard, that's where the cracks would
10:49AM	2	appear. These are not cracks. You will see in a second when we
10:49AM	3	switch this piece around, they don't look like cracks. We know
10:49AM	4	from the place, they are past the middle. That, they've
10:49AM	5	definitely formed beyond where cracking could be occurring.
10:49AM	6	THE COURT: How many holes do you see in that photo?
10:49AM	7	THE WITNESS: I see three. I see these two that I
10:49AM	8	focused most of attention. First, this one was shown to appear
10:49AM	9	on May 19th, so that's kind of the most important one for me.
10:49AM	10	I see another one that appeared on April 28th.
10:49AM	11	And, its sibling here, this one appeared at the same time as the
10:49AM	12	other one.
10:49AM	13	So I see three holes.
10:49AM	14	Now, why I've been avoiding to talk about this
10:50AM	15	one, you can see that this hole is roughly in that sort of
10:50AM	16	position where we could have and did have a lot of stretching of
10:50AM	17	the pipe. I can't imagine that this third hole, which is
10:508M	18	upstream of the other two, could have formed partially by
10:50AM	19	cracking and then aggravated by erosion, or the other way
10:50AM	20	around.
10:50AM	21	I can't be 100 percent sure.
10:50AM	22	THE COURT: That's not a fourth hole over on the right
10:50AM	23	corner; is it?
10:50AM	24	THE WITNESS: There is actually another hole on the --
10:50AM	25	THE COURT: I see a blue color in middle, it looks

$10: 50 \mathrm{AM}$	1
$10: 50 \mathrm{AM}$	2
$10: 50 \mathrm{AM}$	3
$10: 50 \mathrm{AM}$	4
$10: 50 \mathrm{AM}$	5
$10: 50 \mathrm{AM}$	6
$10: 50 \mathrm{AM}$	7
$10: 50 \mathrm{AM}$	8
$10: 50 \mathrm{AM}$	9

10:51AM 11

10:51AM 12

10:51AM 13

10:51AM 14

10:51AM 15
10:51AM 16

10:51AM 17

10:51AM 18

10:51AM 19

10:51AM 20

10:51AM 21

10:51AM 22

10:51AM 23
10:51AM 24

10:51AM 25
like.

THE WITNESS: Yeah. That's where first they cut this. When we took the picture, this was kind of sliced in half, so it was hard to see that properly.

But also, there was additional damage on either side of this picture where pieces were detached. But we don't know exactly when was that done, when they were recovering the piece or when they were cutting the piece. That is not obvious. So I tend not to rely on that information of where there was a lot of damage, mechanical damage to the sides. That's why I focus all my attention on these two middle holes, which were kind of away from all this other stuff that was going on. BY MR. BROCK:

Q All right. Thank you.
Let's turn now to the issue of the duration of the erosion period. We've talked about the geometries you've selected.

What did you use to define the period of metal erosion?

A I have based my opinions on two main sources. One is the opinions of Dr. Hans Vaziri, who is an expert on sand production. And I relied on his opinions that sand was produced in sufficient quantities between April 20th and end of May. So that was one guiding piece of information.

And indeed, I've also used, as I already

10:51AM	1	mentioned, the appearance of the third erosion-caused hole in
10:51AM	2	the kinked riser on May 19th.
10:52AM	3	I also relied on Dr. Vaziri for some other
10:52AM	4	opinions. The most important one of them is this issue of half
10:52AM	5	of the sand being produced in the first two weeks and the rest
10:52AM	6	in the other three, three and a half weeks.
10:52AM	7	Q By your visual observation of the pictures and your
10:52AM	8	understanding of the erosion, were you able to verify Dr.
10:52AM	9	Vaziri's finding that was sand present in the system into May?
10:52AM	10	A Yes. As I mentioned, that appearance of that third hole on
10:52AM	11	May 19th is the most convincing piece of evidence. I mean, I
10:52AM	12	already mentioned the casing sheer rams that eroded past April
10:52AM	13	29th.
10:52AM	14	But this May 19th is the most convincing date when
10:52AM	15	we know that sand was produced and erosion was going on, because
10:52AM	16	it punched a hole in the kinked riser. As I said, it's very
10:53AM	17	reasonable to assume that that went past May 19 th and past May
10:53AM	18	20th.
10:53AM	19	So I've kind of bounded it with those two key
10:53AM	20	dates that I had at my disposal.
10:53AM	21	Q Okay.
10:33AM	22	MR. FIELDS: Could I get D-24723, please.
10:53AM	23	Thank you.
10:33AM	24	BY MR. FIELDS:
10:53AM	25	Q You mentioned to Judge Barbier a minute ago that you had

$10: 53 \mathrm{AM}$	1
$10: 53 \mathrm{AM}$	2
$10: 53 \mathrm{AM}$	3
$10: 53 \mathrm{AM}$	4
$10: 53 \mathrm{AM}$	5
$10: 53 \mathrm{AM}$	6
$10: 53 \mathrm{AM}$	7
$10: 53 \mathrm{AM}$	8
$10: 53 \mathrm{AM}$	9

10:53AM 10

10:53AM 11

10:54AM 12

10:54AM 13

10:54AM 14

10:54AM 15

10:54AM 16

10:54AM 17

10:54AM 18

10:54AM 19

10:54AM 20

10:54AM 21

10:54AM 22

10:54AM 23

10:54AM 24

10:54AM 25
also looked at the inside of the kinked riser; right?
A That's correct.
Q And can you describe for Judge Barbier what this photograph shows, and if it helps you to understand that erosion was still occurring on May the 19 th and beyond.

A Sure.
Your Honor, I know this is kind of hard; these pictures aren't perfect. This is the view of that same piece you saw just a minute ago. A, it's flipped around so that you can see the inside of the pipe.

But what we have is also now the flow is coming, if you can imagine, from the top coming down. So it comes -that's the way this piece was oriented. So the flow is going apparently in a different direction, but it's really -- the BOP would be now above and then going downwards. That's how this picture is oriented.

And what you see here, again, if you can make out this kind of light area there, that's sort of the most sheering bearing area. So most of the stretching and the bending of the pipe occurred roughly across that axis.

The holes that we saw from the other side, this second and third hole, particularly the third hole, is down here. So it's well past that section of maximum stress and stretch of the pipe.

Now, you've asked me, Your Honor, what about those

10:54AM	1	holes on the sides. They're better visible from this angle.
10:54AM	2	You can see that there was a hole right there that's caused,
10:54AM	3	again, it looks like erosion by this sort of drawn out surface,
10:54AM	4	that erosion was part of that story.
10:54AM	5	But it is right in that axis where there was a lot
10:55AM	6	of bending, so I can't rule out some cracking happening before
10:55AM	7	or after erosion. So that's why I'm not basing my analysis on
10:55AM	8	that hole as much as the other holes.
10:55AM	9	The two holes in the middle are clearly away from
10:55AM	10	any point of maximum stress, so therefore I'm confident that
10:55AM	11	they're erosion-driven.
10:55AM	12	Again, if you look at the shape of these surfaces,
10:55AM	13	Your Honor, and then I pick any of these props I have and look
10:55AM	14	at the shape of the surfaces on this blind shear ram block, you
10:55AM	15	can see that sort of drawn-out shape.
10:55AM	16	For example, this one here -- whoops, I apologize
10:55AM	17	- looks very similar to what you see close to those holes over
10:55AM	18	there.
10:55AM	19	So I knew, again, beyond any doubt, that this was
10:55AM	20	caused by erosion, those two middle holes were.
10:55AM	21	Q Thank you.
10:55AM	22	What date did you use as your end date for erosion
10:56AM	23	in the BOP and the kinked riser, and why did you select the
10:56AM	24	date?
10:56AM	25	A As I previously mentioned, I bounded it with May 19 when

10:56AM 1 10:56AM 2 10:56AM 3 10:56AM 4

10:56AM 5
$10: 56 \mathrm{AM} \quad 6$

10:56AM 7

10:56AM 8

10:56AM 9

10:56AM 10

10:56AM 11

10:56AM 12

10:56AM 13

10:57AM 14

10:57AM 15

10:57AM 16

10:57AM 17

10:57AM 18

10:57AM 19

10:57AM 20

10:57AM 21

10:57AM 22

10:57AM 23

10:57AM 24

10:57AM 25
this third hole we just saw appeared. I heard and read what Vaziri, Dr. Vaziri, said, that it lasted at least until the end of May, sand production did.

So therefore, I picked, I think still
conservatively, that erosion must have been going on until May 27th. So I have moved it forward a few days compared to Dr. Vaziri's calculation just to be on the safe side.

I think I can say with great confidence that erosion occurred at least until May 27 th.

Q Let's turn now to one of your main opinions, and that is that flow rate doubled over the first five weeks of the incident due to erosion.

And I'll ask you first, Dr. Nesic, what metric did you use to evaluate the impact that each of the restrictions that we have talked about had on flow?

A I've used pressure drop, to put it very succinctly. And that's what you've heard a lot here. Pressure drop is the best method, best metric, that we engineers use to describe how hard it is for flow to go through something.

It's not intuitive.
Q Let me stop you just for a second. That's fine.
So you may have been going to this, but why do you
use pressure drop to evaluate erosion?
A Because that is a universal metric that is used across all of the engineering branches that deal with fluid flow to

10:57AM	1	describe how hard it is for flow or how easy it is for flow to
10:57AM	2	pass through a given geometry.
10:57AM	3	Q I'm going to pull up now D-23628A.
10:58AM	4	This is just a slide showing pressure drop versus
10:58AM	5	flow rate. Judge Barbier has seen the example of the hose.
10:58AM	6	But, in the context of your methodology, can you just use this
10:58AM	7	to describe what you're going to be doing and how you evaluate
10:58AM	8	and use the concept of the pressure drop.
10:58AM	9	A What one sees in this picture is a very simple analogy
10:58AM	10	that's actually quite, quite accurate of how restriction in the
10:58AM	11	flow results in a pressure drop change.
10:58AM	12	And what you see, Your Honor, on the left here is
10:58AM	13	a hose that's pinched on the end. So, therefore, the flow
10:59AM	14	cannot really pass with ease through that pinched end there, so
10:59AM	15	it builds up pressure ahead of it.
10:59AM	16	So, if we then calculate the pressure drop, which
10:59AM	17	is really the pressure in the hose minus the pressure in the
10:59AM	18	atmosphere, which is constant, it's large. It's a large number.
10:59AM	19	So corresponding to the high restriction is a high
10:59AM	20	pressure drop. That results in a low flow rate. We all know,
10:59AM	21	when we pinch the hose, the flow rate goes down if you really do
10:59AM	22	that effectively.
10:59AM	23	If I then turn your attention to the other
10:59AM	24	example, if we let go, indeed now the fluid comes out at higher
10:598M	25	flow rate, but the pressure in the hose is now not as high

10:59AM 1 10:59AM 2 10:59AM 3

10:59AM 4

10:59AM 5

11:00AM 6

11:00AM 7

11:00AM 8

11:00AM 9

11:00AM 10

11:00AM 11

11:00AM 12

11:00AM 13

11:00AM 14

11:00AM 15

11:00AM 16

11:00AM 17

11:00AM 18

11:00AM 19

11:00AM 20

11:00AM 21

11:01AM 22

11:01AM 23

11:01AM 24

11:01AM 25
because the fluid just passes right through. It's almost the same as the pressure outside. So low pressure drop means low restriction and results in a high flow rate.
So that's that I think intuitive example that high
restriction means high pressure drop which means low flow rate, and vice-versa.

Q When you talk about pressure drop, you're talking about on either side of the restriction?

A Correct. And that's really how much pressure changes as it pushes through, as the fluid pushes through a given geometry. Q Now, one of the things you did in this case was to model the restriction to flow that was provided by each component; is that right?

A That's right.
Q All right. So how did you go about doing that?
A Once we obtained the various geometries of interest -- and, just to remind you, the blind sheer rams, the casing sheer rams, upper annular, and kink, we have imported those geometries into our computational environment. That was the first step.

Q And did you use that input to create a model of particles passing through the various components that you analyzed?

A That's right. That's exactly what we did, Your Honor. So we took an electronic version of these geometries that I have just shown you, we moved them into this computerized environment. We put them right against each other the way I did

11:01AM	1	with my hands, and it happened in reality. And then we model
11:01AM	2	how flow goes.
11:01AM	3	And I will show you some animations to bring that
11:01AM	4	home, but we exactly calculated how flow moved through those
11:01AM	5	geometries before they eroded and after they eroded. We were
11:01AM	6	also able to show how particles move through that same geometry.
11:01AM	7	Q Now, I'm going to call up a simulation, which is D-24207A1.
11:01AM	8	I think you've just described how you developed this simulation.
11:01AM	9	I'm going to run it.
11:01AM	10	You want to talk about it a little more?
11:01AM	11	A If you don't mind.
11:01AM	12	Q Sure.
11:01AM	13	A So it's actually not as visible on that screen, but I
11:02AM	14	believe on our small screens it's easier to see.
11:02AM	15	What you can make out is an outline of the kink.
11:02AM	16	So the white lines are supposed to denote that the boundaries of
11:02AM	17	that riser, that kink there. You can see the kink somewhere
11:02AM	18	roughly in the middle of that screen.
11:02AM	19	What we did is we've gotten that geometry by laser
11:02AM	20	scan. We then moved it into our computational environment,
11:02AM	21	populated it with million little points inside so we could
11:02AM	22	calculate exactly how the fluid moved.
11:02AM	23	And, finally, what you will see in this animation,
11:02AM	24	we released a swirl of particles and watched how they moved
11:02AM	25	through this geometry.

11:02AM	1	So now you can start it now.
11:02AM	2	Q You ready to do that?
11:02AM	3	A Thank you.
11:02AM	4	Q All right. So now describe for Judge Barbier what he sees.
11:02AM	5	A So, if you imagine, Your Honor, these are solid particles,
11:02AM	6	sand. They're colored blue just to see them better. They're
11:02AM	7	approaching this kink where the cross section is neck-down.
11:02AM	8	There's actually a very tight spot in the middle.
11:02AM	9	The fluid with the particles then swings left and
11:02AM	10	right. As it has to pass through these narrow passages, of
11:03AM	11	course it accelerates in that process, because now it's a tight
11:03AM	12	spot it passes through.
11:03АМ	13	What you see in red here in this graph are
11:03AM	14	locations where we have predicted very intense impacts of
11:03AM	15	particles coming and going through.
11:03AM	16	And, indeed, these would be the locations which
11:03AM	17	should result in the highest degree of erosion.
11:03AM	18	Q What conclusions did you draw from the simulation?
11:03AM	19	A Well, there were multitude different things. But the ones
11:03AM	20	that stand out, first, I've drawn the number out of this, the
11:03AM	21	exact pressure drop as the fluid went through this geometry.
11:03AM	22	We also looked at the locations of erosion where
11:03AM	23	they were predicted.
11:03AM	24	Q I'm going to now call out D-2426A. This may be what you
11:03AM	25	just referenced; but how does your simulation match up with the

11:04AM	1	actual kinked riser? And is that important to you in your
11:04AM	2	analysis here?
11:04AM	3	A It is very important, because the goal of every mathematical
11:04AM	4	computer-based simulation is to kind of root itself in reality.
11:04AM	5	And, yes, we were using the exact equations of
11:04AM	6	fluid flow and particle motion, the best possible description of
11:04AM	7	the geometry, but we really didn't have any direct evidence that
11:04AM	8	flow moved exactly like that through the kinked riser. We
11:04AM	9	didn't have any probe in there to measure that.
11:04AM	10	So the best evidence we had in determining whether
11:04AM	11	this particular flow pattern -- and I'm using this kinked riser
11:04am	12	- was right, we compared where we predicted the most intense
11:04AM	13	erosion. These are these red areas on the graph. Then the two
11:04AM	14	holes which are, you know, more or less in the same regions.
11:04AM	15	So there's good overlap fact. So that told us
11:04AM	16	at these five-alarm mathematical checks and physical checks
11:05AM	17	that these calculations are right, this was an anchor in
11:05AM	18	reality. We call it a reality check.
11:05AM	19	I was very happy. I think it is remarkable, for
11:05AM	20	such a complicated system, that we got this close.
11:05AM	21	THE COURT: Let me ask you something.
11:05AM	22	THE WITNESS: Sure.
11:05AM	23	THE COURT: Why is it that, when you modeled this or in
11:05AM	24	your opinion when the sand is moving through here and impacting,
11:05AM	25	why is it only making these two holes in these two specific

11:05AM	1	spots and not eroding more or less evenly across that plane, so
11:05AM	2	to speak?
11:05AM	3	THE WITNESS: That's right. That's a very good
11:05AM	4	question. Because that's what one would imagine, at least when
11:05AM	5	one sees the pictures.
11:05AM	6	What it is actually is that the cross-section of
11:05AM	7	that plane that you just referred to is actually dog-boned. It
11:05AM	8	looks like that.
11:05AM	9	So the particles tend to swing sideways because of
11:05AM	10	that tight spot in the middle. That's why you see the attack
11:06AM	11	kind of being focused on more on the sides, not right there in
11:06AM	12	the middle.
11:06AM	13	Another reason is that, what you don't see in this
11:06AM	14	simulation is there were actually two drill pipes caught inside,
11:06AM	15	which are not here, and they have sort of also channeled the
11:06AM	16	flow to go to a relatively narrow passage. That's where those
11:06AM	17	two holes have appeared.
11:06AM	18	BY MR. BROCK:
11:06AM	19	Q Thank you.
11:06AM	20	Let's go to now one of the other geometries that
11:06AM	21	you looked at, the blind sheer rams. And I'll just call up --
11:06AM	22	I'm not going to play it yet -- I'm going to call up D-24213A1.
11:06AM	23	Would you just describe for Judge Barbier what
11:06AM	24	we're looking at here and what you did with this information.
11:06AM	25	A Sure.

11:06AM	1	Your Honor, this is one of the thousands,
11:06AM	2	literally thousands, of simulations we did. This shows a flow
11:07AM	3	through a blind shear ram.
11:07AM	4	Now, I'm going to pick up the prop because I think
11:07AM	5	it's easier. That's why I didn't show this one first. It is
11:07AM	6	somewhat more complicated to appreciate.
11:07AM	7	So, if I may pick up these blind shear ram blocks
11:07AM	8	before they were eroded, what you're looking at there, Your
11:07AM	9	Honor, is kind of a view exactly from where you sit towards
11:07AM	10	these blocks.
11:07AM	11	If you would imagine the blocks were made from
11:07AM	12	Plexiglas or something transparent, you would see more or less a
11:07AM	13	picture like that.
11:07AM	14	So the flow is coming from the bottom, going
11:07AM	15	through these blades which are almost closed - you will see what
11:07AM	16	the animation shows -- and then the flow has to snake through
11:07AM	17	the openings that are left and get out.
11:07AM	18	Again, the blue on the screen are the particles.
11:07AM	19	Q So we've got it running now.
11:07AM	20	If you can describe for Judge Barbier what you see
11:07AM	21	here and what its significance is.
11:07AM	22	A This is obviously a very slowed down version of the real
11:07AM	23	event.
11:07AM	24	What you see is then this swirl of particles
11:08AM	25	approaching this partially closed section by the BSR blocks.

11:08AM 1 11:08AM 2

11:08AM 3

11:08AM 4

11:08AM 5

11:08AM 6

11:08AM 7

11:08AM 8

11:08AM 9

11:08AM 10

11:08AM 11

11:08AM 12

11:08AM 13

11:08AM 14

11:08AM 15

11:08AM 16

11:08AM 17

11:09AM 18

11:09AM 19

11:09AM 20

11:09AM 21

11:09AM 22

11:09AM 23

11:09AM 24

11:09AM 25

And they cannot pass through the middle, as you can imagine, because there's overlapping blades there.

But there's opening on the sides, and the particles make this sudden turn to the right and then sudden turn to the left. On both sides actually there's two like bends right next to each other. Indeed, there's a lot of particle impacting going on there. Not so much head-on. That doesn't cause as much erosion.

But these got an angular impact here on the side. The red color indicates a lot of erosion going on right there.

Another important point I don't know if you can make out, Your Honor, there's actually a drill pipe here that's been caught. It's not easy to see in this complicated case depiction.

So we have the full-blown geometry of the blind shear rams with the drill pipe and particles moving through it. Q For this simulation, what conclusion did you draw?

A We looked at the location of erosion, obviously, which we can see where saw it on the recovered blocks. But most important information for us was to calculate the pressure drop. In other words, the obstacle that this particular geometry presented to flow.

Q Now, I think you said this, but just to be clear for the record, did you compare the erosion that your model predicted with the recovered blind shear ram?

11:09AM	1	A Indeed, we did. Again, one of the reality checks was that
11:09AM	2	we predicted locations of erosion where we actually saw physical
11:09AM	3	evidence that erosion happened. That wasn't -- never expected
11:09AM	4	to be, you know, a perfect match, but we wanted to see that
11:09AM	5	areas that were predicted erosion have actually eroded. That
11:09AM	6	was important.
11:09AM	7	Q Now, did you analyze the other study restrictions with
11:10AM	8	regard to erosion in the same way?
11:10am	9	A Yes. So we have repeated this same situation.
11:10AM	10	But then, if I may pick up the eroded blind sheer
11:10AM	11	rams, we then repeated exactly the same calculation with these
11:10AM	12	precise geometries that I'm holding in my hand. And, indeed,
11:10AM	13	one can imagine, I can put my finger through this now, so
11:10AM	14	there's a large opening there. And the flow now winds with much
11:10AM	15	more ease through these holes.
11:10AM	16	These are the eroded blind shear rams. I believe
11:10am	17	we have another animation to show that. I'm not sure if it's
11:10AM	18	coming up.
11:10AM	19	Q This is D-24201A1, and it's a simulation of particles
11:10AM	20	passing through the eroded blind shear ram. So if you could
11:10AM	21	describe what this is.
11:10AM	22	A Yeah.
11:10AM	23	So, in many ways, it's a similar situation. Like
11:108M	24	with the pre-eroded geometry, you're looking at the flow from
11:11AM	25	the side. The particles are coming from the bottom, and they,

11:11AM 1 11:11AM 2

11:11AM 3

11:11AM 4
11:11AM 5

11:11AM 6

11:11AM 7

11:11AM 8
11:11AM 9
11:11AM 10

11:11AM 11

11:11AM 12

11:11AM 13

11:11AM 14

11:12AM 15

11:12AM 16

11:12AM 17

11:12AM 18

11:12AM 19

11:12AM 20

11:12AM 21

11:12AM 22

11:12AM 23
11:12AM 24

11:12AM 25
again, seem to do the same thing. But not exactly.

They are swinging to the left and to the right, but now you can see there's no sudden turns. They have already pushed their way and eroded part of the blind shear rams and are coming out with much more ease on the other side.

So the pressure drop we calculated on these blocks was about 20 something times less. The resistance was 20 something times less after erosion than before. Q Okay. I don't know how long this goes on; let me just stop it.

So, in terms of what we've talked about so far, you looked at the geometries of the BOP in their pristine condition and analyzed, through your modeling efforts, how those obstacles would affect flow in the BOP; correct?

A Yes.
Q And then, as you've described, you were able to look at the components of the BOP at the end of the spill after the components were recovered, and you were able to analyze those to see what change had occurred to those components at the time of recovery?

A Correct.

Q Now, why is it important to you as an expert in erosion, that you're able to know the geometry of the components, both before and after the event?

A That was of huge importance for me. Because, Your Honor,

11:12AM	1	normally, in the work I do, which is sometimes very similar to
11:12AM	2	this situation here, we know, say, how something looks before it
11:12AM	3	eroded.
11:12AM	4	The industrial partners ask us: Can you predict
11:13AM	5	what something's going look like in 20 years, so that they know
11:13AM	6	how to design for it. In other words, we only know one point in
11:13AM	7	time, and then we're trying to see and predict how something
11:13AM	8	will look at another point in time without ever being able to
11:13AM	9	know what that outcome is going to be. We have to predict it.
11:13AM	10	In this case, we had a unique privilege which --
11:13AM	11	to have both before- and after-situation known. We didn't need
11:13AM	12	to guess how much erosion will happen after 35 days; we actually
11:13AM	13	had the eroded components.
11:13AM	14	So that has anchored my analysis in two points in
11:13AM	15	time, which hugely increases the reliability of everything I
11:13AM	16	concluded from that.
11:13AM	17	Q Now, after you have that information and the things that
11:13AM	18	ve already talked about, in order to understand how the
11:13AM	19	rictions affected the flow over time, what did you do next?
11:13AM	20	A So, if we start from that position, I knew what the
11:14AM	21	restriction was before erosion; I knew what the restriction was
11:14AM	22	after erosion. The last remaining question was, how did it
11:14AM	23	change from that point 1 to that point 2. We had no physical
11:14AM	24	evidence in that interim period before the first and the last
11:14AM	25	day of erosion.

11:14AM	1	We did not know in the same way what the erosion
11:14AM	2	was, so that's where our computational fluid dynamics models
11:14AM	3	came in to help. We have performed a so-called transient
11:14AM	4	analysis.
11:14AM	5	Q And describe for Judge Barbier the tool that you used; that
11:14AM	6	is, the transient analysis or simulation that you used, to
11:14AM	7	develop information that will help you describe to the Court how
11:14AM	8	changes occurred over time.
11:14AM	9	A Your Honor, we started with a virgin geometry, so noneroded
11:14AM	10	geometry. And then used our calculations to predict, if you
11:15AM	11	will, now how those geometries must have looked on the second
11:15AM	12	day and the third day and the fourth day and so on, due to the
11:15AM	13	normous complexity of this geometry, which now the programs had
11:15AM	14	to modify over time. So they had to distort them as the
11:15AM	15	lculations went on. We had to simply use these geometries.
11:15AM	16	So, they didn't look exactly like this in our transient
11:15AM	17	simulations, but they retained all the key features.
11:15AM	18	But, for the purpose of this argument, if you can
11:15AM	19	agine, we would have started with something very similar to
11:15AM	20	this, ran a simulation on the first day. Kind of what you saw,
11:15AM	21	calculated erosion rate, and then went in and modified this
11:15AM	22	geometry ever so slightly to account for other erosion.
11:15AM	23	Then we simulated the flow again through this
11:15AM	24	partially eroded geometry on day 2. Got the new erosion rate,
11:15AM	25	fed those back in the loop. Moved to day 3. So, essentially,

11:15AM	1	it was a series of calculations from day to day, or even within
11:16AM	2	hour by hour, very intense. Which took us through time to see
11:16AM	3	how the geometries changed.
11:16AM	4	Q Now, for how many days did you get good information data as
11:16AM	5	a result of that effort?
11:16AM	6	A That effort was a very intense calculation, something that's
11:16AM	7	rarely been attempted that I know of by anyone. We were able to
11:16AM	8	get 10 good days of data. And, that was very important for us,
11:16AM	9	that we had 10 solid days of data.
11:16AM	10	Because, remember, we knew the beginning and the
11:16AM	11	end point. We did not need to project into the future and
11:16AM	12	wonder whether it was right or wrong. We knew where this is
11:16AM	13	going to end, so all we needed is enough data points in time so
11:16AM	14	that we could connect that beginning with the end.
11:16AM	15	We wanted to go for 35 days. That was our goal
11:16AM	16	and hope. But that wasn't possible. But we had enough, 10 good
11:17AM	17	days of simulations.
11:17AM	18	Q What is your basis for saying that the data that you
11:17AM	19	obtained for those 10 days is reliable? That is, something we
11:17AM	20	can count on.
11:17AM	21	A Because I have done very similar simulations many, many,
11:17AM	22	many times before, and all of those who have tried something
11:17AM	23	like this know that these simulations are difficult, and there
11:17AM	24	is various reasons and various points in time they stop giving
11:17AM	25	good answers.

11:17AM	1	But we also know from mathematical and physical
11:17AM	2	criteria when data are good and when they're not. So we looked
11:17AM	3	at every day and every geometry that we got the next day and
11:17AM	4	checked mathematically and physically is it realistic.
11:17AM	5	When it was, we went to the next day. And then
11:17am	6	went day 1, 2, 3 through 10. And then, on the 11th and 12 th
11:17am	7	day, things started happening. We saw mathematically, we saw
11:18AM	8	physically and visually that something was wrong. We had to
11:18AM	9	stop there and discard those data.
11:18AM	10	Q Now, I'm going to call out D-23892. And I'll just ask you,
11:18AM	11	Dr. Nesic, to describe for Judge Barbier what this graph
11:18AM	12	represents and why it is important to you in your evaluation of
11:18AM	13	this case.
11:18AM	14	A So, Your Honor, you have time on the horizontal axis, and
11:18AM	15	this is pressure drop, or you can think of it as resistance to
11:18AM	16	flow.
11:18AM	17	The numbers are pressure drop really in pascals,
11:18AM	18	which is an equivalent of the psi. But the actual numbers are
11:18AM	19	not what I needed. I knew what in a real case was my initial
11:18AM	20	and last point. All I needed from this simulation was to know
11:18AM	21	whether to connect my initial and last point with a straight
11:18AM	22	line or some other type of line.
11:19am	23	And we did this over and over again. And, for
11:19AM	24	about ten days, we got -- no matter what geometry we looked at
11:19AM	25	-- that the change was linear. So I was very happy with that.

11:19AM	1	I had no expectation to it being linear or anything else. But,
11:19AM	2	every time we got data like this, you can see, even by the naked
11:19AM	3	eye, that this was a linear change.
11:19AM	4	So that is the only thing I moved -- I used from
11:19AM	5	this transient simulation and moved them back into my pressure
11:19AM	6	drop analysis. I knew the beginning, I knew the end, and now I
11:19AM	7	was able to draw a line between those two.
11:198M	8	Q If you know the beginning and you know the end, are 10 days
11:19AM	9	of good data sufficient for you to reliably form opinions about
11:19AM	10	the way restrictions changed over time?
11:19AM	11	A Oh, indeed. I mean, we all know that you only need two
11:19AM	12	points to define a line. If three points looked like to be on
11:19AM	13	the line, that's already safer.
11:19AM	14	To have 10 points that in this case correlate 97
11:198M	15	percent with the straight line, I mean, that to me was a case
11:20AM	16	beyond doubt.
11:20AM	17	Q What did you conclude about the way restrictions changed
11:20AM	18	over time based on your transient simulations?
11:20AM	19	A Again, I had the privilege of asking these transient
11:20AM	20	simulations a very simple question, asking them just to tell me
11:20AM	21	what was the trend of change of pressure drop.
11:20AM	22	In other words, was it a straight line or
11:20AM	23	something else? I got an answer that it was a straight line,
11:20AM	24	and that's the only thing I extracted and used it to reach my
11:20AM	25	final conclusions.

11:20AM	1	Q How did you decide that a linear trend was the best fit for
11:20AM	2	this data?
11:20AM	3	A As I just mentioned, these data looked straight -- they
11:20AM	4	looked like a straight line. Mathematically, they have a high
11:20AM	5	degree of correlation. They're 97. Something accurate, which is
11:21AM	6	way beyond -- normally, one expects 70 percent, and say
11:21AM	7	everything above 70 percent is a straight line. This was 97
11:21AM	8	percent.
11:21AM	9	So my visual intuitive observation was confirmed.
11:21AM	10	So I was very confident to take a straight line as the best
11:21AM	11	representation of this data.
11:21AM	12	By the way, it suffices to say that, whenever one
11:21AM	13	has multiple options to describe something, in this case a bunch
11:21AM	14	of points, what one chooses is that scientifically acceptable is
11:21AM	15	the simplest fit. And this was, A, a very good straight fit;
11:21AM	16	and, B, it is the simplest of all possible fits.
11:21AM	17	Q All right. Thank you, Dr. Nesic.
11:21AM	18	Now, up until this point, we've been talking about
11:21AM	19	your analysis of individual components; correct?
11:21AM	20	A That's right.
11:21AM	21	Q The ones you've identified of your subjects of
11:21AM	22	investigation?
11:21AM	23	A Correct.
11:21AM	24	Q So let's talk now a little bit about the combined effect of
11:22AM	25	restrictions and how you went about looking at pressure drop

11:22AM	1	across the BOP system; okay?
11:22AM	2	A Sure.
11:22AM	3	Q All right.
11:22AM	4	I'm going to call out now D-23945, and this is one
11:22AM	5	of the charts from your report.
11:22AM	6	Can you explain to the Court what is represented
11:22AM	7	by this graph and how it is helpful to understanding the
11:22AM	8	changing flow restrictions over time.
11:22AM	9	A Sure.
11:22AM	10	Your Honor, this is one of the two summarizing
11:22AM	11	graphs where everything I did, all those complicated simulations
11:22AM	12	through difficult geometries, which we did thousand times over,
11:22AM	13	everything comes together in these last two graphs that I'm
11:22AM	14	going to show.
11:22AM	15	So the graph in front of you shows how pressure
11:22AM	16	drops on the vertical axis -- that's really a resistance to
11:22AM	17	flow -- changes over this period of time that I analyze. And
11:23AM	18	these are all calculations. This is not based on my
11:23AM	19	assumptions.
11:23AM	20	We can see that, if nothing else is important,
11:23AM	21	when you take away method that -- it starts from 3 and a half
11:23AM	22	and goes to 1. That means that the resistance to flow over this
11:23AM	23	period of time changed 3 and a half times.
11:23AM	24	Q Let me stop you right there.
11:23AM	25	A Sure.

11:23AM	1	Q Just so that we can orient Judge Barbier to what we're
11:23AM	2	looking at.
11:23AM	3	Right here, we have April the 22nd, and we have a
11:23AM	4	solid blue line.
11:23AM	5	Do you see that?
11:23AM	6	A Yes.
11:23AM	7	Q All right.
11:23AM	8	And, over here, you've got the schedule which
11:23AM	9	shows that solid blue is blind shear ram; right?
11:23AM	10	A That's right.
11:23AM	11	Q So what are you demonstrating here by this solid blue line
11:23AM	12	here on April the 22 nd in relation to what you see at the end
11:23AM	13	point that you're using for erosion May the 27th?
11:23AM	14	A What we see, Your Honor, is here we've stacked up a number
11:24AM	15	of different elements together. If you take, say, 29th of
11:24AM	16	April --
11:24AM	17	Q Dr. Nesic --
11:24AM	18	A Yes.
11:24AM	19	Q -- focus on this blue line right here. I want you to
11:24AM	20	describe what that is, please.
11:24AM	21	A Okay.
11:24AM	22	Q Thank you.
11:24AM	23	A This blue line is singling out the blind sheer rams. Even
11:24AM	24	if I looked at the whole thing together. So blind shear rams
11:24mM	25	initially offered a high degree of restriction. And then we

11:24AM $\quad 1$

11:24AM 2

11:24AM 3

11:24AM 4

11:24AM 5

11:24AM 6

11:24AM 7

11:24AM 8

11:24AM 9

11:24AM 10

11:24AM 11

11:24AM 12

11:24AM 13

11:24AM 14

11:24AM 15

11:24AM 16

11:24AM 17

11:25AM 18

11:25AM 19

11:25AM 20

11:25AM 21

11:25AM 22

11:25AM 23

11:25AM 24

11:25AM 25
knew exactly what it was on the 22 nd of April because I knew my geometry. We knew exactly what it was, the other blue line, on the 27th of May. We knew it was 20 I think 4 times less. THE COURT: What's the scale on the left? THE WITNESS: The scale is pressure drop, but it is -THE COURT: It's 3.5 what?

THE WITNESS: Times bigger than the pressure drop at the end.

THE COURT: So it's not like --
THE WITNESS: It's a factor.
THE COURT: It's not a 3500 --
THE WITNESS: No.
THE COURT: -- pressure reading.
THE WITNESS: No. That's correct.
And there's a reason for that, Your Honor.
If I used a psi, say, for pressure drop, then if I had a higher flow rate, I would have had more pressure drop in the same geometry. If I had a lower flow rate in the same geometry, I had a lower pressure drop. So it would appear that line would be all over the place if I used the actual psi, if I used the actual pressure drop.

If look at the ratio pressure drop, if you just ask yourself not what was the actual pressure drop but how much does it change from day 1 to day 35, by what factor. It's always by factor 3 and a half overall.

11:25AM	1	So, no matter whether the flow was low or high, I
11:25AM	2	always get 3 and a half time more pressure drop at the beginning
11:25AM	3	than at the end. And that was so universal within very narrow
11:25AM	4	margins, which is convincing to me that I've singled out only
11:25AM	5	the affected geometry.
11:25AM	6	Your Honor, with due respect, I didn't know what
11:25AM	7	the flow rate was when I started my analysis, and that wasn't
11:25AM	8	the subject of my work. I didn't try to tell you what was the
11:25AM	9	pressure drop. I just tried to tell you how much does it
11:26AM	10	change.
11:26AM	11	And that's what this graph shows. It changed by 3
11:26AM	12	and a half times overall.
11:26AM	13	Q This describes the restriction at the beginning period that
11:26AM	14	you analyzed in relation to the restriction to flow that is
11:26AM	15	present on May 27 th; right?
11:26AM	16	A Correct.
11:26AM	17	Q And you know that because you have the components in the
11:26AM	18	pristine condition and you have a calculation and you have
11:26AM	19	pristine and you have the recovered components on May the 27th,
11:26AM	20	and so you know precisely what you have there?
11:26AM	21	A That's right.
11:26AM	22	Q And then you've characterized here some of the other events
11:26AM	23	that occur in between. Is one those events on April the 29th
11:26AM	24	the shut-in or the closing of the casing shear ram?
11:26AM	25	A That's right.

11:26AM	1	Q And does this column demonstrate restriction to flow based
11:27AM	2	on your analysis that existed as of April the 29th?
11:27AM	3	A That's right.
11:27AM	4	Q And, the restriction, the total restriction of the flow that
11:27AM	5	you've calculated at this point is actually a little higher than
11:27AM	6	it was on April the 22nd; correct?
11:27AM	7	A That is correct.
11:27AM	8	Q The light-colored boxes -- we see blue here and red here
11:27AM	9	what do the light-colored boxes depict on your scale here?
11:27AM	10	A I was trying to be very transparent in this graph and remind
11:27AM	11	everyone looking at this graph that I had hard numbers for day
11:27AM	12	1, the beginning of erosion, and day 35, the end of erosion.
11:27AM	13	That's why they're darker colored. Lighter colors
11:27AM	14	means that these bars in between are obtained by essentially
11:27am	15	drawing more a less a straight line from beginning to end. So
11:27AM	16	they're what I called less hard or softer numbers. They were
11:28AM	17	obtained by my transient simulations. That's why I've
11:28AM	18	highlighted that for the BSR; it was done that way for the CSR.
11:28AM	19	e casing shear rams are the same. Beginning and
11:28AM	20	end are hard numbers. In between, I used my transient analysis.
11:28AM	21	I realize that is not as firm a number as the first one, but
11:28AM	22	it's as good as we can get. It was based on calculations.
11:28AM	23	Q Based on your evaluation of the components that you
11:28AM	24	analyzed, as well as the simulations that you ran, do you have
11:28AM	25	an opinion as to whether or not erosion had concluded in the BOP

11:28AM	1	and kinked riser within nine hours or a day?
11:28AM	2	A I think that's impossible.
11:28AM	3	Q Why do you say that?
11:28AM	4	A Well, there's many different reasons I can defend that and
11:28AM	5	prove myself correct.
11:28AM	6	First is we have physical evidence. We know that
11:28AM	7	the kinked riser erosion persisted until May 19th. We know that
11:28AM	8	casing sheer rams such as closed on April 29th continued to
11:29AM	9	erode.
11:29AM	10	So I just cannot understand how one can make that
11:29AM	11	leap of imagination that from one case of very fast erosion to
11:29AM	12	determine that everything eroded at the same rate.
11:29AM	13	If I may just take the simplest example, even one
11:29AM	14	individual element which was there all the time eroded
11:29AM	15	differently different locations. So one cannot just take this
11:29AM	16	erosion rate and then apply it to everything else that existed.
11:29AM	17	That's point number one.
11:29AM	18	And, Your Honor, the other point is not everything
11:29AM	19	that eroded made the same difference. The erosion of the casing
11:29AM	20	sheer rams did not make a big difference on the flow rate. You
11:29AM	21	can see that my red bars are more or less all the same height.
11:29AM	22	That means the casing sheer rams were not perturbed so much by
11:29AM	23	erosion.
11:29AM	24	So one cannot just take one example and transpose
11:29AM	25	it. That's why I've done this thousand simulations, to catch

11:29AM	1	all this intricate detail and I'm able to stack them up in the
11:30AM	2	right way.
11:30AM	3	Q Okay. Now, let's go to one final topic, and that is
11:30AM	4	converting the pressure drop conclusions to flow rate
11:30AM	5	conclusions. And I'll just ask you, once you analyzed how
11:30AM	6	restrictions changed over time, were you able to reach
11:30AM	7	conclusions about the effects of metal erosion on flow rate?
11:30AM	8	A Yes, I was.
11:30AM	9	Q And what was the technique that you used for that?
11:30AM	10	A I've used most accepted technique that I know some of the
11:30AM	11	other government experts also used. It's based on the so-called
11:30AM	12	Bernoulli equation.
11:30AM	13	Q Now, I'm going to -- well, just describe briefly how used
11:30AM	14	the equation here.
11:30AM	15	A If we take away all the details, it essentially says that
11:30AM	16	pressure drop is directly proportional to velocity squared. In
11:30AM	17	other words, to go from this change of pressure drop to
11:30AM	18	velocity, I have to square root it.
11:30AM	19	So, while this was a straight line, something that
11:31AM	20	was a straight line will become a curved line in the other
11:31AM	21	block. But it's a simple quadratic or square root relationship.
11:31AM	22	Q Now, one final graph to sum up your opinions here,
11:31AM	23	Dr. Nesic. I have called up D-23995B, and I'll just ask you if
11:31AM	24	you can use this graph here, or chart here, to explain to Judge
11:31AM	25	Barbier your opinion about how changes in restrictions affected

11:31AM	1	flow over time.
11:31AM	2	A Your Honor, this is the ultimate graph, and answers the main
11:31AM	3	charge I had. And that was not what was the flow rate, but how
11:31AM	4	much did the flow rate change over time because of erosion of
11:31AM	5	the BOP.
11:31AM	6	And what you see here on this chart is the same
11:31AM	7	timeline, April 22 nd to May 27th, and kind of an inverse of the
11:32AM	8	previous pressure drop plot, because there is that direct
11:32AM	9	relationship there.
11:32AM	10	What you see is essentially that, assuming the BOP
11:32AM	11	was the main restriction in the flow, the flow would have
11:32AM	12	doubled over this period of time because of the erosion of the
11:32AM	13	various components.
11:32AM	14	I would just add very briefly that, again, I don't
11:32AM	15	have an actual flow rate on this axis for the same reason as I
11:32AM	16	had before. I didn't get into this argument what would be the
11:32AM	17	exact flow rate. I only wanted to answer the question by how
11:32AM	18	much would any given flow rate change; what would be the factor.
11:32AM	19	I came up with a factor of 2 in this case.
11:32AM	20	Q Does your analysis of the ability of oil and gas to flow
11:32AM	21	through the BOP change based on the initial flow rate?
11:32AM	22	A No.
11:32AM	23	Q Why is that?
11:32AM	24	A Because, the way I've done it, isolated this geometrical
11:33AM	25	affect and separated it out from all the other affects that

11:33AM	1	effect, say, pressure drop. So nothing else. Either the
11:33AM	2	density of the fluid, the viscosity of the fluid, the actual
11:33AM	3	flow rate do not play into this.
11:33AM	4	Actually, they do; but, once you divide the flow
11:33AM	5	rate at the beginning and the end, they all cancel out. So you
11:33AM	6	see unambiguously and universally the change of flow that would
11:33AM	7	have been obtained at any given flow rate from 5 to 65,000
11:33AM	8	barrels a day because these components were eroded.
11:33AM	9	Q And what is the significance of knowing the geometry at the
11:33AM	10	beginning? That is that, in the pristine condition, versus the
11:33AM	11	geometry after 35 days of flow that includes sand on your
11:34AM	12	analysis?
11:34AM	13	A Well, it gave me this huge degree of confidence. This is an
11:34AM	14	unusual situation that in a real life problems we know two
11:34AM	15	points in time and are only really asked to connect them in the
11:34AM	16	most intelligent and best possible way.
11:34AM	17	Usually, we only know one point in time, and then
11:34AM	18	we're asked to predict how something will happen into the
11:34AM	19	future. Or, in the case of failure analysis, we go backward and
11:34AM	20	say, Okay, this is what we know. This is what broke. Go back
11:34AM	21	now and analyze what happened in the past.
11:34AM	22	But rarely do we know both points in time. This
11:34AM	23	was a privilege to have those two pieces of information. Made
11:34AM	24	my job so much more reliable. I knew the outcome at the
11:34AM	25	beginning and the end. I had quantified it, and then I did the

11:34AM	1	best possible way to connect the two points in time.
11:34AM	2	Q Dr. Nesic, what is your ultimate conclusion as to the effect
11:34AM	3	of metal erosion on flow rate, assuming that the BOP and the
11:34AM	4	kinked riser were restrictions to flow?
11:35AM	5	A I've concluded that this erosion of the elements of the BOP
11:35AM	6	and the kinked riser were so significant, that if the BOP was
11:35AM	7	the sole and the biggest restriction to flow, the flow would
11:35AM	8	have doubled over this period of time that I've analyzed.
11:35AM	9	Q And the period of time that you have studied is April the
11:35AM	10	22nd to May the 27th?
11:35AM	11	A That is correct.
11:35AM	12	Q And, in terms of the ability of the flow to cause erosion,
11:35AM	13	have you independently verified that erosion would be occurring
11:35AM	14	during that period of time?
11:35AM	15	A Yes, I have. I have the sand production data and I have the
11:35AM	16	erosion events that happened sort of along this whole timeline.
11:35AM	17	MR. BROCK: Thank you, Dr. Nesic. That's all we have
11:35AM	18	at this time.
11:35AM	19	THE WITNESS: Thank you.
11:35AM	20	THE COURT: All right. Cross examination.
11:36AM	21	MS. CROSS: Good morning, Your Honor. Anna Cross on
11:36AM	22	behalf of the United States.
11:36AM	23	CROSS EXAMINATION
11:36AM	24	BY MS. CROSS:
11:36AM	25	Q Good morning, Dr. Nesic.

11:36AM	1	A Good morning, Ms. Cross.
11:36AM	2	Q Dr. Nesic, you attempted to build a model to determine the
11:36AM	3	rate of metal erosion; right?
11:36AM	4	A I didn't attempt, I built one.
11:36AM	5	Q You attempted -- prior to developing a model you showed us
11:37AM	6	here, you tried to develop a model that would predict the rate
11:37AM	7	of metal erosion over time; right?
11:37AM	8	A No. I did not try to. I actually built one. And I didn't
11:37AM	9	build it prior to this. This was part of the whole exercise.
11:37AM	10	Q You're not providing an opinion about what the erosion rate
11:37AM	11	was; right?
11:37AM	12	A That is true.
11:37AM	13	Q And your model doesn't tell us what the erosion rate was;
11:37AM	14	does it?
11:37AM	15	A My model didn't need to tell us what the erosion rate was.
11:37AM	16	My model was trying to tell us what the effect of erosion was of
11:37AM	17	flow rate. I was not in the business of predicting erosion
11:37AM	18	rates.
11:37AM	19	Q Your original intent when you started your work on this case
11:37AM	20	was to calculate the erosion rate, and you found you couldn't do
11:37AM	21	that; right?
11:37AM	22	A No. I wouldn't agree with that. I actually did calculate
11:37AM	23	the erosion rates.
11:38AM	24	Q Let's go ahead and take a look at what you said in your
11:38AM	25	deposition.

11:38AM 1
11:38AM 2

11:38AM 3

11:38AM 4

11:38AM 5
11:38AM 6

11:38AM 7

11:38AM 8
11:38AM 9

11:38AM 10

11:38AM 11

11:38AM 12

11:38AM 13

11:38AM 14

11:38AM 15

11:38AM 16

11:38AM 17

11:38AM 18

11:39AM 19

11:39AM 20

11:39AM 21

11:39AM 22

11:39AM 23

11:39AM 24

11:39AM 25

MS. CROSS: Could we please have page 159, lines 1 through -- and it's going to go through 162.

BY MS. CROSS:
Q I asked you: Before the break you said that the erosion rate calculated by your model had no material consequences on your findings. What did you mean by that?

Answer: If you will allow me to explain that, I need to offer a little bit of a historical perspective, historical as it refers to my work.

Okay.
Our original intent when we started this work and were charged with the task was to try to take the geometries of interest within the $B O P$ and the kinked riser and calculate the erosion as accurately as we can, use that information to describe how that geometry eroded and changed, keep calculating the erosion rate in a transient sense, and in the end arrive with the geometry of those elements as they were found and recovered. Okay.

So, in order to do that, one needed at least two things to work really well: That the erosion model, particularly the very high erosion rates part of it -continuing on to the next page it -- the very high erosion rates --

THE COURT: Wait, wait, wait. You're not going to read this whole page, are you? What was your original question to

11:39AM	1	him? What are you trying to prove here?
11:398M	2	BY MS. CROSS:
11:39AM	3	Q Your model does not calculate an erosion rate that you
11:39AM	4	presented in your report; right?
11:39AM	5	A Ms. Cross, I've never presented erosion rates in my report
11:39AM	6	as related to the real geometries, because I didn't need that
11:39AM	7	information. I knew the geometry at the beginning and the end.
11:39AM	8	I will agree that it was difficult to work with
11:39AM	9	the real geometries and their erosion process over time, but I
11:39am	10	did calculate the erosion rates. I've actually even calibrated
11:39AM	11	them with a laboratory study. So I did do that.
11:40AM	12	It was difficult to apply those erosion rates and
11:40AM	13	modify a very complicated geometry, and that's the only pathway
11:40AM	14	that we didn't follow compared to what we intended from the
11:40AM	15	beginning.
11:40AM	16	That's what I say in my deposition as well.
11:40AM	17	Q Okay. And so my question was simply, your opinion is not
11:40AM	18	hat there was a certain erosion rate based on your modeling?
11:40AM	19	A That is true. That wasn't my thrust, that's right.
11:40am	20	Q All right. In your modeling, you looked at scans of various
11:40AM	21	parts of the BOP and the riser showing erosion that were
11:40AM	22	recovered after the response; right?
11:40AM	23	A That's right.
11:40AM	24	Q Now, you're not providing your own opinion about the
11:40AM	25	duration of erosion; are you?

11:40AM	1	A Oh, yes, I am.
11:40AM	2	Q In your report, you said you assumed the period of erosion;
11:40AM	3	right?
11:40AM	4	A What that word means is that I formed an opinion as to what
11:41AM	5	it was; and, based on that, I used the assumed period in my
11:41AM	6	other calculations.
11:41AM	7	That doesn't mean I guess it. In our scientific
11:41AM	8	world, the word assume doesn't mean that I'm just wildly
11:41AM	9	guessing what it was.
11:41AM	10	Q You assumed the flow rate based on Dr. Vaziri's estimate of
11:41AM	11	the duration of sand production; right?
11:41AM	12	A Would you please repeat that question?
11:41AM	13	Q You based your assumptions that the end of the erosion
11:41AM	14	period was May 27th on Dr. Vaziri's opinion about the duration
11:41AM	15	of sand production?
11:41AM	16	A That is only partially true, so you got one of the two
11:41AM	17	important pieces of information. I did base my opinion on what
11:41AM	18	Dr. Vaziri said about sand production, and I extended that
11:41AM	19	saying, Well, if there was sand until the end of May, I can
11:41AM	20	safely assume that there was some erosion until the end of May.
11:41AM	21	But, as I have just testified in the direct, the
11:41AM	22	other compelling piece of evidence which I had which is totally
11:42AM	23	independent from Dr. Vaziri and what he thought, is with a third
11:42AM	24	hole in the kinked riser that appeared on May 19th.
11:42AM	25	So, here, we are now really debating how long past

$11: 42 \mathrm{AM}$ 11:42AM	1 2	May 19th and before the end of May erosion stopped, and stopped it conservatively on May 27th.
11:42AM	3	Q You can't say for certain that erosion didn't stop on, say,
11: 42AM	4	May 26 th; can you?
11:42AM	5	A Well, I'm not ready to speculate about, you know, a day
11:42AM	6	forward or backward. I thought May 27 best reflects a
11:42AM	7	compromise where I knew that it went beyond May 19th, and I took
11: 42AM	8	it that it stopped some time before the end of May.
11:42AM	9	I think May 27th was a good measure. I don't know
11:42AM	10	of any reasons why I would now speculate about a day forward, a
11:42AM	11	day backward. In the end, it wouldn't make any big difference
11:42AM	12	on my analysis.
11:42AM	13	THE COURT: Tell me again where the May 27 came from.
11:43AM	14	What's his name, the other --
11:43AM	15	THE WITNESS: Vaziri.
11:43AM	16	THE COURT: He said that's when the sand production
11:43AM	17	ended?
11:43АМ	18	THE WITNESS: He actually said end of May, so it means
11:43AM	19	a few days beyond. He had based it on a model he ran for sand
11:43АМ	20	production and obviously his expertise.
11:43AM	21	THE COURT: And the 27th, you --
11:43AM	22	THE WITNESS: I moved it forward.
11:43AM	23	THE COURT: Sort of an average or something.
11:43АМ	24	THE WITNESS: Well, no. It wasn't really --
11:43AM	25	THE COURT: Not an average, but what was your thinking

$11: 43 \mathrm{AM}$	1
$11: 43 \mathrm{AM}$	2
$11: 43 \mathrm{AM}$	3
$11: 43 \mathrm{AM}$	4

$$
\text { 11:43AM } 9
$$

11:43AM 10

11:43AM 11
11:43AM 12

11:43AM 13

11:43AM 14

11:44AM 15

11:44AM 16

11:44AM 17
11:44AM 18

11:44AM 19

11:44AM 20

11:44AM 21

11:44AM 22
11:44AM 23
11:44AM 24

11:44AM 25
there?
THE WITNESS: I was thinking to be a little more conservative. He said at least the end of May. I said, Well, I don't want to stretch it that long because I know there's arguments. We don't have physical evidence it was end of May. We have May 19th. So I thought May 27 th is a sensible one.

I had no reason, Your Honor, to say May 20th,
because I knew it was --
THE COURT: It is also the case, if you know, that the sand production would be sort of declining?

THE WITNESS: That's right.
THE COURT: So that could be another factor.
THE WITNESS: That could be. It's not my area of expertise, but that could definitely be another factor.

THE COURT: Go ahead.
BY MS. CROSS:
Q You didn't check Dr. Vaziri's work; right?
A I did not.
Q You didn't independently do any analysis to confirm that sand production lasted until May 27 th?

A No. I had all reasons to rely on Dr. Vaziri's opinions were correct. I'm not a sand production expert, and I was never attempting to perform such an analysis.

Q And you understand that Dr. Vaziri is not being called by BP in this case; right?

11:44AM	1	A That, I understand, yes.
11:44AM	2	Q Let's talk about the pre-erosion geometries that you looked
11:44AM	3	at. You assign those pre-erosion geometry pressure drops to
11:44AM	4	April 22nd; right?
11:44AM	5	A That is true for the case of the blind sheer rams. And I do
11:44AM	6	the same for the casing shear ram a week later when they close,
11:44AM	7	which was April 29.
11:44AM	8	Q So, for the blind shear ram, the upper annular and the
11:44AM	9	kinked riser, you assume that the pristine geometry, the
11:44AM	10	pre-erosion geometry as you called it, was still, in fact, the
11:45AM	11	geometry on April 22nd; right?
11:45AM	12	A Well, I took each one separately, so I don't think it's fair
11:45AM	13	to lump them together. But what is true in a sort of big
11:45AM	14	picture is that, on April 22 nd, the blind shear rams were
11:45AM	15	activated and started eroding.
11:45AM	16	They were by a long shot, which everybody agrees,
11:45AM	17	the biggest resistance in that stack. So, therefore, you can
11:45AM	18	call it the day of the erosion -- or the erosion started in the
11:45AM	19	BOP, from my perspective.
11:45AM	20	So I wouldn't fully agree with your statement, but
11:45AM	21	there's elements of truth in that.
11:45AM	22	Q When Mr. Brock asked you about the period of erosion, you
11:45AM	23	said it was from April 22 nd to May 27 th; right?
11:45AM	24	A That's the integral view of the whole process, the certain
11:45AM	25	thing activated with delayed. The CSR was activated a week

11:45AM	1	later. I have lumped the other three together. So, in that
11:46AM	2	sense, you were correct, that they all started on the same day.
11:46AM	3	In my analysis.
11:46AM	4	Q Right. So you assumed that there was no erosion of the
11:46AM	5	upper annular or the kinked riser between April 22 nd , the
11:46AM	6	blowout, and April 22nd when your modeling started; right?
11:46AM	7	MR. BROCK: I'd just object. I think you used April
11:46AM	8	22nd twice. I don't know what you meant to say.
11:46AM	9	THE COURT: You said April 22 nd and April 22 nd .
11:46AM	10	MS. COOK: Sorry.
11:46AM	11	THE COURT: Thought were you referring to different
11:46AM	12	times of that day.
11:46AM	13	THE WITNESS: Erosion was fast, but not that fast.
11:46AM	14	THE COURT: Why don't you restate your question.
11:46AM	15	BY MS. CROSS:
11:46AM	16	Q You assumed, Dr. Nesic, that April 22 nd was the beginning of
11:46AM	17	erosion for the blind shear ram, the upper annular, and the
11:46AM	18	kinked riser; right?
11:46AM	19	A That is how I've lumped them together, that is correct.
11:46AM	20	Q So any erosion that happened in the upper annular or the
11:46AM	21	kinked riser, erosion to the drill pipe, for example, you
11:46AM	22	assumed none of that happened until April 22nd?
11:46AM	23	A Not entirely. If I may just explain.
11:47AM	24	When I look at something, whether something eroded
11:47AM	25	or not, if you will recall, Your Honor, I had two criteria:

11:48AM	1	ram for your post-erosion geometry?
11: 48AM	2	A It was 20 something times less than what it was in the
11: 48 AM	3	pre-erosion geometries.
11:48AM	4	Q What was it in terms of pascals?
11:48AM	5	A Well, that would depend on whether you took any given flow
11:48AM	6	rate that you would assume. Since I was not trying to guess the
11:49AM	7	flow rate and then guess the pressure drop, I only looked by how
11:49AM	8	much it changed. And this 20 something factor, I believe it was
11:49AM	9	22 or 24 , that big factor was the same whether I started with
11:49AM	10	5,000 stock barrels per day or 65 .
11:49AM	11	When you divide the beginning with the end, you
11:49AM	12	always got about the same factor. That's why I don't remember
11:49AM	13	the actual pressure drop for any given flow rate. And,
11:49AM	14	actually, it's not important for my analysis.
11:49AM	15	Q You didn't present the actual pressure drops for your
11:49AM	16	pre-erosion geometry or your post-erosion geometry in your
11:49AM	17	report; right?
11:49AM	18	A No. Because, as I just argued, the actual numbers were not
11:49AM	19	important for the main conclusion. However, it is fair to say
11:49AM	20	that, in the produced files that I handed over, the actual
11:49AM	21	simulations for high flow rate and low flow rate and every
11:50AM	22	geometry were in actual units, pascals or psi, whatever you
11:50AM	23	want, so that the hard data in terms of units were there.
11:50AM	24	That just didn't affect my overall conclusion when
11:50AM	25	all those things came together in the graphs I've shown.

11:50AM	1	Q The post-erosion geometry pressure drop for the blind shear
11:50AM	2	rams in the files as you produced them was about 6 psi for the
11:50AM	3	high flow rate case, and between 0 and 1 psi for the low flow
11:50am	4	rate case; right?
11:50AM	5	A Honestly, I have done thousand of simulations. At least a
11:50AM	6	few hundred of those were related to the blind shear rams. I
11:50AM	7	have no recollection of any individual number and what are you
11:50AM	8	exactly referring to. You may well be right, but that doesn't
11:50AM	9	stick in my memory.
11:50AM	10	MS. CROSS: Could we please have D-22820.
11:50am	11	BY MS. CROSS:
11:51AM	12	Q Now, Dr. Nesic, this is a version of your figure 33 that
11:51AM	13	takes out everything except what you call the hard numbers for
11:51AM	14	the blind shear ram.
11:51AM	15	Do you agree that this accurately depicts the
11:51AM	16	blind shear ram numbers that you had April 22 nd and May 27 th?
11:51AM	17	A Yes, it looks right. I have haven't seen this graph in any
11:51AM	18	great detail before. But, yeah, it looks right.
11:51AM	19	Q And you used your transient modeling to try to figure out
11:51AM	20	how to connect those two dark blue blocks; right?
11:51AM	21	A That's true.
11:51AM	22	Q Okay. And you decided based on your transient modeling that
11:51AM	23	there was a straight line between those two blocks; is that
11:51AM	24	right?
11:51AM	25	A There was a straight line that connects. But there is a

11:51AM	1	straight line which best characterizes the change of pressure
11:51AM	2	drop with time due to erosion, that is correct.
11:51AM	3	Q Nothing in between April 22 nd and May 27 th is, in fact, a
11:52AM	4	calculation for the blind shear ram as you present your results
11:52AM	5	in figure 33; right?
11:52AM	6	A I'm sorry, but I have to disagree. I didn't just wave my
11:52AM	7	hands or use some guess or even just experience to connect the
11:52AM	8	points on the 22 th of April to the 27th of May.
11:52AM	9	I've actually made the best possible attempt to
11:52AM	10	calculate what the nature of that line should be.
11:52AM	11	Now, I've known of many examples when people have
11:52AM	12	two points and no physical evidence in between, they just
11:52AM	13	connect them with a straight line.
11:52AM	14	But that's not what I did. I've actually
11:52AM	15	performed transient simulations, which you just referred to, and
11:52AM	16	they have indicated that the best possible line and the simplest
11:52AM	17	possible way to connect these two known states would be a linear
11:52AM	18	line.
11:52AM	19	So it doesn't mean that I just did it without
11:53AM	20	calculations.
11:53AM	21	Q And it's fair to say that there's only one line that would
11:53AM	22	connect these two points; isn't that right?
11:53AM	23	A If we assumed that the rate of sand production was constant,
11:53AM	24	that would be the case. We would only use one line to connect
11:53AM	25	these points.

11:53AM	1	Q Now, let's turn to your transient modeling. Your transient
11:53AM	2	modeling crashed after 10 to 12 days; right?
11:53AM	3	THE COURT: Ms. Cross, if you're moving to another
11:53AM	4	topic, I think we're going to break for lunch now.
11:53AM	5	You're going to be a while?
11:53AM	6	MS. CROSS: I am.
11:53AM	7	THE COURT: All right, let's break for lunch. We'll
11:53AM	8	come back at 1:15.
11:53AM	9	(Proceedings in Recess.)
	10	
	11	CERTIFICATE
	12	
	13 14	I, Susan A. Zielie, Official Court Reporter, do hereby certify that the foregoing transcript is correct.
	15	
	16	/S/ SUSAN A. ZIELIE, FCRR
	17	

／	$\begin{gathered} 130[3]-2792: 15, \\ 2798: 25,2828: 1 \end{gathered}$	$\begin{aligned} & 20005_{[1]}-2769: 20 \\ & 20006_{[1]}-2771: 14 \end{aligned}$	$\begin{aligned} & \mathbf{2 9 0 3}_{[1]}-2772: 10 \\ & \text { 29th }{ }_{[12]}-2859: 1, \end{aligned}$	5
／S ${ }_{\text {［1］－2916：16 }}$	1300 ［1］－2771：10	2002［2］－2847：2，	2859：11，2863：19，	5 ［2］－2830：4，2902：7
0	0712［2］－2817：5，	20044［2］－2768：15，	2866：7，2866：9，	
	2817：6	2768：24	2874：13，2895：15，	500 ［3］－2766：23，
0 ［1］－2914：3	130713 ［2］－2817：6，	2010 ［1］－2766：5	2897：23，2898：2，	2767：23，2771：18
0．5［1］－2840：8	2817：21	2013［2］－2766：5，	2899：8	5000［1］－2769：6
0.61 ［1］－2840：8	$130713.44{ }_{[1]}$－	2773：2	2：1［1］－2827：15	$501{ }_{[1]}$－2767：15
0．84［2］－2840：2，	2819：18	2020［1］－2771：14	2nd［1］－2847：7	504［1］－2771：19
2840：11	1331［1］－2771：4	20th［8］－2779：6，		556［1］－2766：23
	13th［4］－2779：3，	2779：11，2779：14，	3	$58{ }_{[1]}$－2839：23
1	$\begin{aligned} & \text { 2779:18, 2779:20, } \\ & \text { 2788:14 } \end{aligned}$	$\begin{aligned} & \text { 2779:18, 2779:21, } \\ & \text { 2873:23, 2874:18, } \end{aligned}$	$3 \text { [11] - 2792:4, 2799:4, }$	589－7781［1］－2771：19
$\begin{aligned} & 1[27]-2804: 3,2804: 7, \\ & 2804: 11,2804: 23, \end{aligned}$	$\begin{aligned} & 142711_{[1]}-2768: 15 \\ & 15\left[{ }_{[1]}-2842: 21\right. \end{aligned}$	$\begin{aligned} & \text { 2909:7 } \\ & 21[1]-2774: 25 \end{aligned}$	$\begin{aligned} & 2817: 23,2830: 3, \\ & 2889: 25,2891: 6, \end{aligned}$	6
2804：25，2805：1，	159［1］－2905：1	22［1］－2913：9	2894：21，2894：23，	6 ［1］－2914：2
2806：18，2806：22，	$16{ }^{[1]}$－2774：24	22－foot［1］－2827：21	2896：25，2897：2，	$6^{\prime} 65{ }_{[1]}-2834: 23$
2807：15，2809：13，	$1615{ }_{[1]}$－2771：10	2216［1］－2767：11	2897：11	$6.4{ }^{[1]}$－ $2784: 5$
2810：6，2810：21，	$162{ }_{[1]}$－2905：2	22nd［27］－2858：2，	3．5［1］－2896：6	6．625［3］－2782：10，
2810：22，2814：20， 2814：22，2815：1，	1665［1］－2771：4	2858：15，2860：13，	30［2］－2846：1，2849：1	2783：19，2791：21
2814：22，2815：1， 2829：18，2830：3，	16th [1] - 2779:3	2867：22，2869：3，	300［1］－2769：12	$600[1]-2767: 4$
2829：18，2830：3，	$17[2]-2766: 5,2773: 2$	2895：3，2895：12，	$316[1]-2767: 4$	$60654[1]-2769: 12$
2888：23，2891：6，	1700 ［1］－2770：23	2896：1，2898：6，	32502［1］－2767：5	$65[1]-2913: 10$
	$188{ }_{\text {［1］}}$－2767：18	2901：7，2903：10，	33 ［4］－2774：24，	65，000［1］－2902：7
2912:6, 2914:3	1885［1］－2768：5	2910：4，2910：11，	2912：15，2914：12， 2915:5	$655[1]-2769: 20$
$1.5{ }^{[1]}$－2830：6	$19[1]-2876: 25$	2911:5, 2911:6,	333［1］－2769：15	7
1.75 ［1］－2830：7	$1996[1]-2846: 4$	2911：8，2911：9，	335［1］－2770：16	
$\left.10{ }^{10} 11\right]-2791: 4$,	19th [16] - 2859:13,	2911：16，2911：22，	35［6］－2817：21，	7．2［1］－2828：9
2791：5，2791：10， 2890：8 2890：9	2859:18, 2859:19,	2912：4，2912：11，	2888：12，2890：15，	7．3［1］－2828：10
$\begin{aligned} & \text { 2890:8, 2890:9, } \\ & \text { 2890:16, 2890:19, } \end{aligned}$	2869：14，2869：18，	2912：14，2914：16，	2896：24，2898：12，	70 ［3］－2850：11，
2891:6, 2892:8,	2872：9，2874：2，	2915：3		2893：6，2893：7
2892：14，2916：2	2874：11，2874：14， 2874：17，2875：5，	23:11 [1] - 2775:1	$\begin{aligned} & 3500[1]-2896: 11 \\ & \mathbf{3 5 T H}_{[1]}-2770: 16 \end{aligned}$	$\begin{aligned} & 700[1]-2767: 8 \\ & 701[2]-2768: 10, \end{aligned}$
10－CV－2771［1］－	$\begin{aligned} & \text { 2874:17, 2875:5, } \\ & \text { 2899:7, 2907:24, } \end{aligned}$	$24 \text { [2] - 2795:24, }$	$36130[1]-2767: 23$	701［2］－2768：10， 2769:6
2766：7	2908:1, 2908:7,	2913：9	3668［1］－2766：24	70112 ［1］－2771：10
10－CV－4536［1］－	$\begin{aligned} & \text { 2908:1, 2908:1, } \\ & 2909: 6 \end{aligned}$	264 ［1］－2828：1	3700 ［2］－2770：7，	70113［1］－2766：20
2766：10	1：15［1］－2916：8	26th［1］－2908：4	2770：10	70130［3］－2767：12，
100 ［2］－2850：12， 2872:21	1B1［3］－2866：19，	27 ［2］－2908：6，	39201 ［1］－2767：19	2768：10，2771：19
2872：21	2866：21，2867：4	2908：13	3D［2］－2861：8，	70139［1］－2769：7
$1001[1]-2770: 10$		2775 ［1］－2772：6	2862：11	70163［1］－2770：7
$1050[1]-2792: 11$	2	27th［23］－2858：2，	3X［1］－2795：5	$70502[1]-2766: 24$
1053［1］－2798：25	2 ［13］－2808：18，	2877：6，2877：9，	4	$70601[1]-2767: 15$ $70804[1]-2768: 6$
10650 ［1］－2815：15	2809：13，2810：7，	2895：13，2896：3，		75 ［1］－2827：22
$\begin{aligned} & \text { 10650.1.1.US }{ }_{[1]}^{-} \\ & \text {2815:21 } \end{aligned}$	2810:16, 2818:10, $2830 \cdot 3,2836 \cdot 12$	2897:15, 2897:19,	$\begin{gathered} 4[7]-2804: 5,2804: 9, \\ 2805: 11,2808: 15, \end{gathered}$	75270 ［1］－2770：23
11［1］－2766：14	2830：3，2836：12，	2901：7，2903：10，		7611［1］－2768：24
1100 ［1］－2770：7	2891:6, 2901:19,	$\text { 907:14, } 2908$	2896:3	77002 ［1］－2770：11
11488［1］－2795：24	$\begin{aligned} & \text { 8891:6, } \\ & \text { and2: } \end{aligned}$	2909:6, 2909:20	40［1］－2840：16	7010 ［1］－2771：5
11508 ［1］－2843：10	2.03 ［2］－2827：22，	2910：23，2912：11，	429［1］－2831：14	777［1］－2767：18
11th［1］－2891：6	2830：9	2912：14，2914：16，	44 ［1］－2819：18	8
12 ［1］－2916：2	2.5 ［1］－2831：8	2915：3，2915：8	444 ［1］－2828：12	8
12.875 ［4］－2783：19，	20 ［10］－2766：5，	2843［1］－2772：9	45 ［1］－2821：13	8 ［6］－2798：16，
2784：5，2792：1，	2791：11，2805：6，	2873［1］－2772：5	45，000［1］－2827：21	2798:19, 2798:25,
2792：7	2805：8，2887：7，	28：27［1］－2774：24	46［1］－2821：12	2799：1，2810：11，
1201－2］－2769：23，	2888：5，2896：3，	28th［3］－2869：6，	49［1］－2774：25	2810：19
2770：23	2913：2，2913：8	2869：15，2872：10	4A［3］－2783：3，	820 ［1］－2766：20
12th［1］－2891：6	20004［1］－2769：24	29［1］－2910：7	2783：6，2809：17	8：00［1］－2773：5

9	$2865: 21,2866: 7$	2819:18, 2821:12,	analyzed [8] -	appearance [2] -
9 [1] - 2795:25	2910:25	24, 2861:23	79:21, 2887:13,	APPEARANCES [6] -
90[1]-2867:20	active [1] - 2849:6	2878:15, 2904:24	897:14, 2898:24,	2766:17, 2767:1,
90-degree [2] -	activities [1] - 2848:2	2909:15	2900:5, 2903:8	2768:1, 2769:1,
2868:2, 2870:8	actual [36] - 2784:22,	AL [3] - 2766:8,	anchor [1] - 2882:17	2770:1, 2771:1
90071 [2]-2769:16,	784:23, 2787:11	2766:12, 2767:23	anchored [1] -	appeared [9] -
2770:16	2788:9, 2791:19,	ALABAMA [1]	2888:14	2859:14, 2859:15,
915.5 [2] - 2791:20,	2797:8, 2797:24	767:21	AND [2] - 2766:7,	2868:14, 2869:18,
2791:21	81:7, 2809:5	ALAN [1] - 2771:	2770:	872:10, 2872:11,
94005 [1] - 2768:6	2809:6, 2809:8	alarm [1] - 2882:16	ANDREW [1] - 2769:9	2877:1, 2883:17,
97 [3]-2892:14,	2809:9, 2821:21,	aligned [1] - 2871:9	ANGELES ${ }^{\text {[2] }}$	2907:24
2893:5, 2893:7	:24, 2822:10	ALLAN [1] - 2768:	2769:16, 2770:16	application [1] -
	:3, 2824:21,	ALLEN [1] - 2770:15	angle [7]-2852:2,	2849:3
A	$\begin{aligned} & \text { 2824:24, 2825:17, } \\ & \text { 2826:21, 2827:23, } \end{aligned}$	allow [5]-2788:4, 2789:7, 2789:8,	$\begin{aligned} & 2852: 3,2852: 9, \\ & \text { 2852:10, 2852:1 } \end{aligned}$	$\begin{gathered} \text { apply }[7]-2778: 14, \\ 2781: 15,2783: 2, \end{gathered}$
$\text { A.M }{ }_{[1]}-2773: 5$	2841:3, 2857:15,	$\text { 2794:24, } 2905 \text { : }$	$2865: 18,2876: 1$	$\begin{aligned} & \text { 2821:3, 2899:16, } \\ & \text { 2906:12 } \end{aligned}$
ability [2] - 2901:20 2903:12	6:20, 2896:21	allowed [1] - 2797:6 allowing [1] - 2788:13	angles [1] - 2797:15 angular [1] - 2885:9	applying [1] - 2849:10
able [19]-2809:22,	2896:23, 2901:15	allows [2]-2836:14,	animation [6] -	appreciate [5] 2778:16, 2781
$\begin{aligned} & \text { 2810:2, 2838:4, } \\ & \text { 2854:7, 2854:9, } \end{aligned}$	2913:15, 2913:18	$\begin{aligned} & \text { 2838:20 } \\ & \text { alluded [1]-2848:18 } \end{aligned}$	$\begin{aligned} & \text { 2851:8, 2851:19, } \\ & \text { 2870:11, 2880:23, } \end{aligned}$	2800:19, 2808:4,
2856:6, 2856:8,	2913:20, 2913:22	almost [9]-2801:11,	2884:16, 2886:17	2884:6
2861:20, 2874:8,	add [3] - 2807:8, 2807:9, 2901:1	2801:13, 2802:14	animations [1] -	approach [5] -
$\begin{aligned} & 2880: 6,2887 \\ & 2887 \cdot 18 \end{aligned}$	addition [1] - 2823:15	40:16, 2844:25	2880:3	94:16, 2833:22,
2888:8, 2890:7,	additional [5] -	$\begin{aligned} & \text { 2858:20, 2865: } \\ & \text { 2879:1, 2884:1 } \end{aligned}$	$\begin{gathered} \text { Anna [2] - } 2 \\ \text { 2903:21 } \end{gathered}$	$\begin{aligned} & \text { 2840:14, 2853:13, } \\ & 2853: 15 \end{aligned}$
$\begin{aligned} & 2892: 7,2900: 1, \\ & 2900: 6 \end{aligned}$	$\begin{aligned} & \text { 2807:10, 2807:13, } \\ & \text { 2811:3, 2811:4, } \end{aligned}$	altogether [1]	ANNA [1] - 2768:21	approaching [3] - 2794:15, 2881:7,
absolutely [1] -	2873:5	AMERICA [3]	2782:23, 2783:6,	2884:25
2811:14	address [1] - 2830:24	8:13	4:8, 2784:15	appropriate [3]
accelerates [1] -	administrative [1] -	2769:4	784:16, 2784:17,	2787:16, 2812:11,
2881:11	2773:13	amount [9]-2782:13,	857:9, 2865:25,	2841:22
accept [2]-2831:10,	admitted [6] -	2793:7, 2793:10,	2866:13, 2866:16,	approximation [2]
$\begin{aligned} & \text { 2831:12 } \\ & \text { acceptable } \end{aligned}$	2773:22, 2773:23 2774:20, 2774:21	2794:2, 2794:12	$\begin{aligned} & \text { 2866:24, 2867:10, } \\ & \text { 2879:18, 2910:8, } \end{aligned}$	$\begin{gathered} \text { 2834:16, 2835:17 } \\ \text { April [45] - 2858:2, } \end{gathered}$
2893:14	2854:24, 2854:25	$2835: 2$	$1: 5,2911: 17$	2858:15, 2859:1,
accepted [4] -	Adrian [1] - 2796:2	ANADARKO ${ }_{[2]}$	2911:20, 2912:7	2859:11, 2860:13,
2819:12, 2826:18, 2850:23, 2900:10	affect [5] - 2839:11,	$2771: 7,2771: 8$	annulus [2]-2783:5,	$\begin{aligned} & \text { 2863:19, 2865:21, } \\ & \text { 2866:6, 2866:7, } \end{aligned}$
2850:23, 2900:10 according [1] -	$\begin{aligned} & \text { 2849:9, 2887:14, } \\ & \text { 2901:25, 2913:24 } \end{aligned}$	Anadarko [2] - 2837:10, 2843:2	$\begin{aligned} & \text { 2842:4 } \\ & \text { answer [13]-27 } \end{aligned}$	$\begin{aligned} & \text { 2866:6, 2866:7, } \\ & \text { 2866:9, 2867:22, } \end{aligned}$
2774:23	affected [4] - 2857:22,	analogy $[1]-2878: 9$	87:23, 2790:18,	2869:3, 2869:6
account [1]-2889:22	2888:19, 2897:5,	analysis [27] - 2857:2,	2791:2, 2795:19,	2869:15, 2872:10,
accumulates [1] - 2800:4	$\begin{aligned} & \text { 2900:25 } \\ & \text { affects [2] - 2849:9, } \end{aligned}$	$\begin{aligned} & \text { 2858:14, 2858:15, } \\ & \text { 2859:10, 2863:16, } \end{aligned}$	$\begin{aligned} & \text { 2805:24, 2811:21, } \\ & \text { 2811:22, 2847:18, } \end{aligned}$	$\begin{aligned} & \text { 2873:23, 2874:12, } \\ & \text { 2895:3, 2895:12, } \end{aligned}$
accuracy [1] - 2912:19	2901:25	$0,$	848:22, 2892:23,	995:16, 2896:1,
accurate [5] - 2777:4,	after-situation [1] -	$68: 21,2876: 7,$	2901:17, 2905:7	897:23, 2898:2,
2786:7, 2786:25,	2888:1	82:2, 2888:1	answered [2]	2898:6, 2899:8,
2878:10, 2893:5	aggravated [1]	889:6	825:2, 2854:14	901:7, 2903:9,
accurately [5]	2872:19	2:6, 2893:19	answers [3] - 2854:7	910:4, 2910:7,
2785:24, 2809:3,	ago [6] - 27	$97: 7,2898: 2$	2890:25, 2901:2	910:11, 2910:14,
2841:4, 2905:14,	2828:10, 2849:1	98:20, 2901:20,	ANTHONY [1] -	910:23, 2911:5,
2914:15	2858:13, 2874:25,	02:12, 2902:19,	2767:11	2911:6, 2911:7,
acting [3] - 2785:5,	2875	08:12, 2909:19,	apart [2]-2864:4	2911:9, 2911:16,
2862:24, 2867:10	agree [7] - 2785:7	909:23, 2911:3,	2864:5	911:22, 2912:4,
activated [14] -	2794:13, 2808:16,	2913:14	apologize [1] -	912:11, 2912:13,
2855:20, 2858:16,	2904:22, 2906:8,	analyze [6] - 2853:3,	2876:16	914:16, 2915:3,
2859:2, 2859:3,	2910:20, 2914:15	2860:16, 2886:7,	appear [5] - 2869:7,	5:8
2859:11, 2860:13, 2862:3, 2863:19,	$\text { agrees }[1]-2910: 16$ ahead [10] - 2775:6,	$\begin{aligned} & \text { 2887:18, 2894:17, } \\ & \text { 2902:21 } \end{aligned}$	2870:24, 2872:2, 2872:8, 2896:19	APRIL [1] - 2766:5 area [107]-2776:19,

UNOFFICIAL TRANSCRIPT

2777:19, 2778:2,

 2778:6, 2778:7, 2782:16, 2784:23, 2784:24, 2785:3, 2785:11, 2786:12, 2792:11, 2792:15, 2793:17, 2794:9, 2802:18, 2802:24, 2802:25, 2803:1, 2804:3, 2804:5, 2804:7, 2805:5, 2805:6, 2806:5, 2806:8, 2808:3, 2808:15, 2808:18, 2808:25, 2809:6, 2809:8, 2809:12, 2809:13, 2809:15, 2809:17, 2809:18, 2810:5, 2810:12, 2810:13, 2810:16, 2812:4, 2812:20, 2812:22, 2812:23, 2812:25, 2814:25, 2816:7, 2816:9, 2816:13, 2816:16, 2816:17, 2816:18, 2816:19, 2819:8, 2821:21, 2822:6, 2822:9, 2822:10, 2822:17, 2823:3, 2823:8, 2823:13, 2823:17, 2823:20, 2824:2, 2824:21, 2824:24, 2825:12, 2825:17, 2825:25, 2827:12, 2827:14, 2827:23, 2829:7, 2829:17, 2829:18, 2829:19, 2831:6, 2831:24, 2833:20, 2834:5, 2834:6, 2834:10, 2834:18, 2834:23, 2834:24, 2835:7, 2836:3, 2836:7, 2836:15, 2840:15, 2845:10, 2848:11, 2849:7, 2851:13, 2868:2, 2868:3, 2875:18, 2875:19, 2909:13Area [1] - 2837:16 areas [10] - 2802:21, 2808:6, 2812:12, 2812:13, 2812:18, 2813:10, 2814:14, 2850:14, 2882:13, 2886:5
argue [1] - 2843:10 argued [1] - 2913:18 arguing [1] - 2811:7

argument [2] -

 2889:18, 2901:16 arguments [3] 2774:3, 2852:23, 2909:5arrangement [2] 2864:15, 2864:19 arrive [1] - 2905:16 arriving [1] - 2778:22 arrow [3] - 2870:7, 2870:18, 2870:21 article [1] - 2842:10 articles [1] - 2850:12 ASBILL [1] - $2770: 9$ aside [1] - 2805:5 ASSET [1] - 2766:8 assign [1] - 2910:3 assist [1] - 2849:18 associated [4] 2785:17, 2811:4, 2820:19, 2849:25 assume [10] - 2791:4, 2823:11, 2840:11, 2852:20, 2859:19, 2874:17, 2907:8, 2907:20, 2910:9, 2913:6
assumed [7] - 2907:2,
2907:5, 2907:10, 2911:4, 2911:16, 2911:22, 2915:23 assuming [3] 2804:14, 2901:10, 2903:3 assumption [5] 2807:24, 2840:9, 2840:12, 2856:9 assumptions [3] 2822:13, 2894:19, 2907:13
Athens [1] - 2843:25 atmosphere [1] 2878:18 attack [1] - 2883:10 attempt [2]-2904:4, 2915:9 attempted [3] 2890:7, 2904:2, 2904:5 attempting [2] 2804:1, 2909:23 attention [6] - 2859:1, 2863:16, 2868:24, 2872:8, 2873:11, 2878:23
ATTORNEY [2] 2767:21, 2768:5 authored [1] - 2850:11 available [4] - 2811:5, 2821:21, 2834:23,

2835:16
 AVENUE [4] -

2766:20, 2767:23, 2769:23, 2770:16 average [11] - 2778:4, 2778:5, 2778:15, 2789:19, 2799:5, 2799:9, 2827:8, 2827:9, 2834:19, 2908:23, 2908:25 averaged [2] - 2778:5, 2778:7
avoiding [1] - 2872:14
await [1] - 2774:9
aware [1] - 2841:21
axes [1] - 2796:13
axis [9]-2796:18,
2797:16, 2871:24, 2875:20, 2876:5, 2891:14, 2894:16, 2901:15

\mathbf{B}
Bachelors [1] -
2844:10
backed [1] - 2835:18

background [2] 2844:9, 2853:3 backward [3] 2902:19, 2908:6, 2908:11
ballpark [1] - 2800:20 Barbier [24] - 2843:24, 2844:9, 2846:7, 2847:3, 2847:20, 2855:4, 2856:21, 2858:12, 2860:12, 2860:21, 2863:20, 2866:4, 2868:20, 2870:1, 2874:25, 2875:3, 2878:5, 2881:4, 2883:23, 2884:20, 2889:5, 2891:11, 2895:1, 2900:25
BARBIER [1] -
2766:15
barely [1] - 2852:7
BARR [1] - 2767:4
barrels [4] - 2775:20,
2775:24, 2902:8, 2913:10
Barry [3] - 2773:14,
2787:14, 2837:9
BARRY [1] - 2769:11
bars [2] - 2898:14, 2899:21
base [1] - 2907:17
based [30] - 2775:19,

2785:16, 2787:21, 2797:5, 2799:14, 2799:16, 2799:17, 2799:23, 2800:3, 2823:3, 2835:17, 2849:21, 2852:15, 2854:15, 2859:22, 2873:20, 2882:4, 2892:18, 2894:18, 2898:1, 2898:22, 2898:23, 2900:11, 2901:21, 2906:18, 2907:5, 2907:10, 2907:13, 2908:19, 2914:22
basic [1] - 2850:25
basing [1] - 2876:7
basis [2] - 2775:18, 2890:18
BATON [1] - 2768:6
BAYLEN [1] - 2767:4
bear [1] - 2807:23
bearing [1] - 2875:19
became [1] - 2857:17
become [1] - 2900:20
BEFORE [1] - 2766:15
begin [1] - 2843:23
beginning [22] -
2799:24, 2828:14, 2831:15, 2834:15, 2856:13, 2890:10, 2890:14, 2892:6, 2892:8, 2897:2, 2897:13, 2898:12, 2898:15, 2898:19, 2902:5, 2902:10, 2902:25, 2906:7, 2906:15, 2911:16, 2912:13, 2913:11
behalf [6] - 2773:14, 2775:9, 2837:10, 2843:6, 2843:21, 2903:22
behavior [3] - 2779:1, 2800:16, 2801:8
Belgrade [1] - 2844:11
believer [1] - 2826:17
below [1] - 2819:1
bend [10] - 2859:15, 2865:8, 2868:3, 2868:6, 2868:7, 2869:8, 2871:19, 2871:23, 2871:24
bending [2]-2875:19, 2876:6
bends [2] - 2867:19, 2885:5
BENSON [1] - 2768:19
bent [2] - 2867:18, 2868:6

Bernoulli [1] 2900:12
best [18] - 2779:22, 2811:5, 2827:3, 2835:16, 2865:17, 2870:2, 2877:17, 2877:18, 2882:6, 2882:10, 2893:1, 2893:10, 2902:16, 2903:1, 2908:6, 2915:1, 2915:9, 2915:16
BETHANY [1] 2768:22
better [2] - 2876:1, 2881:6
between [49] -
2779:17, 2783:11, 2783:15, 2784:9, 2784:24, 2785:9, 2785:11, 2785:13, 2786:16, 2789:20, 2792:5, 2793:17, 2794:16, 2794:20, 2795:22, 2798:22, 2802:15, 2803:19, 2805:10, 2806:1, 2814:14, 2817:15, 2820:19, 2822:5,
2822:19, 2823:8, 2825:19, 2828:24, 2829:6, 2829:12, 2829:14, 2834:21, 2840:8, 2841:5, 2859:5, 2864:15, 2865:4, 2865:9, 2873:23, 2892:7, 2897:23, 2898:14, 2898:20, 2911:5, 2912:11, 2914:3, 2914:23, 2915:3, 2915:12
beyond [13] - 2839:6, 2859:15, 2859:18, 2859:20, 2866:9, 2869:21, 2872:5, 2875:5, 2876:19, 2892:16, 2893:6, 2908:7, 2908:19 big [15] - 2782:24, 2782:25, 2783:23, 2784:1, 2793:9, 2853:24, 2868:25, 2899:20, 2908:11, 2910:13, 2912:10, 2913:9
bigger [7] - 2795:6, 2806:5, 2825:25, 2838:19, 2896:7
biggest [4] - 2848:1,

2855:16, 2903:7,
2910:17
BINGHAM [1] -
2771:12
bit [9]-2777:10, 2780:2, 2781:25, 2789:10, 2794:21, 2814:4, 2839:11, 2893:24, 2905:8
blade [2] - 2865:2
blades [7] - 2863:8, 2864:13, 2864:15, 2865:4, 2865:9, 2884:15, 2885:2 blind [43] - 2855:9, 2855:18, 2855:21, 2857:8, 2858:16, 2860:9, 2860:18, 2860:25, 2861:5, 2861:7, 2862:11, 2862:23, 2863:3, 2865:14, 2876:14, 2879:17, 2883:21, 2884:3, 2884:7, 2885:15, 2885:25, 2886:10, 2886:16, 2886:20, 2887:4, 2895:9, 2895:23, 2895:24, 2910:5, 2910:8, 2910:14, 2911:17, 2912:5, 2912:9, 2912:12, 2912:16, 2912:23, 2912:25, 2914:1, 2914:6, 2914:14, 2914:16, 2915:4
block [2]-2876:14, 2900:21
blocks [10]-2860:25, 2861:13, 2884:7, 2884:10, 2884:11, 2884:25, 2885:19, 2887:6, 2914:20, 2914:23
blow [1] - 2815:20 blown [1] - 2885:15 blowout [1] - 2911:6 blue [11] - 2872:25, 2881:6, 2884:18, 2895:4, 2895:9, 2895:11, 2895:19, 2895:23, 2896:2, 2898:8, 2914:20 body [3]-2811:18, 2833:6, 2835:18 BOLES [1] - 2769:15 boned [1] - 2883:7 book [9] - 2817:8, 2817:13, 2817:16, 2817:19, 2819:19,

2820:8, 2821:6, 2821:10, 2850:12 BOP [27] - 2844:4, 2846:22, 2848:23, 2855:10, 2856:2, 2856:9, 2857:3, 2860:8, 2860:16, 2861:13, 2870:4, 2875:14, 2876:23, 2887:12, 2887:14, 2887:17, 2894:1, 2898:25, 2901:5, 2901:10, 2901:21, 2903:3, 2903:5, 2903:6, 2905:13, 2906:21, 2910:19 bore [2] - 2867:21, 2868:7
bottom [18]-2790:1,
2795:9, 2796:14, 2804:2, 2806:2, 2807:5, 2807:6, 2813:9, 2814:18, 2814:19, 2815:2, 2819:22, 2857:7, 2867:3, 2870:23, 2871:10, 2884:14, 2886:25
bottom-up [1] -
2870:23
boundaries [2] 2853:21, 2880:16 bounded [2] 2874:19, 2876:25 bounds [1] - 2825:6 BOWMAN [1] -
2770:21
BOX [4] - 2766:24, 2768:6, 2768:15, 2768:24
boxes [2]-2898:8, 2898:9
BP [13]-2766:11, 2769:3, 2769:4, 2769:4, 2773:14, 2774:2, 2774:25, 2815:18, 2837:10, 2843:21, 2844:2, 2844:3, 2909:24
BRAD [1] - 2770:14 BRANCH [1] - 2768:14 branches [1] 2877:25
breaches [1] 2845:24
break [5] - 2801:4, 2871:20, 2905:4, 2916:4, 2916:7 breaks [1] - 2795:3 BRENNAN ${ }_{[1]}$ -

2770:9
BRIAN [2]-2767:4, 2770:14
BRIDGET [1] -
2769:19
briefly [4]-2841:25, 2847:18, 2900:13, 2901:14
bring [3] - 2814:4, 2814:11, 2880:3
BROAD [1] - 2767:15 BROADWAY ${ }_{[1]}$ 2767:8
BROCK [18] -
2769:23, 2842:18, 2842:20, 2843:17, 2843:20, 2844:5, 2844:7, 2850:18, 2850:24, 2854:17, 2854:19, 2854:22, 2855:1, 2870:25, 2873:13, 2883:18, 2903:17, 2911:7
Brock [6] - 2772:9,
2842:19, 2842:24, 2843:21, 2910:22, 2912:15
broke [1] - 2902:20
BRUCE ${ }_{[1]}-2770: 21$
BSR [3] - 2864:22,
2884:25, 2898:18 build [3]-2788:20, 2904:2, 2904:9 builds [1] - 2878:15 built [3] - 2797:14, 2904:4, 2904:8 bullet [1] - 2855:18 bunch [2]-2821:13, 2893:13
buoyancy [1] 2788:18
buoyant [3] - 2800:20,
2800:25, 2801:4
BURLING [1] 2769:22
burp [1] - 2800:5
business [1] 2904:17
BY [67] - 2766:4, 2766:19, 2766:23, 2767:4, 2767:7, 2767:14, 2767:18, 2767:22, 2768:4, 2768:9, 2768:14, 2768:19, 2769:5, 2769:9, 2769:15, 2769:18, 2769:23, 2770:6, 2770:10, 2770:13, 2770:20, 2771:3, 2771:9,

2771:13, 2771:23, 2771:23, 2775:8, 2777:2, 2781:24, 2788:2, 2790:5, 2791:18, 2795:25, 2796:1, 2806:17, 2815:6, 2815:16, 2817:7, 2817:22, 2819:23, 2820:22, 2825:5, 2826:9, 2828:5, 2833:25, 2834:14, 2837:8, 2837:13, 2837:24, 2838:21, 2839:24, 2841:20, 2843:20, 2844:7, 2850:24, 2854:19, 2855:1, 2870:25, 2873:13, 2874:24, 2883:18, 2903:24, 2905:3, 2906:2, 2909:16, 2911:15, 2914:11	```2833:21, 2862:18, 2882:17, 2889:10, 2889:15, 2890:1, 2894:18, 2898:22, 2907:6, 2915:20 CALDWELL [1] - 2768:4 calibrated [1] - 2906:10 call-out [3] - 2815:20, 2826:8, 2869:23 call-outs [1] - 2774:14 CALLED [1] - 2773:4 Cameron [2] - 2861:16, 2861:18 CAMP [1] - 2768:10 Canada [1] - 2844:13 cancel [1] - 2902:5 candidate [1] - 2857:17 cannot [8]-2795:6, 2835:18, 2850:1, 2878:14, 2885:1, 2899:10, 2899:15, 2899:24 CAPITOL [1] - 2767:18 capture [5] - 2785:12, 2785:24, 2786:8, 2786:15, 2841:4 captures [1] - 2787:2 career [1] - 2826:18 careful [2] - 2799:20, 2857:2 CARL [1] - 2766:15 carried [1] - 2850:8 case [48] - 2794:25, 2798:14, 2799:12, 2800:6, 2801:11, 2805:15, 2809:4, 2809:17, 2813:2, 2813:16, 2813:20, 2813:21, 2813:22, 2822:24, 2824:6, 2829:24, 2830:14, 2832:4, 2832:21, 2849:18, 2850:4, 2851:21, 2852:25, 2855:2, 2857:21, 2858:20, 2862:20, 2866:12, 2866:18, 2868:22, 2879:11, 2885:13, 2888:10, 2891:13, 2891:19, 2892:14, 2892:15, 2893:13, 2899:11, 2901:19, 2902:19, 2904:19, 2909:9, 2909:25, 2910:5, 2914:3, 2914:4,```

UNOFFICIAL TRANSCRIPT
SUSAN A. ZIELIE, CRR, RMR, FCRR

```2915:24 cases [1] - 2792:19 casing [17]-2855:19, 2855:21, 2857:7, 2859:2, 2863:16, 2863:21, 2864:9, 2864:25, 2865:21, 2874:12, 2879:17, 2897:24, 2898:19, 2899:8, 2899:19, 2899:22, 2910:6 catch [2]-2812:15, 2899:25 caught [2]-2883:14, 2885:13 caused [9]-2852:8, 2853:22, 2868:14, 2869:8, 2871:2, 2871:3, 2874:1, 2876:2, 2876:20 causing [2]-2851:11, 2851:13 cavities [1] - 2859:4 CCR [1] - 2771:17 ceased [1] - 2860:3 center [3] - 2786:18, 2793:10, 2842:7 centered [2]- 2783:10, 2783:14 CENTRE [1] - 2770:6 CERNICH [1] - 2768:20 certain [6] - 2788:4, 2805:9, 2825:9, 2906:18, 2908:3, 2910:24 certainly [8] - 2781:3, 2781:8, 2784:12, 2799:9, 2800:16, 2817:4, 2828:8, 2833:12 CERTIFICATE \({ }_{[1]}\) - 2916:11 CERTIFIED [1] - 2771:17 certify \({ }^{[1]}\) - 2916:14 cetera [1] - 2846:19 CFD [1] - 2850:14 CHAERES [20] - 2798:11, 2798:13, 2806:13, 2806:17, 2815:15, 2815:16, 2817:5, 2817:7, 2817:21, 2817:22, 2819:21, 2819:23, 2825:5, 2826:7, 2826:9, 2828:4, 2828:5, 2834:11, 2834:14, 2837:4 chain [1]-2814:19```	```CHAKERES [9] - 2768:21, 2775:5, 2775:8, 2788:1, 2788:2, 2790:5, 2815:6, 2820:22, 2833:25 Chakeres [2] - 2772:6, 2775:9 cHAKERES [8] - 2776:25, 2777:2, 2781:22, 2781:24, 2791:17, 2791:18, 2795:25, 2796:1 change [25] - 2781:10, 2791:12, 2806:9, 2824:14, 2825:16, 2844:4, 2854:15, 2856:7, 2857:5, 2878:11, 2887:19, 2888:23, 2891:25, 2892:3, 2892:21, 2896:24, 2897:10, 2900:17, 2901:4, 2901:18, 2901:21, 2902:6, 2912:2, 2915:1 changed [13] - 2854:14, 2856:2, 2868:11, 2868:13, 2868:15, 2890:3, 2892:10, 2892:17, 2894:23, 2897:11, 2900:6, 2905:15, 2913:8 changes [8] - 2781:14, 2824:15, 2824:16, 2835:4, 2879:9, 2889:8, 2894:17, 2900:25 changing [5] - 2779:17, 2781:5, 2781:6, 2806:9, 2894:8 channeled [1] - 2883:15 chapter [2]-2817:23, 2817:24 characterization [2] - 2839:19, 2912:20 characterize [2] - 2809:3, 2833:8 characterized [1] - 2897:22 characterizes [1] - 2915:1 characterizing [1] - 2833:6 charge [1] - 2901:3 charged [1] - 2905:12 CHARLES [1] -```	```2767:15 chart [4] - 2798:5, 2837:20, 2900:24, 2901:6 charts [1] - 2894:5 check [2] - 2882:18, 2909:17 checked [1] - 2891:4 checks [3]-2882:16, 2886:1 chemical [2] - 2844:12, 2848:19 cherry [1]-2835:19 cherry-pick [1] - 2835:19 CHICAGO [1] - 2769:12 chisel [2] - 2852:4, 2865:18 choice [1] - 2842:12 choking [1] - 2839:11 chooses [1] - 2893:14 circle [8] - 2804:22, 2804:24, 2805:3, 2805:6, 2805:13, 2816:9, 2816:18, 2816:19 circles [1] - 2805:5 circular [10]-2809:2, 2809:21, 2812:8, 2816:3, 2816:4, 2816:7, 2816:12, 2840:4, 2840:6, 2865:6 circulated [2] - 2773:17, 2774:17 cited [2]-2817:17, 2821:6 CITY [1] - 2767:8 CIVIL [1] - 2768:14 claim [2] - 2835:23 clarification [1] - 2779:15 classes [1]-2847:14 clean [1] - 2814:2 clear [8]-2781:17, 2801:14, 2802:11, 2808:1, 2837:20, 2864:21, 2865:6, 2885:23 clearly [4]-2836:20, 2863:3, 2864:22, 2876:9 CLERK [1] - 2843:2 close [12]-2802:16, 2812:10, 2812:17, 2812:24, 2813:6, 2813:7, 2858:20, 2862:4, 2863:4, 2876:17, 2882:20,```		```2884:14, 2886:18, 2886:25, 2887:5 common [2] - 2836:18, 2838:14 commonly [1] - 2776:13 companies [6] - 2848:8, 2848:9, 2848:19, 2848:20 COMPANY [2] - 2769:4, 2771:8 compare [1] - 2885:24 compared [4] - 2837:21, 2877:6, 2882:12, 2906:14 comparing [2] - 2797:17, 2862:8 compelling [1] - 2907:22 COMPLAINT [1] - 2766:7 completely [2]- 2863:4, 2867:7 complex [3] - 2814:8, 2814:10, 2850:5 complexity [4]- 2790:23, 2839:12, 2839:14, 2889:13 complicated [8] - 2827:5, 2850:3, 2854:6, 2882:20, 2884:6, 2885:13, 2894:11, 2906:13 component [1] - 2879:12 components [14] - 2854:3, 2860:7, 2879:21, 2887:17, 2887:18, 2887:19, 2887:23, 2888:13, 2893:19, 2897:17, 2897:19, 2898:23, 2901:13, 2902:8 compressible [3] - 2781:18, 2781:19 compromise [1] - 2908:7 computation [5] - 2846:14, 2846:18, 2847:13, 2849:2, 2849:4 computational [11]- 2846:21, 2849:15, 2849:17, 2849:23, 2850:5, 2850:19, 2854:5, 2861:22, 2879:19, 2880:20, 2889:2 compute [1] - 2814:25 computer [2] -```

UNOFFICIAL TRANSCRIPT

2849：21，2882：4	2915：13，2915：17，	2874：14，2897：4	2811：14，2811：21，	count［1］－2890：20
COMPUTER［1］－	2915：22，2915：24	COOK［1］－2911：10	2812：20，2814：16，	counterintuitive［15］－
2771：23	connects［1］	COREY［1］－2767：22	2815：5，2816：21，	2792：23，2793：13，
computer－based［2］－	2914：25	corner［1］－2872：23	2817：1，2817：18，	93：21，2793：22，
2849：21，2882：4	consequences［1］－	CORPORATION ${ }_{[1]}$－	2818：11，2818：13，	2794：18，2794：23，
computerized［1］－	2905：5	2771：7	2819：4，2819：10，	95：18，2806：5，
2879：24	conservative	correct［173］	2819：13，2820：11	06：7，2806：10
computers［1］	2807：24，2840：9，	2775：12，2775：13，	2820：25，2821：5，	2806：11，2815：12，
2849：24	2840：12，2860：4，	2775：24，2775：25，	2821：24，2822：	24：3，2826：12，
concept［8］－2781：15，	2909：3	2776：10，2776：14，	2822：11，2824：11，	2826：15
2795：3，2819：24，	conservatively	2777：6，2777：8，	2825：6，2828：3，	counting［1］－2830：3
2821：2，2824：20，	2808：1，2877：5，	2777：9，2777：13，	2828：22，2829：8，	country［1］－2844：23
2851：1，2851：4，	2908：2	2777：18，2777：21，	2829：10，2829：18，	couple［2］－2773：18，
2878：8	consideration［1］	2778：10，2778：20，	2830：5，2830：14，	2860：18
concerned［1］－	2815：23	2778：21，2779：2，	2834：19，2835：1，	course［5］－2790：18，
2912：8	considered［3］	2779：4，2779：5，	2835：8，2835：9，	2795：11，2836：3，
conclude［4］	2781：19，2795：15，	2779:8, 2779:9,	2835:21, 2836:8,	2844：17，2881：11
$\begin{aligned} & \text { 2811:10, 2858:14, } \\ & \text { 2863:13, 2892:17 } \end{aligned}$	$\begin{aligned} & \text { 2815:17 } \\ & \text { consistent [6]- } \end{aligned}$	$\begin{aligned} & \text { 2779:10, 2779:21, } \\ & \text { 2780:5, 2780:6, } \end{aligned}$	$\begin{aligned} & \text { 2836:13, 2836:15, } \\ & \text { 2840:19, 2840:20, } \end{aligned}$	$\begin{gathered} \text { courses [3]-2846:14, } \\ 2847: 5,2847: 12 \end{gathered}$
concluded［4］－	2798:3, 2798:10,	2780:8, 2780:13,	2841：6，2841：7，	Court [17] - 2774:5,
2855:25, 2888:16, 2898:25, 2903:5	$\begin{aligned} & 2828: 23,2840: 12, \\ & \text { 2841:13, 2863:18, } \end{aligned}$	$\begin{aligned} & 2780: 15,2780: 16, \\ & 2780: 18,2780: 20, \end{aligned}$	$\begin{aligned} & \text { 2842:6, 2852:11, } \\ & \text { 2852:25, 2860:19, } \end{aligned}$	$2774: 10,2775: 5$ 2775:15, 2775:17,
conclusion［4］－	consists［1］－2778：19	80：21，2780：22，	2862：11，2862：12，	胧8：19，2799：13，
2885：17，2903：2，	constant［3］－2781：1，	2780：23，2780：24，	66：20，2870：16，	41：25，2843：8，
2913：19，2913：24	2878：18，2915：23	2780：25，2781：2，	2875：2，2879：9，	2846：22，2849：11，
conclusions［6］－	construct［2］－2826：5，	$\begin{aligned} & \text { 2782:8, 2782:18, } \\ & \text { 2782:19, 2782:20 } \end{aligned}$	$\begin{aligned} & \text { 2887:14, 2887:21, } \\ & \text { 2893:19, 2893:23, } \end{aligned}$	2849:16, 2853:12,
$\begin{aligned} & \text { 2791:16, 2881:18, } \\ & \text { 2892:25, 2900:4, } \end{aligned}$	2836：1 consulted	2783:1, 2783:8,	2896：14，2897：16，	$\begin{aligned} & \text { 2866:4, 2889:7, } \\ & \text { 2894:6, 2916:13 } \end{aligned}$
2900：5，2900：7	2802:18	2783:16, 2783:20,	$\begin{aligned} & \text { 2898:6, 2898:7, } \\ & \text { 2899:5, 2903:11, } \end{aligned}$	COURT［53］－2766：1，
$\begin{aligned} & \text { condition [5] - 2852:1, } \\ & \text { 2859:3, 2887:13, } \end{aligned}$	Cont［1］－2772：4   context［8］－2818：18，	$\begin{aligned} & \text { 2783:25, 2784:25, } \\ & \text { 2785:1, 2785:2, } \end{aligned}$	2909:22, 2911:2,	$\begin{aligned} & \text { 2771:17, 2773:4, } \\ & \text { 2773:7, 2773:21, } \end{aligned}$
2897：18，2902：10	2819：14，2821：1，	2785：18，2785：19，	911:19, 2912:13,	774：7，2774：11，
conditions［9］－   2787：11 2788：10	2822:13, 2833:4,	$\begin{aligned} & \text { 2785:22, 2785:23, } \\ & \text { 2786:1, 2786:2, } \end{aligned}$	2915：2，2916：14   corrected［1］－2835：6	2774:19, 2774:23,   2775：6，2787：19
$\begin{aligned} & \text { 2787:11, 2788:10, } \\ & \text { 2788:21, 2789:2, } \end{aligned}$	$\begin{aligned} & \text { 2835:24, 2841:12, } \\ & \text { 2878:6 } \end{aligned}$	2786：3，2786：4	correction［1］－	$: 3,2814: 22,$
2789：4，2789：9，	continue	2786：5，2786：6	2820：23	2820：21，2825：4，
2791：16，2852：13，	2813：15，2852：22	2786：8，2787：2，	correctly［7］－	$2833: 24,2837: 6,$
2852:18	CONTINUED［5］－	$\begin{aligned} & \text { 2787:19, 2788:5, } \\ & \text { 2788:6, 2788:11, } \end{aligned}$	$\begin{aligned} & \text { 2785:12, 2786:15, } \\ & \text { 2787:2, 2813:1, } \end{aligned}$	$\begin{aligned} & \text { 2837:23, 2838:3, } \\ & \text { 2842:16, 2842:19, } \end{aligned}$
conducive［1］ 2852:18	2767：1，2768：1	$2788: 25,2789: 3,$	2833:7, 2837:1,	2842:21, 2842:23,
conducted［1］－	2771：1	2791：9，2792：2	37：2	43：11，2843：18，
2849：7	continued	2794：5，2794：18	correlate［1］－2892：14	2850：23，2854：24，
conference［1］	2847：12，2849：6，	2795：15，2795：19，	correlation［2］－	2870：18，2872：6，
2850：12	2899：8	$\begin{aligned} & 2795: 21,2798: 3, \\ & \text { 2799:14, 2799:15, } \end{aligned}$	2833：10，2893：5 corresponding［7］－	2872:22, 2872:25, 2882:21, 2882:23,
confidence［2］－ 2877：8，2902：13	continuing［2］－ $2871: 11,2905: 22$	2799:18, 2800:21,	corresponding［7］－ 2809:6, 2812:13,	$\begin{aligned} & \text { 2882:21, 2882:23, } \\ & \text { 2896:4, 2896:6, } \end{aligned}$
confident［2］－	contrary［1］－2787：23	2800：22，2800：25，	2812：19，2816：8，	2896：9，2896：11，
2876：10，2893：10	convenient［1］	2801:1, 2801:5,	2816:19, 2822:9,	2896：13，2903：20，
$\begin{gathered} \text { confirm [3] - 2812:17, } \\ 2819: 5,2909: 19 \end{gathered}$	2838：18 conversation［1］－	2801:24, 2801:25,	corresponds［1］	$\begin{aligned} & \text { 2905:24, 2908:13, } \\ & \text { 2908:16, 2908:21, } \end{aligned}$
2819：5，2909：19 confirmed［2］－	conversation［1］ 2827：2	2802：3，2802：5，	2789：16	2908:23, 2908:25,
2833:1, 2893:9	convert［2］－2775：23，	2802:9, 2803:24, 2804:5, 2804:6,	Corrosion［3］－	2909:9, 2909:12,
confirming［1］－	2809:20	$\begin{aligned} & \text { 2804:5, 2804:6, } \\ & \text { 2804:8, 2804:10, } \end{aligned}$	$\begin{aligned} & \text { 2847:11, 2847:17, } \\ & \text { 2847:19 } \end{aligned}$	$\begin{aligned} & \text { 2909:15, 2911:9, } \\ & \text { 2911:11, 2911:14, } \end{aligned}$
2829:4   conjunction［1］	converted［2］－ 2809：1，2812：8	2804：13，2805：4，	corrosion［10］－	2916：3，2916：7
2785：21	converting［3］－	2809:15, 2810:8,	$2845: 8,2846: 14,$	Court＇s［1］－2806：16
connect［10］－	2816：4，2816：16，	2810:18, 2810:20,	$\begin{aligned} & 47: 13,2847: 24, \\ & 18.12 \text {, } \end{aligned}$	cover［1］－2854：20 COVINGTON ${ }_{[1]}$－
2890:14, 2891:21,	2900：4	2810:23, 2811:5,	2848:15, 2850:13	$2769: 22$
2914:20, 2915:7,	convincing［4］－ 2871:21, 2874:11,		2852:19, 2852:21	cracking［5］－

UNOFFICIAL TRANSCRIPT

2871:15, 2872:1, 2872:5, 2872:19, 2876:6
cracking-induced [1] - 2872:1
cracks [6] - 2871:15, 2871:16, 2871:17, 2872:1, 2872:2, 2872:3
crashed [1] - 2916:2
create [9] - 2801:5, 2813:23, 2831:3, 2839:11, 2861:19, 2861:20, 2865:22, 2867:22, 2879:20
created [5] - 2809:5, 2861:9, 2865:7, 2871:14
crisis [1] - 2773:11 criteria [5] - 2857:13, 2857:25, 2891:2, 2911:25, 2912:4 critical [1] - 2869:19 CROSS [16] - 2768:21, 2775:7, 2843:6, 2843:16, 2850:21, 2903:21, 2903:23, 2903:24, 2905:1, 2905:3, 2906:2, 2909:16, 2911:15, 2914:10, 2914:11, 2916:6
cross [27] - 2775:10,
2784:24, 2785:3, 2816:16, 2819:8, 2819:20, 2820:2, 2821:21, 2821:25, 2822:10, 2823:3, 2825:12, 2825:25, 2838:25, 2840:17,
2841:21, 2843:13,
2850:21, 2867:20, 2868:2, 2868:3, 2881:7, 2883:6, 2903:20, 2904:1, 2906:5, 2916:3
Cross [5] - 2772:6,
2772:10, 2843:6,
2903:21
cross-section [4] -
2821:21, 2821:25,
2867:20, 2883:6
cross-sectional [10] -
2784:24, 2785:3,
2816:16, 2819:8,
2822:10, 2823:3,
2825:12, 2825:25,
2868:2, 2868:3
cross-sections [2] 2819:20, 2820:2
crux [1] - 2799:12
CSR [2] - 2898:18, 2910:25
curved [1] - 2900:20 cut [4] - 2809:24, 2859:5, 2864:11, 2873:2
cutting [1] - 2873:8
D

D-0221 [1] - $2777: 1$
D-2205 [2] - 2791:17,
2798:12
D-22201 [1] - 2834:13
D-22210 [1] - 2781:23
D-22485 [1] - 2806:14
D-22486 [1] - 2813:25
D-22487 [1] - 2815:14
D-22820 [1] - 2914:10
D-23626 [1] - $2844: 5$
D-23628A [1] - 2878:3
D-23629 [1] - 2854:17
D-23631 [1] - 2855:3
D-23632 [1] - 2856:20
D-23633-B [1] - $2858: 7$
D-23635-A [1] -
2860:14
D-23637A [1] -
2863:17
D-23639A [2] - 2866:1,
2866:14
D-23644B [1] -
2869:24
D-23648 [1] - $2853: 11$
D-23892 [1] - 2891:10
D-23945 [1] - $2894: 4$
D-23995B [1] -
2900:23
D-24200 [1] - $2861: 7$
D-24201 [1] - 2864:1
D-24201A1 [1] -
2886:19
D-24202 [1] - 2862:10
D-24203 [1] - 2864:17
D-24207A1 [1] -
2880:7
D-24213A1 [1] 2883:22
D-2426A [1] - 2881:24
D-24452 [1] - 2868:16
D-24603 [1] - 2851:2
D-24688 [1] - 2841:19
D-24723 [1] - 2874:22
D/E [1] - 2813:1
daisy [1] - 2814:19
daisy-chain [1] -
2814:19
DALLAS [1] - 2770:23
damage [7]-2851:11,

2863:7, 2865:13, 2866:11, 2873:5, 2873:10
dark [1] - 2914:20
darker [1] - 2898:13 data [16] - 2890:4,
2890:8, 2890:9,
2890:13, 2890:18,
2891:2, 2891:9,
2892:2, 2892:9,
2893:2, 2893:3,
2893:11, 2903:15,
2912:11, 2912:20,
2913:23
date [8] - 2858:16,
2858:24, 2869:21,
2874:14, 2876:22,
2876:24
dates [1] - 2874:20
Daubert [2] - 2843:9,
2850:21
DAVIS [1] - 2770:15
DAVIS-DENNY [1] -
2770:15
DAY [1] - 2766:14
days [16] - 2773:18,
2779:20, 2828:10, 2877:6, 2888:12, 2890:4, 2890:8, 2890:9, 2890:15, 2890:17, 2890:19, 2891:24, 2892:8, 2902:11, 2908:19, 2916:2
DC [5] - 2768:15, 2768:24, 2769:20, 2769:24, 2771:14 deal [1] - 2877:25
dealing [5] - 2837:22, 2838:1, 2839:2, 2839:5, 2840:1 dealt [1] - 2845:13 debating [1] - 2907:25
DEBORAH [1] -
2771:9
decades [1] - 2811:8
decide [1] - 2893:1
decided [2] - 2822:2,
2914:22
decimals [1] - 2830:6
declining [1] -
2909:10
Deepwater [1] -
2842:5
DEEPWATER [3] -
2766:4, 2770:4, 2770:5
Deepwater/Macondo
/Horizon [1] -
2813:20
defend [1] - 2899:4 define [3] - 2796:22, 2873:18, 2892:12 defined [2] - 2775:20 definitely [3] -
2865:23, 2872:5, 2909:14
definition [12] 2776:20, 2778:8, 2822:5, 2822:12, 2823:8, 2825:15, 2825:18, 2832:6, 2835:20, 2835:24, 2835:25, 2836:1
definitional [1] 2841:17
definitions [2] -
2776:2, 2835:15
degree [6] - 2844:18,
2881:17, 2893:5,
2895:25, 2902:13,
2912:19
degrees [2] - 2844:15, 2867:20
delayed [1] - 2910:25
delta [4] - 2818:5,
2818:7, 2818:9, 2822:25
demonstrate [3] 2867:9, 2868:21, 2898:1
demonstrates [1] 2862:23
demonstrating [1] -
2895:11
demonstration [1] 2795:17
demonstrative [13] 2776:4, 2776:23, 2776:25, 2778:17, 2781:22, 2784:19, 2786:17, 2791:17, 2798:11, 2806:14, 2817:14, 2834:13, 2858:3
demonstratives [1] 2774:14
DENNY [1] - 2770:15
denote [1] - 2880:16
denotes [1] - 2818:12
densities [3] -
2777:15, 2797:6, 2797:9
density [13] - 2776:18, 2781:1, 2781:5, 2781:9, 2781:14, 2787:7, 2788:8, 2796:24, 2818:12, 2818:13, 2834:17, 2836:3, 2902:2
deny [2]-2843:11, 2843:15
DEPARTMENT [2] 2768:13, 2768:17 depict [1] - 2898:9 depiction [1] -
2885:14
depicts [1] - 2914:15 deployed [1] - 2854:2 deposition [10] 2777:23, 2784:21, 2785:15, 2787:4, 2787:16, 2787:21,
2787:24, 2787:25,
2904:25, 2906:16
depths [1] - 2809:7
derivation [2] -
2783:22, 2821:20
derived [2] - 2782:22, 2832:17
deriving [1] - 2784:11 describe [27] -
2782:20, 2783:2, 2844:8, 2845:10, 2846:7, 2847:3, 2847:20, 2856:21, 2864:24, 2865:1, 2868:20, 2870:2, 2875:3, 2877:18, 2878:1, 2878:7, 2881:4, 2883:23, 2884:20, 2886:21, 2889:5, 2889:7,
2891:11, 2893:13, 2895:20, 2900:13, 2905:15
described [12] -
2776:5, 2778:22,
2788:16, 2796:7,
2799:24, 2799:25,
2852:10, 2856:6,
2858:13, 2865:16,
2880:8, 2887:16
describes [1] -
2897:13
describing [2] 2838:8, 2838:10 description [2] -
2853:6, 2882:6
design [4] - 2845:21, 2845:23, 2861:15,
2888:6
designed [3] -
2858:17, 2859:5,
2864:11
despite [6] - 2794:17,
2806:4, 2811:20,
2815:4, 2824:2,
2825:11
detached [1] - 2873:6

$\begin{aligned} & \text { detail }[4]-2853: 17, \\ & \text { 2900:1, 2912:10, } \end{aligned}$	$\begin{aligned} & \text { 2809:20, 2809:22, } \\ & \text { 2810:13, 2810:22, } \end{aligned}$	2840：14，2841：3   2845：13，2848：1	2768：14，2768：18   Docket［1］－2843：9	2843：22，2844：2， 2844：8，2850：19，
14：18	2811：18，2811：25，	2848：12，2869：1	DOCKET［3］－2766：4，	850：25，2853：14，
detailed［2］－2850：2，	12：13，2812：19，	75：14，2881：1	2766：7，2766：10	854：23，2855：2
2861：15	2813：1，2813：11	95：15，2899：4	documen	56：19，2856：2
details［1］－2900：15	28	911	328：7，2828：12	69：22，2869：2
determine［8］－	2813：24，2814：13，	differently	2831：14	2871：4，2873：21，
2797：9，2822：20，	6：8	2899：15	dog［1］－2883：7	287
2822：22，2853：19，	$\begin{aligned} & \text { 2816:24, 2817:1 } \\ & \text { 2819:2, 2819:8, } \end{aligned}$	difficult $[4]$－2890：23， 2894：12，2906：8，	dog－boned［1］－	2877:2, 2877:7, 2877:13, 2891:
99：12，2904：2	19：11，2819：2	2906：12	DOM	893：17， 2895
determined $[4]$－	2820：4，2820：5，	dig［1］－2851：2	2766．22	900：23，2903：2，
2799：23，2800：2	2820：9，2821：2	dimension［1］	dominant［1］－	7， 290
2854：14，2856：12	2821：7， $2821: 11$, 2821：20，2821：22，	2777：5	2800：13	904：2，2907：
${ }_{\text {determines }}^{\text {2824：13 }}$［1］	$\begin{aligned} & 2821: 20,2821: 22 \\ & \text { 2822:9, 2822:16, } \end{aligned}$	dimensional	DON［1］－2769：5	$\begin{aligned} & \text { 2907:14, 2907:18, } \\ & 2907 \cdot 23 \text { 2909•11 } \end{aligned}$
2824:13   determining	$\begin{aligned} & \text { 2822:9, 2822:16, } \\ & \text { 2822:17, 2823:1 } \end{aligned}$	$\begin{gathered} \text { 2775:11 } \\ \text { dimension } \end{gathered}$	DONALD［1］－2770：20 done［11］－2809：25，	2907：23，2909：17，
9：16，2801：3	2822．17， 282	$\begin{gathered} \text { dimensionless [2 } 280: 13,2820: 1 \\ \text { 2820 } \end{gathered}$		2911：16，2914：12，
01：8，2882：10	：9，2824	Direct［1］－ 277		drag［1］－2794：21
develop［2］－2889：7，	2824：20，	DIRECT［1］－2843：19	73：7，2890：2	cmatic［1］－2865：20
2904：6	2825：16， 2826	direct［5］－2843：22，	2899：2	astic［1］－2860：23
developed［1］－	$\begin{aligned} & \text { 2826:6, 2826:14, } \\ & \text { 2826:17, 2828:3, } \end{aligned}$	2865：15，2882：7，	2914：5	draw [13]-2791:16,
2880：8	2828：16，2828：17，	2901：8，2907：21	uble	
2904：5	2828：20，2829：3，	directing［1］－2847：16	2791：10，2801：5，	13：15，2837：2
DEXTER［1］－2767：23	2829：4，2829：5，	direction［7］－2774：5，	2810：25，2826：22，	37：25，2859：1，
diameter［167］－	2829：17，2831：23	2870：7，2870：2	826：25，2827：	2868：24，2881：18，
2780：1，2780：3，	2831：24，2831：25	871：13，2871：1	2834：24，2835：12，	2885：17，2892：7
2780：4，2780：8， 2780：9，2780：10，	$\begin{aligned} & \text { 2832:2, 2832:3, } \\ & \text { 2832:4, 2832:5, } \end{aligned}$	2871：17，2875：14	2868：8 doubled $51-2810$	drawing［7］－2802：13，
$\begin{aligned} & \text { 2780:9, 2780:10, } \\ & \text { 2780:11, 2781:15, } \end{aligned}$	2832：7，2832：8，	directly $[6]$－ 2785 2823：13，2849：1	doubled［5］－2810： 2856：9，2877：11，	2813：18， 281
2782：9， 27	2832：9，2832：11，	5：	2901：12，2903：8	2814：3，2898：15
2782：16，2782：24，	2832：12，2832：13，	2900：16	doubt［3］－2871：7，	drawn［3］－2876：3
2782：25，2783：10， 2783：17 $2783: 23$,	2832：20，2832：22，	di	892	2876：15， 2881
2783：17，2783：23， 2783：24，2784：4，	$\begin{aligned} & \text { 2832:25, 2833:2, } \\ & \text { 2833:7, 2833:9, } \end{aligned}$	directorship［1］－	GL	drawn－out ${ }_{11}$－
2783：24，2784：4，   2784：10，2784：17，	2833：13，2833：1	2847：10	$\begin{aligned} & \text { 2768:9 } \\ & \text { down } 261-2773 \cdot 10 \end{aligned}$	$\text { rill [25] - } 278$
2784：22，2784：23，	2833：20，2834：10，	discard［1］－ 28	2778：16，2782：9，	782：7，2782：
2785：16，2785：21，	2836：21，2836：22， $2836: 25,2839: 6$	discha	2797:2	2782：11，2782：13
2786：2，2786：11， 2786：21，2789：7，	2836：25，2839：6，	2839：16，2839：1	2819：1	783：9，2783：14
2786：21，2789：7， 2791：20，2791：21，		39：19，2839：2	19：21，2821：15，	783：15， 278
2791：20，2791：21， 2791：25，2792：5，		39：25，2840：7	24：14，2824：16，	2786：18，2786：19，
2791：25，2792：5， 2792：6，2792：18，	2841:23, 2842:1	2840：10，2840：11，	26：7，2826：10，	2827:14, 2827:1
2793：3，2794：8，	2842：7，2842：9，		$\begin{aligned} & 30: 10,2831: 22, \\ & 34: 11,2837: 20, \end{aligned}$	$\text { 2838:11, } 2865:$
2795：3，2795：15， 2798：18，2798：23，	2842：12，2842：13	$2820: 20,2834$	48：14，2848：15，	865：5，2866：1
2798：18，2798：23， 2801：15，2801：16，	diameters［4］－	2834：4	556：3，2867：19	866：18，2866：2
2801：15，2801：16， 2802：20，2803：9，	2782：6，2801：23   2808：17，2811：	discussion［1］－	2875：12，2875：22，	83：14，2885：12
2802：11， $2803: 17$	difference［9］	2865：25	2878：21，2881：7   2884：22	RILLING [1] - 2770:4
2803：23，2804：4， 2804：12，2804：23，	2792：5，2820：18	distance［1］－2793：15	downwar	driven［1］－2876：1
2804：12，2804：23， 2804：24，2804：25，	2853：24，2855：1	distort［1］－2889：14	2875：15	driving［1］－2785
2804：24，2804：25， 2805：2，2805：16，	2899：19，2899：20	DISTRICT［3］－2766：1，	DOYEN ${ }_{[1]}$－2770：13	drop［73］－2785：4， 2785：13，2785：16
2805：19，2805：20，	2908:11	divide［4］－2822	$2775: 2,2775: 9,$	793：19， 2793
2806：21，2807：16，	different［26］－2776：5 2782：6，2796：7，	2822：9，2902：4	2775：11，2796：21，	2793：25，2794：2，
2807：18，2808：5， 2808：8，2808：14，	2798：1，2798：15	2913：11	2812:4, 2812:23,	2794：10，2794：21， 2795：22，2798：15，
2808：8，2808：14，	2799：7，2806：1，	divided［2］－2782：17，	2837：4，2837：9，   2837：20，2842：18，	2798：17，2798：21，
2809：6，2809：11，	2827：7，2827：14， 2827：18，2830：22，	DIVISION［2］－	2842:20, 2843:9,	2803：11，2803：16，

UNOFFICIAL TRANSCRIPT

2803:19, 2803:22, 2805:17, 2805:23, 2816:25, 2821:8, 2823:1, 2823:10, 2824:7, 2824:9, 2824:10, 2824:12, 2824:25, 2825:13, 2829:12, 2829:14, 2841:5, 2841:6, 2877:16, 2877:17, 2877:23, 2878:4, 2878:8, 2878:11, 2878:16, 2878:20, 2879:2, 2879:5, 2879:7, 2881:21, 2885:20, 2887:6, 2891:15, 2891:17, 2892:6, 2892:21, 2893:25, 2896:5, 2896:7, 2896:16, 2896:17, 2896:19, 2896:21, 2896:22, 2896:23, 2897:2, 2897:9, 2900:4, 2900:16, 2900:17, 2901:8, 2902:1,
2912:22, 2912:25, 2913:7, 2913:13,
2914:1, 2915:2
drop's [1] - 2826:13
dropping ${ }_{[1]}$ 2786:16
drops [16] - 2785:22, 2785:24, 2787:3, 2817:16, 2819:15, 2828:24, 2829:9, 2829:11, 2835:2, 2835:7, 2836:23, 2837:1, 2837:3,
2894:16, 2910:3, 2913:15
Drs [1]-2774:15 due [6]-2811:22,
2856:3, 2877:12, 2889:12, 2897:6, 2915:2
duly [1]-2842:25
duration [4] - 2873:15, 2906:25, 2907:11, 2907:14
during [5] - 2773:16, 2815:19, 2845:11, 2846:8, 2903:14 duties [2] - 2846:13, 2847:9
dynamics [13] -
2819:12, 2846:15, 2846:18, 2846:21, 2849:2, 2849:4, 2849:15, 2849:17,


2899:14, 2899:19, 2902:8, 2905:15, 2911:24, 2912:1, eroding [2] - 2883:1, 2910:15
Erosion [1] - 2858:9 osion [163] - 2844:4 2845:8, 2845:11, 2846:14, 2846:19, 2846:21, 2846:22, 2847:6, 2847:13, 7:24, 2848:14 2849:4, 2849:9, 2850:14, 2850:20, 1.1, 2851.3 2851:18, $2851: 21$ 2852.8, 2852.13 2852:16, 2852:21, 2853:4, 2853:20, 2853.21, 2854.1, 2856:4, 2856:22, 2857:16, 2858:5, 2859:12, 2859:16, 2859:17, 2860:2, 2860:22, 2860:24, 862:6, 2862:16 2864:22, 2862:23, 2864:24, 2865:17, 2868:15, 2869:8, 2869:11, 2869:20, 171:2, 2871:3 $7,2872.19$ 2874:1, 2874:8, 2874:15, 2875:4, 2876:3, 2876:4, 2876:7, 2876:11, 2876:20, 2876:22 2877:12, $2877: 23$ 2881:17, 2881:22, 2882:13, 2885:8, 2885:10, 2885:18, 2885:24, 2886:2, 886:3, 2886:5 2887:22, $2888: 12$ 2888:21, 2888:22 2888:25, 2889:1, 2889:21, 2889:22, 2889.24, 2895.13, 2899:7, 2899:11, 2899:16, 2899:19, 2899:23, 2900:7,


UNOFFICIAL TRANSCRIPT

2905：6	2780：18，2780：20，	2821：4，2821：5	2896：18，2897：1	2839：6，2853：
fine［1］－2877：21	2780：22，2780：24，	2821：8，2821：17，	97：7，2897：14，	FLYNN［1］－2768：14
finger ${ }_{[1]}$－2886：13	2781：3，2781：4，	2821：18，2821：19，	898：1，2898：4	focus［7］－2799：21，
finish［1］－2792：21	2781：19，2781：20，	2821：21，2822：6，	899：20，2900：4	2848：11，2856：10，
firm［1］－2898：21	2782：22，2783：4，	2822：7，2822：18	2900：7，2901：1	2856：11，2857：15，
FIRM［1］－2767：10	2783：6，2784：8，	2823：1，2823：2	2901：3，2901：	2873：11，2895：19
first［26］－2839：1，	2784：15，2784：16，	2823：8，2823：17	2901：11，2901：15，	focused［7］－2807：25，
2842：25，2844：6，	2784:17, 2784:23,	2823:20, 2824:13,	2901:17, 2901:18,	2820:25, 2831:21,
2849：4，2851：2，	2784:25, 2785:3,	$\begin{aligned} & \text { 2824:15, 2824:25, } \\ & \text { 2825:14, 2825:15, } \end{aligned}$	$\begin{aligned} & \text { 2901:20, 2901:21, } \\ & 2902: 3,2902: 4, \end{aligned}$	2848:5, 2853:24, 2872:8, 2883:11
2853:2, 2853:19, 2855:18, 2860:15	$\begin{aligned} & \text { 2785:6, 2785:13, } \\ & \text { 2786:16, 2786:20, } \end{aligned}$	2825：14，2825：15， 2825:25, 2826:4,	2902:6, 2902:	2872：8，2883：11
2866:23, 2869:6,	2786：22，2787：3，	2827：1，2827：4	2902：11，2903：3，	2842:4
2869：25，2871：8，	2789：10，2789：15，	2829：12，2829：19，	2903：4，2903：7，	follow［3］－2820：19，
2871：21，2872：8，	2789：16，2789：18，	2834：3，2834：16，	2903：12，2904：17，	2837：11，2906：14
2873：2，2874：5，	2790：24，2791：8，	2834：17，2834：23，	2907：10，2912：2，	follow－up［1］－
2877：11，2877：13，	2791：13，2792：11，	2835：3，2835：11，	2913：5，2913：7	2837：11
2879：19，2881：20，	2792：15，2793：11，	2835：12，2836：4	2913：13，2913：21，	follows［1］－2843：1
2884：5，2888：24，	2793：17，2794：2，	2836：8，2836：15	2914：3	foot［1］－2827：21
2889：20，2898：21，	2794：5，2794：9，	2836：21，2837：1	flowing［15］－2776：20，	footage［1］－2859：15
2899：6	2794：10，2794：12，	2839：5，2840：23	2778：7，2782：17，	FOR［8］－2766：19，
fit［3］－2893：1，	2794：16，2794：21，	2841：5，2841：7	2786：18，2788：15，	2767：21，2768：3，
2893：15	2794：22，2794：24，	2841：9，2842：2	2800：14，2823：17，	2768：13，2769：3，
FITCH［1］－2771：13	2795：22，2796：4，	2842：4，2844：4	2823：20，2829：21，	2770：3，2770：18，
fits［2］－2893：16，	2796：7，2796：8，	2845：7，2848：6，	2829：24，2830：13，	2771：7
2912：4	2797：4，2797：5	2849：9，2849：25	34：7，2836：18，	force［7］－2785：4，
five［4］－2831：5，	2797：9，2797：19，	2850：3，2853：4，	2838：11，2838：12	2785：5，2793：10，
2856：1，2877：11，	$\begin{aligned} & \text { 2798:1, 2799:6, } \\ & \text { 2799:13, 2799:14, } \end{aligned}$	$\begin{aligned} & \text { 2853:22, 2853:25, } \\ & \text { 2854:10, 2854:15, } \end{aligned}$	flows［5］－2776：8， 2782：23，2786：23，	2793:12, 2811:3,
2882:16	2799:16, 2799:20,	2855:20, 2855:22,	2791:13, 2796:6	2864:6
2882：16	2799：21，2799：23，	2856：2，2856：8，	fluid［61］－2776：17，	2916:14
five－week［1］－2856：1	$2799: 24,2800: 1$, $2800: 8,2800 \cdot 9$,	2856:10, 2856:11,   2856：22，2857：4	2776:18, 2780:16,	form［5］－2782：15，
$\begin{aligned} & \text { FL [2] - 2767:5, } \\ & 2818: 22 \end{aligned}$	$\begin{aligned} & \text { 2800:8, 2800:9, } \\ & \text { 2800:13, 2800:16, } \end{aligned}$	$\begin{aligned} & \text { 2856:22, 2857:4, } \\ & \text { 2857:19, 2857:22, } \end{aligned}$	$\begin{aligned} & \text { 2781:13, 2781:18, } \\ & \text { 2782:17, 2785:20, } \end{aligned}$	$\begin{aligned} & \text { 2830:21, 2855:6, } \\ & \text { 2861:20, 2892:9 } \end{aligned}$
flash［1］－2775：23	2800：17，2800：18，	2858：17，2858：21，	2786：15，2786：23，	formed［6］－2855：2
flat［1］－2779：7	2800:20, 2800:24, 2801:9. 2801:10.	2859:4, 2862:24,	2790:19, 2790:21,	2867:1, 2869:11,
FLEMING ${ }_{[1]}$	$\begin{aligned} & \text { 2801:9, 2801:10, } \\ & \text { 2801:12, 2801:13, } \end{aligned}$	$\begin{aligned} & \text { 2863:5, 2863:6, } \\ & \text { 2863:9, 2863:14, } \end{aligned}$	$\begin{aligned} & \text { 2791:16, 2793:4, } \\ & \text { 2793:7, 2793:11, } \end{aligned}$	2872:5, 2872:18,
2770：22	2801:16, 2801:17,	2863:15, 2864:14	2794:1, 2795:7,	2907:4
flipped ${ }_{[1]}$－2875：9	2803：11，2803：12，	2865：22，2865：24，	2795:9, 2795:12,	2784:14, 2784:15
floor ${ }_{[1]}$－2779：7	2803：16，2803：17，	2867：11，2867：13，	97：9，2804：18，	$2808: 17,2822: 2$
FLOOR ${ }_{[1]}$－2770：16	2803：19，2804：15，	868：5	2819：12，	2822：22，2822：24
flow［334］－2775：15，	2805:13, 2805:16,	2871:10, 2871:13,	325:9, 2825:10	forthcoming［1］－
2775：17，2775：22，	2805:22, 2806:1,	2875:11, 2875:13	346:14, 2846:15,	2842:12
2775：24，2776：5，   2776：8，2776：9，	2806:4, 2806:9,	2877:11, 2877:15,	2846:18, 2846:21,	fortunately ${ }^{[1]}$－ 2854:1
2776:11, 2776:13,	2807:2, 2807:13,	2877：19，2877：25，	2847:12, 2847:13,	forward［8］－2858：25，
2776：16，2776：18，	2809：3，2809：6	2878：1，2878：5，	2849：2，2849：4，	2859:13, 2860:1,
2776：20，2777：3，	$2809: 23,2810: 2$	2878:20, 2878:21,	849:23, 2849:25,	2869：6，2877：6，
2777：5，2777：7，	2810:3, 2810:24,	$2878: 25,2879: 3,$	2850:6, 2850:	2908：6，2908：10，
2777：11，2777：12，	$2810: 25,2814: 17$	2879:5, 2879:12	2850:19, 2854:5,	2908：22
2777：19，2778：5， $2778 \cdot 8,2778 \cdot 9$,	$2814: 18,2815: 2$	$2880: 2,2880: 4,$	2857:19, 2862:19,	four [7]-2782:16, 2802:11. 2853:1
2778:11, 2778:12,	2815：9，2815：18，	2882：6，2882：8，	2865:8, 2867:2,	$357: 3,2857: 10,$
2778:14, 2778:18,	2815：25，2816：3	2882:11, 2883:16,	2869：3，2877：25，	2857:12, 2858:1
2778:19, 2778:20,	2816:4, 2816:7,   2816：12，2816：25，		$78: 24,2879: 1$	fourth [2] - 2872:22,
2778：24，2778：25，	2817:13, 2817:15,	2886:14, 2886:24,	881．9，2881：21	2889:12
2779：7，2779：13，	2817:23, 2817:25,	2887:14, 2888:19,	9，2881：21   6，2889：2	fraction［1］－2830：21
2779：17，2779：22，	2820:15, 2820:16	2889:23, 2891:16	2902：2	FRANK［1］－2767：18
2779：23，2780：3， $2780: 8,2780: 13$,	2820:20, 2820:24,	2894:8, 2894:17,	fluids［5］－2790：22，	frequently［1］－2851：7
2780：8，2780：13，	2821：1，2821：3，	2894:22, 2896:17	$2790: 25,2791: 4,$	friction［2］－2790：20，


2820	GENERAL［1］－2768：5	2912：4，2912：13，	guess［8］－2790：17，	heat［1］－2788：19
frictional［13］－ 2785：5，2785：17	GENERAL＇S ${ }_{[1]}$－ $2767: 21$	$\begin{aligned} & \text { 2913:1, 2913:16, } \\ & \text { 2913:22, 2914:1 } \end{aligned}$	$\begin{aligned} & \text { 2807:7, 2839:1, } \\ & \text { 2888:12, 2907:7, } \end{aligned}$	height［3］－2804：14， 2804：18，2899：21
2786：19，2793：19，	generally［5］－	giant［1］－2794：11	2913：6，2913：7，	held［1］－2867：12
2806：1，2811：3，	2784：11，2785：7，	given［29］－2793：24，	15	help［5］－2820：15，
2814：9，2819：16，	2789：20，2791：2，	2798：14，2798：17，	guessing［1］－2907：9	2848：22，2855：3，
2820：9，2823：1，	2797：14	2798：21，2803：10，	guided［2］－2846：16，	2889：3，2889：7
2823：6，2823：9，	generate［1］－2841：2	2803：16，2803：22，	2849：8	helped［2］－2841：23，
2824：4	generated ${ }_{[1]}$－ $2841: 9$	2805：16，2805：23，	guiding［1］－2873：24	2858：3
FRILOT［1］－2770：5 front［4］－2861：24	generic［1］－2833：16	$\begin{aligned} & \text { 2809:13, 2809:15, } \\ & \text { 2809:17, 2809:18, } \end{aligned}$	GULF［1］－2766：5 GWENDOLYN ${ }_{[1]}$	helpful [2] - 2853:17, 2894:7
$\begin{aligned} & \text { front [4] - 2861:24, } \\ & 2864: 10,2870: 12, \\ & 2894: 15 \end{aligned}$	geometric［12］－ 2780：12，2780：14， 2786：10，2786：11，	$\begin{aligned} & \text { 2821:8, 2826:1, } \\ & \text { 2829:9, 2831:2, } \end{aligned}$	$2771: 4$	$\begin{aligned} & \text { helps [2]-2861:2, } \\ & 2875: 4 \end{aligned}$
$\begin{aligned} & \text { front-on }[1]-2870: 12 \\ & \text { full }[7]-2779: 23, \end{aligned}$	2789：6，2795：15， 2811：5，2811：9，	$\begin{aligned} & 2836: 1,2845: 22, \\ & 2851: 13,2852: 13, \end{aligned}$	H	hereby［1］－2916：13
$\begin{aligned} & \text { 2812:15, 2843:23, } \\ & \text { 2847:8, 2867:21, } \end{aligned}$	$\begin{aligned} & \text { 2811:11, 2811:12, } \\ & \text { 2832:14, 2832:23 } \end{aligned}$	$\begin{aligned} & \text { 2852:18, 2857:20, } \\ & \text { 2878:2, 2879:10, } \end{aligned}$	$\begin{gathered} \text { half }[18]-2783: 20, \\ 2784: 1,2784: 3, \end{gathered}$	2766：19，2766：19
2868：7，2885：15	geometrical［1］－	01：18，2902：7	84：4，2784：5	Hewitt－Roberts［］
full－blown［1］－	2901：24	2913：5，2913：13	2815：20，2826：21，	2797:13
2885:15	geometries［37］－	GLADSTEIN ${ }^{[1]}$－ $2768: 22$	2827:12, 2827:14,	high［20］－2798：8，
full－bore［2］－2867：2 2868:7	$\begin{aligned} & \text { 2816:24, 2821:14, } \\ & \text { 2850:3, 2850:5, } \end{aligned}$	glance［1］－2854：6	$874: 4,2874: 6$	$\begin{aligned} & 2853: 5,2855: 4, \\ & \text { 2855:8, 2855:12, } \end{aligned}$
fully [2] - 2858:20,	2853:6, 2853:7,	GMBH [1] - 2766:8	894：21，2894：23， 896：25，2897：2	2856:18, 2857:16,
fundamenta	$\begin{aligned} & 2853: 8,2853: 23, \\ & 2853: 24,2854: 2, \end{aligned}$	goal［2］－2882：3 2890:15	2897:12	2878:19, 2878:25, 2879:3, 2879:4,
2806：4	2854：4，2854：8，	GODWIN［3］－	HALLIBURTON［1］－	879：5，2893：4，
future［2］－2890：11，	2856：21，2857：3，	2770：19，2770：20，	2770：18	895：25，2897：1
2902：19	2857：10，2857：12，	71：3	hand［1］－2886：12	905：21，2905：22，
	2858：1，2861：19，	government［3］	handed［1］－2913：20	2913：21，2914：3
G	$\begin{aligned} & \text { 2861:20, 2861:22, } \\ & \text { 2873:16, 2879:16, } \end{aligned}$	$\begin{aligned} & \text { 2773:8, 2842:8 } \\ & \text { 2900:11 } \end{aligned}$	$\begin{gathered} \text { hands [3] - 2828:6, } \\ 2880: 1,2915: 7 \end{gathered}$	higher［4］－2799：4，
gap［6］－2783：11，	2879：18，2879：23，	gradient［2］－2788：17，	Hans［1］－2873：21	2898：5
2783：15，2783：17，	2880：5，2883：20，	2788：18	happy［5］－2773：9，	highest［1］－2881：17
2784：8，2806：18，	2886：12，2887：12，	gradual［2］－2856：14，	2773：10，2843：10，	highlighted ${ }_{[1]}$－
2862：5	2889：11，2889：15，	2856：16	2882：19，2891：25	2898：18
gas［34］－2777：11， 2777：14，2781：18	2890:3, 2894:12,	graduate［3］－	$\text { hard }[13]-2796: 11 \text {, }$	Himmelhoch［1］－
$\begin{aligned} & \text { 2777:14, 2781:18, } \\ & \text { 2789:16, 2789:20, } \end{aligned}$	$\begin{aligned} & \text { 2905:12, 2906:6, } \\ & \text { 2906:9, 2910:2, } \end{aligned}$	$\begin{aligned} & \text { 2844:14, 2847:14, } \\ & 2848: 4 \end{aligned}$	$\begin{aligned} & \text { 2864:10, 2873:4, } \\ & \text { 2875:7, 2877:18, } \end{aligned}$	$\begin{aligned} & \text { 2773:25 } \\ & \text { HIMMELHOCH }[4]- \end{aligned}$
2789：22，2790：1，	2913:3	GRAND ${ }_{[1]}-2770: 16$	2878:1, 2898:11,	2768:23, 2773:20,
2790：10，2790：12，	geometry［47］	GRANT［1］－2770：15	2898：16，2898：20，	$2773: 25,2774: 9$
$\begin{aligned} & \text { 2790:15, 2791:5, } \\ & \text { 2791:10, 2796:18, } \end{aligned}$	$\begin{aligned} & \text { 2809:21, 2812:9, } \\ & \text { 2814:8, 2814:10, } \end{aligned}$	$\begin{gathered} \text { graph [12] - 2881:13, } \\ 2882: 13,2891: 11, \end{gathered}$	$\begin{aligned} & \text { 2912:16, 2912:20, } \\ & \text { 2913:23, 2914:13 } \end{aligned}$	historical［2］－2905：8， $2905 \cdot 9$
2796：25，2797：18，	2816:4, 2816:15,	94:7, 2894:1	HARIKLIA［1］－	$\begin{gathered} \text { 2905:9 } \\ \text { hit [11 }-285 \end{gathered}$
2797：25，2799：7，	2816：20，2821：7，	97：11，2898：10，	2769：10	hold [4] - 2788:19,
2800：14，2801：3，	2878：2，2879：10，	2898：11，2900：22，	HARVEY ${ }_{[1]}$－2768：23	2826:10, 2834:20,
2824：15，2827：5，	2880：6，2880：19，	2900：24，2901：2，	HAYCRAFT［1］－	2835:25
2836：19，2838：14，	2880：25，2881：21，	2914：17	2769：5	holding［2］－2862：10，
2839：10，2845：1，	2882：7，2885：15，	graphs［3］－2894：11，	HB406［1］－2771：18	2886:12
2845：9，2845：17，	2885：21，2886：24，	2894：13，2913：25	head［5］－2776：24，	HOLDINGS ${ }_{[1]}$－
2845：18，2845：20，	2887：23，2889：9，	great［3］－2853：17，	2818：5，2820：3，	2770：3
$\begin{aligned} & \text { 2848:3, 2848:14, } \\ & \text { 2848:19, 2901:20 } \end{aligned}$	2889：10，2889：13， 2889：22，2889：24	2877：8，2914：18	2821：17，2885：7	holds［2］－2834：16，
gas/v [1] - 2796:18	2891:3, 2891:24,	greater［2］－2797：25， 2805：6	head－on［1］－2885 hear［2］－2838：4，	2836：1
GASAWAY ${ }_{[1]}$	2896：2，2896：18，	greatly［1］－2840：15	hear［2］－2838： 2838:5	hole［56］－2803：1， 2803：4，2805：25
2769：18	2896：19，2897：5，	GREENWALD ${ }_{[1]}$－	heard［7］－2787：14，	2806:24, 2807:4,
general［9］－2782：15，	2902：9，2902：11，	2767：	2849：20，2866：25，	2807:5, 2807:8
2791：16，2794：17，	2905：15，2905：17， 2906：7，2906：13，	grinder［1］－2804：21	2871：15，2872：1，	2807：9，2807：12，
2797：17，2799：19，	2906：7，2906：13，	Gringarten［1］－	2877：1，2877：17	$2807: 15,2808: 1,$
$\begin{aligned} & \text { 2812:21, 2827:10, } \\ & \text { 2831:9, 2841:12 } \end{aligned}$	2910:3, 2910:9, 2910:10, 2910:11,	$2774: 16$	HEARD［1］－2766：15	2809：1，2809：2，
		ground［1］－2870：23	hearing［1］－2774：20	2809：6，2809：12，

2809:13, 2811:2, 2813:2, 2813:12, 2814:5, 2814:8, 2814:12, 2814:20, 2814:22, 2815:1, 2815:10, 2833:5, 2833:14, 2840:4, 2840:5, 2840:6, 2840:7, 2859:14, 2859:15, 2859:16, 2859:20, 2869:8, 2869:11, 2869:14, 2869:18, 2872:15, 2872:17, 2872:22, 2872:24, 2874:1, 2874:10, 2874:16, 2875:22, 2876:2, 2876:8, 2877:1, 2907:24
hole's [1] - 2806:25 holes [74] - 2802:12, 2802:13, 2802:15, 2802:19, 2802:20, 2802:24, 2807:6, 2808:2, 2808:3, 2808:6, 2808:8, 2808:15, 2808:21, 2809:9, 2809:10, 2809:16, 2809:19, 2809:21, 2809:23, 2810:3, 2810:5, 2810:6, 2810:10, 2811:13, 2812:2, 2812:5, 2812:8, 2812:10, 2812:17, 2812:24, 2813:3, 2813:6, 2813:7, 2813:9, 2813:15, 2813:18, 2813:22, 2814:3, 2814:11, 2814:19, 2814:25, 2815:8, 2816:15,
2832:18, 2833:6, 2833:11, 2862:19, 2868:14, 2869:5, 2869:7, 2869:16, 2869:23, 2871:1, 2871:9, 2871:12, 2871:14, 2871:23, 2872:6, 2872:13, 2873:11, 2875:21, 2876:1, 2876:8,
2876:9, 2876:17, 2876:20, 2882:14, 2882:25, 2883:17, 2886:15
home [1] - 2880:4
honestly [1] - 2914:5
Honor [48] - 2773:13,
2773:24, 2773:25,

> 2774:12, 2774:22, $2775: 5,2787: 14$, $2788: 1,2825: 3$, $2833: 22,2837: 19$, $2842: 15,2843: 6$, $2846: 11,2849: 20$, $2850: 18,2853: 16$, $2854: 22,2855: 12$, $2856: 25,2860: 23$, $2861: 25,2864: 17$, $2865: 16,2866: 23$, $2868: 24,2870: 5$, $2875: 7,2875: 25$, $2876: 13,2878: 12$, $2879: 22,2881: 5$, $2884: 1,2884: 9$, $2885: 12,2887: 25$, $2889: 9,2891: 14$, $2894: 10,2895: 14$, $2896: 15,2897: 6$, $2899: 18,2901: 2$, $2903: 21,2909: 7$, $2911: 25$
> HONORABLE 2766:15
hope [1] - 2890:16
HOPE [1] - 2769:15
Horizon [1] - 2842:5
HORIZON [1] - 2766:4
horizontal [2] -
2865:3, 2891:14
hose [5] - 2878:5, 2878:13, 2878:17, 2878:21, 2878:25 hour [3] - 2787:5, 2890:2
hours [4] - 2774:24, 2774:25, 2787:5, 2899:1
housekeeping [1] 2774:1
HOUSTON [2] 2770:11, 2771:5 huge [2] - 2887:25, 2902:13
hugely [2] - 2845:20, 2888:15
hum [1] - 2777:24
hundred [2]-2848:4, 2914:6
hydraulic [130] -
2780:1, 2780:4, 2780:8, 2780:11, 2781:15, 2782:16, 2782:24, 2783:10, 2783:17, 2783:23, 2784:4, 2784:9, 2784:17, 2784:22, 2785:16, 2785:21, 2786:2, 2786:11,

2786:21, 2789:7, 2791:25, 2792:6, 2792:18, 2793:3, 2794:8, 2795:3, 2795:15, 2798:17, 2798:23, 2801:15, 2801:16, 2801:23, 2802:20, 2803:9, 2803:11, 2803:17, 2803:22, 2804:4, 2804:11, 2804:24, 2805:2, 2805:15, 2805:18, 2805:20, 2806:21, 2807:16, 2807:18, 2808:5, 2808:7, 2808:14, 2808:17, 2808:20, 2809:10, 2809:20, 2809:21, 2810:13, 2810:22, 2811:1, 2811:17, 2811:25, 2812:13, 2812:19, 2812:25, 2813:11, 2813:16, 2813:19, 2813:23, 2814:13, 2816:8, 2816:24, 2817:15, 2819:2, 2819:7, 2819:11, 2819:24, 2820:5, 2820:8, 2821:2, 2821:7, 2821:11, 2821:20, 2821:22, 2822:9, 2822:15, 2822:17, 2823:14, 2823:16, 2823:24, 2824:9, 2824:19, 2824:20, 2824:24, 2825:16, 2826:3, 2826:6, 2826:14, 2826:17, 2828:3, 2828:17, 2828:20, 2829:4, 2829:5, 2831:25, 2832:4, 2832:5, 2832:8, 2832:9, 2832:11, 2832:20, 2832:22, 2832:24, 2833:2, 2833:8, 2833:13, 2833:18, 2836:21, 2836:22, 2836:25, 2839:6, 2840:13, 2840:19, 2840:22, 2840:24, 2841:10, 2841:23, 2842:1, 2842:7, 2842:9, 2842:13
hydrocarbons [1] 2850:7
hydrodynamic [2] 2799:22, 2800:17 hydrodynamics [1] -

$2868: 15$
hypothetical [4] -
$2792: 3,2803: 7$,
$2813: 14,2839: 2$
idea $[3]-2774: 7$,
$2795: 12,2803: 21$
ideally [1] - 2786:8
identical [6] -

2854:11, 2857:24, 2868:21, 2869:2, 2869:13, 2871:6, 2872:9, 2874:4, 2882:1, 2882:3, 2885:11, 2885:20, 2886:6, 2887:22, 2890:8, 2891:12, 2894:20, 2907:17, 2913:14, 2913:19 imported [1] - 2879:18 imposed [1] - 2787:7 impossible [1] 2899:2
imprint [2] - 2865:11, 2867:7
IN [3] - 2766:4, 2766:5, 2766:7
INC [5] - 2766:12,
2769:3, 2770:4, 2770:5, 2770:19
inch [14] - 2782:10, 2804:3, 2804:7, 2804:11, 2806:18, 2806:22, 2807:15, 2810:6, 2810:21, 2810:22, 2814:20, 2814:22, 2815:1
inches [12] - 2791:20, 2791:21, 2791:22, 2792:1, 2792:8, 2792:12, 2792:15, 2804:9, 2808:19, 2810:7, 2810:16, 2810:19
incident [1] - 2877:11
included [1] - 2776:8
includes [1] - 2902:11
incompressible [1] 2781:13
incorrect [7] -
2793:23, 2801:18, 2806:6, 2806:12, 2810:5, 2835:14, 2841:15
increase [5] - 2786:14, 2794:9, 2810:25, 2813:19, 2856:13
increased [1] - 2841:6
increases [2]-2835:8, 2888:15
incredibly [1] - 2827:4
indeed [10] - 2848:24,
2857:15, 2865:1,
2873:25, 2878:24, 2881:16, 2885:6, 2886:1, 2886:12, 2892:11
independent [2] -
2812:5, 2907:23


$\begin{aligned} & \text { largest [2] - 2844:23, } \\ & \text { 2847:22 } \end{aligned}$	2791:19, 2842:3,	$\begin{aligned} & \text { 2790:12, 2790:13, } \\ & \text { 2791:5, 2796:15, } \end{aligned}$	$\begin{aligned} & \text { looking [31] - 2779:12, } \\ & 2781: 4,2781: 8, \end{aligned}$	M
$\begin{aligned} & \text { LASALLE }_{[1]}- \\ & 2760 \cdot 12 \end{aligned}$	2878:12, 2881:9,	$2796: 24,2796: 25$   2797：18，2800：3	2811:9, 2824:7,	Macondo [7] - 2787:1,
laser［2］－2869：1，	2887：2，2896：4	$2800: 5,2824: 1$	$37: 14,2849: 18$	:9, 2848:2
2880：19	length［2］－2782：9，	2827：6，2839：1	850：4，2851：20，	2850：4，2856：23
last［11］－2774：2	2824：14	2839：12	2853：15，2861：2，	MAGAZINE［1］－
2842：10，2843：5，	less［13］－2798：19，	liquid／v［1］－2796：15	2866：3，2867：9，	2767：11
2850：10，2854：13，	2865：14，2865：19，	LISKOW［1］－2769：4	70：1，2870：3，	main［12］－2796：23，
2856：17，2888：22，	2882：14，2883：1，	list［4］－2773：15，	70：7，2870：10，	2847：24，2850：15，
2888：24，2891：20，	84：12，2887：7	2773：17，2774：14	70：11，2870：14，	2855：14，2856：10，
2891：21，2894：13	7：8，2896：3	46：5	70：20，2870：24，	57：3，2857：13，
lasted［4］－2859：24，	2898：15，2898：16，	listed［1］－2850：1	71：5，2883：24，	773：20，2877：10，
2860：4，2877：2，	2899：21，2913：2	lists［1］－2774：17	884：8，2886：24，	901：2，2901：11，
2909：20	level［9］－2846：17	literally ${ }_{[1]}$－2884：2	2893：25，2895：2，	2913：19
LAW［1］－2767：10	2847：15，2853：5，	literature ${ }_{[4]}$	2898：11，2912：9	maintain［6］－
lay［1］－2838：15	2855：4，2855：8，	2826：16，2835：18，	looks［13］－2773：8，	2784：24，2785：10，
layer［2］－2795：11，	55：12，2856：18，	2836：10，2841：2	800：12，2822：24，	2794：23，2826：13，
2800：14	2857：16，2865：13	live［2］－2843：24	2831：20，2870：17，	2828：24，2829：6
lead［1］－2865：20	LEVIN［1］－2767：3	2843：25	70：22，2872：25，	maintained［1］－
leader［1］－2845：6	LEWIS［3］－2769：4，	LLC［1］－2770：3	$\begin{aligned} & \text { 2876:3, 2876:17, } \\ & \text { 2883:8. 2888:2. } \end{aligned}$	2792:4
leading［1］－2847：23   leak［20］－2802：2，	$\begin{aligned} & \text { 2770:19, 2771:3 } \\ & \mathbf{L I}_{[1]}-2770: 14 \end{aligned}$	location［1］－2885：18   locations［7］－2867：6，	2883：8，2888：2，   2914：17，2914：18	maintaining［3］－ 2793:14, 2793:17,
$2802: 5,2804: 2$	life［1］－2902：14	2871:23, 2881:14,	loop［1］－2889：25	2794：20
2804：15，2804：19，	light［3］－2875：18，	81：16，2881：22	LOS［2］－2769：16，	maintains［2］－
2804：22，2806：18，	988：8，2898：9	2886：2，2899：15	2770：16	2801：16，2817：15
$\begin{aligned} & \text { 2806:21, 2811:23, } \\ & \text { 2831:15, 2831:21, } \end{aligned}$	light－colored［2］－ 2898：8，2898：9	Lockett [6] - 2815:25, 2816:12, 2833:17,	$\begin{array}{r} \text { Ioss [10] - 2818:20, } \\ 2818: 25,2819: 3, \end{array}$	$\begin{aligned} & \text { major [2] - 2848:7, } \\ & 2912: 3 \end{aligned}$
2831：23，2831：24，	lighter［1］－2898：13	2833：19， 2834	2845：7，2845：14，	majority［3］－2782：10，
2833：5，2833：6，	likely［4］－2790：17，	logical［1］－2852：22	845：15，2847：23，	2782：12，2834：22
2833：11，2833：17，	2798：7，2798：9，	look［32］－2779：12，	848：6，2848：11，	manner［1］－2840：10
2834：10	2800：9	1：13，2784：14，	1：1	manual［12］－2828：6，
leaking［1］－2807：10	likewise［2］－2803：3，	91：15，2791：17，	Loss［1］－2818：22	2828：9，2829：3，
leaks［21］－2778：20，	2859：13	96：13，2801：12，	losses［4］－2785：17，	2830：12，2830：16，
2801：22，2801：24，	line［33］－2852：6，	01：21，2828：4，	2818：4，2820：3，	2831：11，2836：11，
2802：2，2802：7，	56：15，2870：18，	2831：14，	2820：9	836：14，2836：20，
2802：10，2802：11，	91：22，2892：7，	2857：2，	Losses［1］－2818：3	836：24，2838：12，
2807：19，2807：25，	892：12，2892：13，	2858：25，2860：16，	lost［1］－2851：14	42：3
2811：24，2811：25，	892：15，2892：22，	2863：7，2866：13，	LOUISIANA［3］－	manuals［1］－2828：2
2815：18，2816：1，	92：23，2893：4，	2868：16，2871：10，	2766：1，2768：3，	map［6］－2796：4，
2816：9，2816：13，	2893：7，2893：10，	71：17，2871：22，	2768：4	2797：4，2797：12，
2831：18，2834：2，	2895：4，2895：11，	2872：3，2876：12，	low［9］－2798：7，	2800：8，2801：12
2834：3，2834：7，	95：19，2895：23，	76：13，2887：16，	300：4，2878：20，	maps［5］－2797：14，
2840：1，2840：2	96：2，2896：20，	88：5，2888：8，	79：2，2879：5	2799：20，2799：21，
leaky［1］－2867：1	98：15，2900：19，	89：16，2896：22，	897：1，2913：21，	2800：17，2800：18
leap［1］－2899：11	2900：20，2914：23，	2904：24，2911：24，	2914：3	margins［1］－2897：4
LEASING［1］－2766：8	2914：25，2915：1，	2912：5	Iower［3］－2840：7	MARTIN［1］－2769：15
least［11］－2773：10，	2915:10, 2915:13,	looked［25］－2779：3，	2896:18, 2896:19	MARTINEZ ${ }_{[1]}$
$\begin{aligned} & \text { 2834:22, 2841:12, } \\ & \text { 2859:24, 2860:4, } \end{aligned}$	$\begin{aligned} & \text { 2915:16, 2915:18, } \\ & \text { 2915:21, 2915:24 } \end{aligned}$	$\begin{aligned} & \text { 2779:6, 2801:10, } \\ & \text { 2805:24, 2807:24, } \end{aligned}$	LP［1］－2771：8   LUIS［1］－2770：14	$\begin{aligned} & \text { 2770:20 } \\ & \text { mass }[23]-2775: \end{aligned}$
2877：2，2877：9，	linear［6］－2856：15，	2843：11，2849：8，	lump［1］－2910：13	$2775: 19,2775: 20$
2883：4，2905：19，	91：25，2892：1，	2853：21，2858：1，	lumped［2］－2911：1，	24，2776：16，
2909：3，2914：5	2：3，2893：1，	62：2，2875：1		76：18，2776：20，
leave［1］－2843：10	2915：17	2881：22，2883：21，	lunch［2］－2916：4，	2777：5，2777：11，
lecturer ${ }_{[1]}$－2846：6	$\begin{aligned} & \text { lines [2] - 2880:16, } \\ & \text { 2905:1 } \end{aligned}$	2885:18, 2887:12,	2916:7	2777:14, 2778:8,
led［1］－2862：6   LedaFlow［3］－	liquid［22］－2777：12，	2891:24, 2892:12,	2767:14	$\begin{aligned} & \text { 7778:9, 2778:11, } \\ & \text { 2778:12, 2794:24, } \end{aligned}$
2778：25，2780：7，	2777：14，2789：16，	2893：3，2893：4，	LUXENBERG ${ }_{[1]}$－	301:16, 2834:17,
2785：15	2789：21，2789：23，	2895：24，2906：20，	2767：7	2835：3，2835：11，
left［11］－2782：1，	2789：24，2790：1，	2910：2，2913：7		$2835: 12,2836: 4,$

UNOFFICIAL TRANSCRIPT


UNOFFICIAL TRANSCRIPT

2798:13, 2806:13, 2806:17, 2815:6, 2815:15, 2815:16, 2817:5, 2817:7, 2817:21, 2817:22, 2819:21, 2819:23, 2820:22, 2825:2, 2825:5, 2826:7, 2826:9, 2828:4, 2828:5, 2833:22, 2833:25, 2834:11, 2834:14, 2837:4, 2837:8, 2837:12, 2837:13, 2837:19, 2837:24, 2838:6,
2838:21, 2839:23, 2839:24, 2841:19, 2841:20, 2842:15, 2842:18, 2842:20, 2843:17, 2843:20, 2844:5, 2844:7,
2850:18, 2850:24,
2854:17, 2854:19, 2854:22, 2855:1, 2870:25, 2873:13, 2874:22, 2874:24, 2883:18, 2903:17, 2911:7
MS [20] - 2767:19,
2773:20, 2773:25, 2774:9, 2774:12, 2774:22, 2843:6,
2843:16, 2850:21, 2903:21, 2903:24, 2905:1, 2905:3,
2906:2, 2909:16,
2911:10, 2911:15, 2914:10, 2914:11, 2916:6
Multiphase [3] 2847:11, 2847:17, 2847:19
multiphase [23] -
2777:7, 2778:9, 2778:14, 2780:24, 2781:19, 2790:24, 2799:6, 2810:3,
2820:16, 2821:4, 2824:15, 2827:1, 2827:4, 2834:16, 2839:3, 2839:5, 2840:23, 2841:9, 2842:1, 2845:7, 2848:6
multiple [9]-2799:7,
2826:17, 2827:5, 2829:20, 2829:24, 2836:18, 2838:12, 2838:17, 2893:13 multiplication [1] -

2823:16	2802:22, 2812:4,	Norway [3] - 2844:21,	2887:14
multiplied [1] - 2792:4	2812:23, 2842:18,	2846:12	obstructed [1] -
multiply [1] - 2808:18	2842:20, 2843:4,	nothing [5] - 2836:10,	2863:9
multitude [1] -	2843:9, 2843:22,	2836:11, 2894:20,	obstruction [3] -
2881:19	2843:25, 2844:2	2902:1, 2915:3	2793:4, 2865:22,
MUNGER [1] -	2844:8, 2850:19,	nuclear [1] - 2844:24	2865:24
2770:13	2850:25, 2853:14,	number [27] -	obtained [7] -
must [9]-2851:17,	2855:2, 2856:19,	2809:14, 2820:4,	2861:15, 2870:6,
2851:23, 2859:12,	2856:21, 2869:25,	2820:10, 2820:12,	2879:16, 2890:19,
2859:17, 2862:18,	2871:4, 2877:13,	2820:18, 2820:23,	2898:14, 2898:17,
2863:14, 2866:9,	$\begin{aligned} & \text { 2891:11, 2893:17, } \\ & 2895: 17 \text { 2900:23 } \end{aligned}$	2825:21, 2830:1,	2902:7
2877:5, 2889:11	$\begin{aligned} & \text { 2895:17, 2900:23, } \\ & \text { 2903:2, 2903:17, } \end{aligned}$	$\begin{aligned} & 2830: 6,2830: 10 \\ & 2830: 11,2830: 15 \end{aligned}$	obvious [2] - 2857:14, 2873:8
N	903:25, 2904:2,	2830:20, 2831:4,	obviously [4] -
	:16, 2914:1	2831:6, 2831:10,	2787:20, 2884:22,
N-E-S-I-C [1] - 2843:5	NESIC [2] - 2772:8	2831:12, 2832:17,	2885:18, 2908:20
N.W [1] - 2769:20	2842:25	2835:19, 2845:13,	occasionally [1] -
naked [2] - 2864:21,	Nesic's [1] - 2854:23	2878:18, 2881:20,	2800:5
2892:2	never [5] - 2831:9,	2895:14, 2898:21,	occur [5] - 2813:24,
name [8]-2843:3,	2831:13, 2886:3,	2899:17, 2914:7	2851:18, 2852:13,
2843:4, 2843:5,	2906:5, 2909:22	numbers [13] -	2852:16, 2897:23
2843:23, 2843:25,	NEW [9] - 2766:5,	$2836: 12,2836: 14$	occurred [4] -
2851:5, 2856:25,	2766:20, 2767:8,	2851:12, 2856:6,	2875:20, 2877:9,
2908:14	2767:12, 2768:10,	2891:17, 2891:18,	2887:19, 2889:8
$\begin{gathered} \text { narrow [4] - 2848:10, } \\ 2881 \cdot 10-2883 \cdot 16 \end{gathered}$	$\begin{aligned} & \text { 2769:7, 2770:7, } \\ & \text { 2771:10. } 2771: 19 \end{aligned}$	$\begin{aligned} & 2898: 11,2898: 16, \\ & 2898 \cdot 70 \text { 2912•16 } \end{aligned}$	occurring [4] -
$\begin{aligned} & \text { 2881:10, 2883:16, } \\ & 2897: 3 \end{aligned}$	new [5] - 2825:21,	2913:18, 2914:13,	$\begin{aligned} & 2859: 18,2872: 5 \\ & 2875: 5,2903: 13 \end{aligned}$
narrowing [1] -	2825:24, 2838:15,	2914:16	occurs [1] - 2840:22
2786:12	2866:8, 2889:24	numerous [5] -	ocean [1] - 2779:8
Nat [1] - 2775:9	next [16] - 2773:11,	2811:7, 2831:11,	OCTOBER [2] -
NATHANIEL [1] -   $2768 \cdot 21$	$\begin{aligned} & \text { 2807:12, 2807:17, } \\ & \text { 2811:23, 2819:5 } \end{aligned}$	$\begin{aligned} & 2845: 6,2849: 8, \\ & 2865: 11 \end{aligned}$	2766:5, 2773:2
2768:21	2811:23, 2819:5,	2865:11	odd [1] - 2870:22
natural [1] - 2870:24	2830:13, 2838:16,	NW [2] - 2769:23,	OF [10] - 2766:1,
NATURAL [1] -	2842:17, 2842:18,	$2771: 14$	2766:5, 2766:8,
$2768: 18$	$\begin{aligned} & \text { 2842:19, 2869:23, } \\ & \text { 2885:6, 2888:19, } \end{aligned}$	NY [1] - 2767:8	2766:10, 2766:14,
$\begin{array}{r} \text { near [6] - 2782:13, } \\ 2787: 11,2788: 9 \end{array}$	$\begin{aligned} & 2891: 3,2891: 5, \\ & 2905: 22 \end{aligned}$	0	$2768: 13,2768: 17$
$\begin{aligned} & 2789: 21,2798: 25, \\ & 2808: 6 \end{aligned}$	$\begin{aligned} & \text { night [1] - 2774:2 } \\ & \text { nine [1] - 2899:1 } \end{aligned}$	$\begin{aligned} & \text { O'CONNOR [1] - } \\ & \text { 2769:19 } \end{aligned}$	2774:2, 2844:3, 2849:11, 2905:8
$\begin{aligned} & \text { neck [2] - 2867:19, } \\ & \text { 2881:7 } \end{aligned}$	$\begin{aligned} & \text { NO [3] - 2766:4, } \\ & 2766: 7,2766: 10 \end{aligned}$	O'KEEFE [1] - 2766:20	$\begin{aligned} & \text { offered [2] - 2856:3, } \\ & 2895: 25 \end{aligned}$
neck-down [2] -	nobody [1] - 2838:3	O'ROURKE [1] -   2768.20	OFFICE [4] - 2766:24,
$\begin{gathered} \text { 2867:19, 2881:7 } \\ \text { need [18] - } 2785: 10 \end{gathered}$	$\begin{aligned} & \text { noncircular [4] - } \\ & 2780: 13,2819: 20 \end{aligned}$	oath [1] - 2775:3	$\begin{aligned} & 2767: 21,2768: 6, \\ & 2768: 15 \end{aligned}$
2790:19, 2790:20,	2820:2, 2821:13	object [1] - 2911:7	Official [1] - 2916:13
2796:12, 2798:24,	nondimensional [1] -	objection [4] -	OFFICIAL [1] -
2800:19, 2829:5,	2797:16	$\begin{aligned} & 2773: 18,2773: 21 \\ & 2825: 2,2850: 22 \end{aligned}$	$2771: 17$
$\begin{aligned} & 2836: 12,2838: 3, \\ & 2840: 3,2853: 7, \end{aligned}$	$\begin{aligned} & \text { none [2] - 2774:20, } \\ & 2911: 22 \end{aligned}$	$\begin{aligned} & \text { 2825:2, 2850:22 } \\ & \text { objections [3] - } \end{aligned}$	OFFSHORE ${ }_{[1]}$ -   2770:4
2888:11, 2890:11,	noneroded [2]	2773:20, 2774:18,	offshore [1] - 2845:17
2892:11, 2904:15,	2863:2, 2889:9	2774:19	often [2] - 2797:15,
2905:8, 2906:6	NONJURY [1] -	observation [2] -	2851:16
needed [7] - 2853:5, 2853:6. 2853:9.	$2766: 14$	2874:7, 2893:9   observe [1] - 2862:17	oftentimes [2] -
2890:13, 2891:19,	normally [2] - 2888:1,	observed [4] -	2831:5, 2838:16
2891:20, 2905:19	2893:6	$2778: 25,2799: 14$	$\begin{aligned} & \text { Ohio [5] - 2844:1, } \\ & 2847: 1,2847: 4, \end{aligned}$
needs [1] - 2865:17	NORTH [1] - 2768:5	$2800: 21,2801: 8$	2847:7, 2847:25
negligible [1] - 2912:6	North [3] - 2845:1,	obstacle [1] - 2885:21	oil [17] - 2800:13,
Nesic [31] - 2802:18,	2845:8, 2845:9	obstacles [1] -	2801:3, 2836:19,

UNOFFICIAL TRANSCRIPT

2838：14，2838：15， 2839：10，2845：1， 2845：9，2845：17， 2845：18，2845：20， 2848：3，2848：7，
2848：8，2848：13， 2848：18，2901：20 OIL［2］－2766：4， 2766：4
OLGA［5］－2828：6， 2829：1，2836：11， 2836：14，2842：3 OLSON［1］－2770：13 ON［1］－2766：5 once［5］－2854：13， 2857：25，2879：16， 2900：5，2902：4 one［121］－2773：13， 2774：13，2775：11， 2777：5，2784：6， 2787：15，2788：12， 2790：6，2790：13， 2792：25，2795：23， 2797：21，2797：22， 2800：1，2800：12， 2803：1，2803：3， 2806：15，2808：7， 2811：1，2811：16， 2811：17，2811：18， 2812：6，2812：24， 2813：2，2813：12， 2813：16，2813：23， 2814：1，2814：4， 2814：8，2814：12， 2814：13，2815：10， 2816：11，2817：16， 2820：12，2822：12， 2826：21，2829：3， 2829：22，2832：9， 2835：19，2836：6， 2838：16，2839：15， 2841：15，2844：16， 2847：22，2849：18， 2849：21，2851：10， 2852：18，2852：20， 2853：19，2854：8， 2857：13，2861：4， 2862：10，2862：17， 2863：13，2865：1， 2865：3，2865：17， 2866：2，2867：6， 2869：7，2869：9， 2869：13，2869：17， 2869：18，2871：22， 2872：8，2872：9， 2872：10，2872：11， 2872：12，2872：15， 2873：20，2873：24， 2874：4，2876：16， 2877：10，2878：9，

2879：11，2883：4， 2883：5，2883：20， 2884：1，2884：5， 2886：1，2886：13， 2888：6，2893：6， 2893：12，2893：14， 2894：4，2894：10， 2897：23，2898：21， 2899：10，2899：11， 2899：13，2899：15， 2899：17，2899：24， 2900：3，2900：22， 2902：17，2904：4， 2904：8，2905：19， 2907：16，2909：6， 2910：12，2912：18， 2915：21，2915：24 ONE［1］－2769：5 one－by－one［1］－ 2854：8
one－dimensional［1］－ 2775：11
one－half［1］－2826：21 one－third［1］－2784：6 ones［9］－2848：20， 2854：2，2857：4， 2857：5，2861：5， 2862：14，2864：19， 2881：19，2893：21 open［2］－2861：17， 2864：18 opened［2］－2853：25， 2858：22
opening［2］－2885：3， 2886：14 openings［1］－ 2884：17 operate［1］－2845：23
operated［1］－2861：21 operational［1］－ 2845：21 opine［1］－2779：16 opinion［12］－ 2862：22，2863：1， 2871：1，2882：24， 2898：25，2900：25， 2904：10，2906：17， 2906：24，2907：4， 2907：14，2907：17 opinions［17］－ 2844：3，2846：8， 2846：22，2849：11， 2855：2，2855：4， 2855：6，2855：8， 2859：22，2873：20， 2873：21，2873：22， 2874：4，2877：10， 2892：9，2900：22， 2909：21 opportunity［1］－

2829：18
opposed［1］－2784：22 opposite［3］－
2806：24，2806：25， 2807：3
options［1］－2893：13 order［13］－2774：9， 2785：12，2786：15， 2788：4，2791：16， 2800：21，2809：3， 2835：3，2836：15， 2840：8，2851：17， 2888：18，2905：19
ORDER［1］－2773：4 orient［3］－2865：2， 2870：1，2895：1 orientation［2］－ 2870：15，2871：8 oriented［2］－2875：13， 2875：16
orienting［1］－2858：12
orifice［1］－2816：3
orifices［2］－2805：22， 2807：17
original［4］－2816：4， 2904：19，2905：11， 2905：25
ORLEANS［8］－ 2766：5，2766：20， 2767：12，2768：10， 2769：7，2770：7， 2771：10，2771：19 oscillating［1］－ 2788：5 oscillation［1］－ 2787：7
Oslo［1］－2844：21
otherwise［1］－2850：1 outcome［2］－2888：9， 2902：24
outer［6］－2782：25， 2783：11，2791：20， 2791：21，2792：5， 2793：16
outline ${ }_{[1]}-2880: 15$ outs［1］－2774：14 outside［3］－2812：3， 2871：6，2879：2 oval［1］－2871：12 overall［4］－2853：14， 2896：25，2897：12， 2913：24
overlap［1］－2882：15 overlapping［2］－ 2815：8，2885：2 overruled［1］－2825：4 overview［1］－2850：25 own［3］－2777：15， 2777：17，2906：24


2828：9，2829：2， 2829：20，2829：23， 2830：14，2830：25， 2832：21，2833：15， 2836：2，2839：13， 2839：20，2841：17， 2852：9，2882：11， 2885：21
particularly［2］－ 2875：22，2905：21 parties［2］－2773：18， 2774：17
partners［1］－2888：4
parts［1］－2906：21
pascals［3］－2891：17， 2913：4，2913：22 pass［6］－2863：5， 2864：14，2878：2， 2878：14，2881：10， 2885：1
passage［1］－2883：16 passages［1］－ 2881：10 passes［2］－2879：1， 2881：12
passing［3］－2853：8， 2879：21，2886：20 past［10］－2779：11， 2869：7，2871：23， 2872：4，2874：12， 2874：17，2875：23， 2902：21，2907：25
path［14］－2780：3， 2780：8，2780：13， 2783：7，2784：8， 2784：15，2784：16， 2784：17，2810：24， 2816：4，2816：7， 2816：12，2856：11， 2857：19
paths［2］－2803：11， 2803：16
pathway［1］－2906：13
pattern［4］－2800：24，
2820：16，2865：6， 2882：11
patterns［9］－2776：5， 2776：9，2776：13， 2789：11，2791：13， 2796：8，2799：14， 2799：16，2820：20
PAUL［1］－2769：10
peak［1］－2801：5
peer［1］－2850：11
peer－reviewed［1］－ 2850：11
PENCAK ${ }_{[2]}$－
2774：12，2774：22
Pencak［1］－2774：12 pending［1］－2843：9

PENNSYLVANIA［1］－   2769：23   PENSACOLA［1］－   2767：5   people［2］－2773：10， 2915：11   per［11］－2790：6， 2790：10，2790：13， 2790：15，2791：4， 2791：5，2791：10， 2791：11，2797：21， 2832：6，2913：10 percent［11］－2805：6， 2805：8，2827：22， 2840：16，2848：4， 2872：21，2892：15， 2893：6，2893：7， 2893：8，2912：6 perfect［3］－2867：1， 2875：8，2886：4 perfectly［2］－2783：9， 2783：14	```2907:2, 2907:5, 2907:14, 2910:22 permission [1] - 2863:23 perpendicular [1] - 2871:16 persisted [1] - 2899:7 personally [1] - 2866:15 perspective [3] - 2859:9, 2905:8, 2910:19 perturbed [1] - 2899:22 PETITION [1] - 2766:8 PETOSA [1] - 2767:18 PETROLEUM [1] - 2771:7 Ph.D [8] - 2842:25, 2844:11, 2844:17, 2844:18, 2844:20, 2846:16, 2846:17, 2849:3 phase [21] - 2776:17, 2777:3, 2777:11, 2777:12, 2777:14, 2778:1, 2778:3, 2778:4, 2778:5, 2778:12, 2780:22, 2789:19, 2799:18, 2820:25, 2821:3, 2821:5, 2822:5, 2834:17, 2839:3, 2839:4 phases [4]-2778:9, 2800:23, 2801:2, 2801:7 phenomena [1] - 2851:5 phenomenon [2] - 2781:4, 2792:23 photo [1] - 2872:6 photograph [3] - 2870:8, 2871:11, 2875:3 photographs [5] - 2866:3, 2867:9, 2868:10, 2868:17, 2868:20 phrase [2] - 2787:20, 2787:21 physical [8] - 2863:24, 2882:16, 2886:2, 2888:23, 2891:1, 2899:6, 2909:5, 2915:12 physically [2] - 2891:4, 2891:8 Pi [1] - 2805:10 pick [10] - 2835:19,```			```2857:20, 2861:10, 2861:24, 2868:8, 2868:25, 2876:10, 2885:11, 2888:6, 2888:8, 2888:23, 2890:11, 2891:20, 2891:21, 2893:18, 2895:13, 2898:5, 2899:17, 2899:18, 2902:17 points [21] - 2779:3, 2853:16, 2856:6, 2868:14, 2868:17, 2869:2, 2880:21, 2888:14, 2890:13, 2890:24, 2892:12, 2892:14, 2893:14, 2902:15, 2902:22, 2903:1, 2915:8, 2915:12, 2915:22, 2915:25 POLK [1] - 2771:8 populated [1] - 2880:21 portion [1] - 2818:2 portions [2] - 2790:12, 2827:7 posed [1] - 2865:24 posited [1] - 2817:14 position [9]-2800:3, 2845:2, 2846:11, 2846:12, 2847:4, 2856:5, 2865:3, 2872:16, 2888:20 possession [1] - 2773:15 possible [10] - 2787:11, 2788:10, 2882:6, 2890:16, 2893:16, 2902:16, 2903:1, 2915:9, 2915:16, 2915:17 POST [3] - 2766:24, 2768:6, 2768:15 post [4]-2912:22, 2913:1, 2913:16, 2914:1 post-erosion [4] - 2912:22, 2913:1, 2913:16, 2914:1 potential [1] - 2802:11 pounding [1] - 2865:18 POYDRAS [4] - 2769:6, 2770:7, 2771:10, 2771:18 PR [1] - 2818:7 pre [8] - 2854:2, 2861:7, 2886:24, 2910:2, 2910:3,```



UNOFFICIAL TRANSCRIPT

R	$\begin{aligned} & \text { 2814:18, 2815:2, } \\ & \text { 2815:9, 2816:25, } \end{aligned}$	$\begin{aligned} & \text { 2827:15, 2827:18, } \\ & \text { 2827:20, 2827:22, } \end{aligned}$	$\begin{aligned} & \text { reasserting }[1] \text { - } \\ & 2774: 2 \end{aligned}$	$\begin{aligned} & \text { 2849:14, 2850:13, } \\ & \text { 2886:8 } \end{aligned}$
radius [2] - 2784:1, 2784:2	2821：8，2821：17，	2839：10，2896：22	receive［1］－2773：18	regarding［1］－2839：1
RAFFERTY［1］－	2822:7, 2822:18,	2797：20	2844：18	regime［16］－2796：
2767：3	$2823: 1,2823: 2$	RE［2］－ $2766: 4$	recent［2］－2828：6，	2797:4, 2797:5,
$\begin{aligned} & \text { raise }[1]-2843: 12 \\ & \text { ram } 103-2855 \cdot 9 \end{aligned}$	$\begin{aligned} & \text { 2823:3, 2823:8, } \\ & \text { 2823:17, 2823:20, } \end{aligned}$	$\begin{aligned} & 2766: 7 \\ & \text { reach [2]-2892 } \end{aligned}$	$\begin{aligned} & \text { 2828:8 } \\ & \text { recently }[1]-2828: \end{aligned}$	$\begin{aligned} & \text { 2797:9, 2797:19, } \\ & \text { 2798:1, 2799:20, } \end{aligned}$
2860:9, 2860:18	2824：25，2825：14，	2900:6	recess [2] - 2842:2	$2799: 21,2800: 8,$
2861：8，2862：11	2825：15，2825：25，	reached［1］－2855：15	2842：2	0：10，2800：17，
2863：21，2876：14，	$\begin{aligned} & 2826: 4,2829: 12, \\ & 2834: 17,2835: 3, \end{aligned}$	read［5］－2796：2，   2796：11，2826：16	Recess [1] - 2916:9	$\begin{aligned} & 2800: 18,2800: 20, \\ & \text { 2800:24, 2801:12, } \end{aligned}$
$\begin{aligned} & \text { 2884:3, 2884:7, } \\ & \text { 2885:25, 2886:20, } \end{aligned}$	2835:11, 2835:12,	$\begin{aligned} & \text { 2796:11, 2826:16, } \\ & \text { 2877:1, 2905:24 } \end{aligned}$	recognize［5］－ 2796：4，2815：2	$\begin{aligned} & \text { 2800:24, 2801:12, } \\ & \text { 2820:16 } \end{aligned}$
2895：9，2897：24，	2836:4, 2836:8,	reading［2］－2821：25，	18：5，2828：7，	regimes［4］－2776：11，
2910:6, 2910:8,	2841：5，2844：4， 2854：15，2856：22，	2896:13	2862:16	$\begin{aligned} & \text { 2776:13, 2796:7, } \\ & \text { 2801:11 } \end{aligned}$
2912:17, 2912:23,	$2877: 11,2878: 5,$	2908:5	2914:7	regions［1］－2882：14
$\begin{aligned} & \text { 2913:1, 2914:14, } \\ & \text { 2914:16, 2915:4 } \end{aligned}$	$\begin{aligned} & \text { 2878:20, 2878:21, } \\ & \text { 2878:25, 2879:3, } \end{aligned}$	real [16] - 2830:1,	recommending［1］－	$\begin{aligned} & \text { REGISTERED } \\ & \text { 2771:18-1 } \end{aligned}$
rams［39］－2855：19，	2879：5，2889：21，	0：15，2830：20	record［4］－2843：3，	regular［1］－2816：20
2855：21，2855：22，	89：24，2896：17，	2831：10，2831：12	43：24，2867：16	rejecting［1］－2803：21
2857：8，2858：16，	2896：18，2897：7，	2834：12，2836：14	2885：24	relate［3］－2837：1，
2859：2，2860：16，	2899：12，2899：16，	2859：10，2861：13，	RECORDED	2837：2，2841：14
2860：25，2861：5，	2899：20，2900：4，	2884:22, 2891:19	2771:23	related［9］－2805：10，
2862：23，2863：3，	2900：7，2901：3，	02：14，2906：6，	recovered	6：2，2826：3，
2863：9，2863：17，	2901：4，2901：15，	2906：	2854:3, 2866:1	44：25，2845：7，
2864：9，2864：25，	2901：17，2901：18，	realistic［3］－2861：12，	9，2885：25，	5，2845：1
2865：14，2865：21，	2901：21，2902：3，	2864：5，2891：4	87：18，2897：19	2906：6，2914：6
2874：12，2879：17，	2902：5，2902：7	reality［13］－2805：22，	2905：18，2906：22	relates［1］－2822：12
2883：21，2885：16，	2903：3，2904：3	2830：19，2831：8，	recovering［1］	relating［2］－2784：23，
2886：11，2886：16，	2904：6，2904：10，	$2834: 21,2835: 11$	$2873:$	2819：14
2887：4，2895：23，	：13，2904：15，	1：12，2864：7，	recovery［2］－	relation［3］－2870：3
2895：24，2898：19，	2904：17，2904：20，	880:1, 2882:	2839:20, 2887:20	2895：12，2897：14
2899：8，2899：20，	2905：5，2905：16，	2882：18， 2886	rectangular［2］－	relations［1］－2841：18
2899：22，2910：5，	2906：3，2906：18，	realize［1］－2898：21	$2840: 5,2840: 6$	elationship［27］－
$2910: 14,2912: 5 \text {, }$	$\begin{aligned} & \text { 2907:10, 2912:2, } \\ & \text { 2913:6, 2913:7, } \end{aligned}$	really［24］－2787：15，	red [6] - 2870:7,	2783：4，2785：9，
$\begin{aligned} & \text { 2912:9, 2914:2, } \\ & \text { 2914:6 } \end{aligned}$	$\begin{aligned} & \text { 2913:6, 2913:7, } \\ & \text { 2913:13, 2913:21, } \end{aligned}$	$\begin{aligned} & \text { 2793:13, 2794:23, } \\ & \text { 2799:5, 2800:15, } \end{aligned}$	2881：13，2882：13	2785:10, 2785:12,
ran［6］－2787：4，	2914:3, 2914:4,	$\begin{aligned} & \text { 2799:5, 2800:15, } \\ & \text { 2811:19, 2823:17 } \end{aligned}$	85:10, 2898:8,	86：16，2793：17，
2788：3，2889：20，	2915：23	2823:22, 2827:4,	irect［1］－277	$95: 21,2803: 1$
2898：24，2908：19	rates［23］－2775：15，	$35: 14,2868: 24$	redirect［2］－2837：6，	2806：1，2817：15
range $[1]-2779: 23$	$2775: 17,2778: 9$ 2778：25， $2779: 7$	870:10, 2875:14,	2837:10	819：16，2822：19，
rarely［2］－2890：7，	2779:7	878：14，2878：17，	REDIRECT［1］	323：6，2823：7，
2902：22	01．9	78：21，2879：9	837：7	2823：9，2825：24，
rate [112] - 2775:22,	$\begin{aligned} & \text { 2799:14, 2801:9, } \\ & \text { 2801:17, 2806:9, } \end{aligned}$	82:7, 2891:17,	reduce［1］－2840：15	2826：13，2828：24，
$2776 \cdot 18,2776 \cdot 20$	2807:25, 2817:15,		referenced［1］－	29：6，2829：14
2777:5, 2777:11,	37：1，2904：18	908:24	2881：25	$\begin{aligned} & 841: 5, \\ & 900: 2 \end{aligned}$
2777：12，2778：8，	04：23，2905：21，	REALTIME		1：9
2778：11，2778：12，	2905:23, 2906:5,	2771:1	2883：7，2915：	relationships［1］－
2778：18，2779：22，	2906：10，2906：12	reason [9] - 2784:2	referring［8］－2780：4，	2829:12
2785：13，2786：16，	rather［1］－28	$85: 2,2788: 7$		lative $[7]$－2797：
2787：3，2793：11，	ratio［23］－2784：24	$47: 24,2859: 1$	$2838: 12,2866: 2$	797：20，2799：17
2794：5，2795：22，	55：10，2789：20，	$383: 13,2896: 15$	368:12, 2911:11,	$300: 23,2801: 2$
2803：12，2803：17，	97:6, 2797:11,	2901:15, 2909:7	2914:8	2801：7
2803：20，2804：15，	2798：1，2798：4，	reasonable［1］－	refers［2］－2832：14，	relatively［1］－2883：16
2805：12，2805：13，	2798:7, 2798:8,	$2874: 17$	2905:9	release［1］－2845：25
2805：16，2805：22， 2806：4，2807：2，	798:25, 2799:23,	reasons［4］－2890：24，	reflects［1］－2908：6	released［2］－2828：11，
2806：4，2807：2， 2809：23， $2810: 2$,	2823:12, 2823:14,	2899：4，2908：10，	REGAN [1] - 2769:11	2880：2
2809：23，2810：2，	2824：1，2824：15，	2909：21	regard [4] - 2846:20,	relevant［3］－2800：23，

UNOFFICIAL TRANSCRIPT

```2846:8, 2858:2 reliability [1] - 2888:15 reliable [2]-2890:19, 2902:24 reliably [1] - 2892:9 relied [2] - 2873:22, 2874:3 rely [2]-2873:9, 2909:21 remaining \([4]\) - 2774:19, 2774:25, 2775:1, 2888:22 remarkable [1] - 2882:19 remember [7] - 2776:6, 2787:8, 2799:6, 2802:13, 2827:15, 2890:10, 2913:12 remind [3] - 2843:8, 2879:17, 2898:10 removed [1] - 2851:6 RENAISSANCE \({ }_{[1]}\) - 2770:22 repeat [7]-2776:21, 2783:12, 2803:13, 2812:16, 2816:11, 2907:12, 2912:24 repeated [4] - 2851:6, 2851:12, 2886:9, 2886:11 rephrase [1] - 2803:9 replace [1]-2820:4 replica [2]-2861:12 report [12]-2779:16, 2782:20, 2795:23, 2796:2, 2852:24, 2854:20, 2854:23, 2894:5, 2906:4, 2906:5, 2907:2, 2913:17 REPORTER [3] - 2771:17, 2771:17, 2771:18 Reporter [1]-2916:13 represent [3]-2789:9, 2796:22, 2798:5 representation [3] - 2777:4, 2786:9, 2893:11 representative [4]- 2788:8, 2788:22, 2788:25, 2789:1 represented [1] - 2894:6 represents [4] - 2796:6, 2818:5, 2818:7, 2891:12 required [1] - 2809:2```	```requires [1] - 2793:5 research [11] - 2833:6, 2844:23, 2845:4, 2846:11, 2846:12, 2846:16, 2847:16, 2848:5, 2848:7, 2848:10, 2849:7 resistance [11] - 2786:19, 2786:22, 2824:13, 2841:7, 2856:3, 2856:7, 2887:7, 2891:15, 2894:16, 2894:22, 2910:17 resolve [1] - 2849:21 RESOURCES [1] - 2768:18 respect [3]-2779:12, 2811:22, 2897:6 respond [1] - 2774:4 response [4] - 2774:6, 2774:10, 2815:19, 2906:22 rest [2] - 2856:11, 2874:5 restate [1] - 2911:14 restrict [1] - 2853:25 restricted [1] - 2858:20 restricting [1] - 2868:5 restriction [26] - 2855:22, 2856:10, 2862:24, 2863:14, 2867:10, 2867:13, 2867:23, 2868:7, 2868:8, 2868:11, 2878:10, 2878:19, 2879:3, 2879:5, 2879:8, 2879:12, 2888:21, 2895:25, 2897:13, 2897:14, 2898:1, 2898:4, 2901:11, 2903:7 restrictions [14] - 2854:14, 2855:20, 2856:2, 2857:23, 2877:14, 2886:7, 2888:19, 2892:10, 2892:17, 2893:25, 2894:8, 2900:6, 2900:25, 2903:4 restrictive [2] - 2854:8, 2857:4 result [10]-2779:7, 2798:9, 2799:3, 2805:16, 2806:4, 2825:13, 2836:6, 2838:19, 2881:17, 2890:5 results [8]-2775:14,```	```2775:16, 2827:18, 2827:20, 2878:11, 2878:20, 2879:3, 2915:4 retained [1] - 2889:17 reviewed [1] - 2850:11 Reynolds [5] - 2820:4, 2820:10, 2820:12, 2820:18, 2820:23 rho [6] - 2796:15, 2796:18, 2796:22, 2796:24, 2818:9, 2818:12 RICHARD [2] - 2768:22, 2771:4 RICHESON \({ }_{[1]}\) - 2771:9 RIG [1] - 2766:4 ring \({ }_{[1]}\) - 2814:17 ripple [1] - 2790:22 ripples [2]-2789:23, 2790:7 rippling [1]-2790:2 riser [87] - 2778:20, 2778:24, 2779:7, 2779:17, 2779:21, 2782:5, 2782:9, 2782:10, 2782:12, 2783:10, 2783:15, 2784:9, 2787:1, 2787:8, 2787:12, 2788:5, 2788:10, 2788:17, 2788:25, 2789:5, 2791:8, 2791:20, 2792:4, 2794:6, 2794:7, 2794:11, 2795:6, 2799:3, 2799:4, 2799:10, 2800:3, 2800:4, 2800:21, 2800:25, 2801:4, 2801:11, 2801:13, 2802:15, 2809:4, 2812:3, 2825:8, 2827:17, 2827:21, 2827:22, 2834:22, 2834:23, 2838:11, 2846:23, 2848:23, 2855:10, 2857:3, 2857:9, 2859:14, 2867:15, 2867:17, 2867:22, 2868:4, 2868:12, 2868:13, 2868:17, 2869:4, 2869:22, 2870:4, 2870:7, 2870:15, 2870:20, 2874:2, 2874:16, 2875:1, 2876:23, 2880:17, 2882:1, 2882:8,```		```2908:19, 2909:10, 2909:20, 2909:22, 2915:23 SARAH [1] - 2768:23 Sarah [1] - 2773:25 Saskatchewan [1] - 2844:12 satisfactory \({ }_{[1]}\) - 2820:3 saw [14]-2821:20, 2821:22, 2822:8, 2833:19, 2834:2, 2864:9, 2875:9, 2875:21, 2877:1, 2885:19, 2886:2, 2889:20, 2891:7 scale [7] - 2781:4, 2781:9, 2797:7, 2836:12, 2896:4, 2896:5, 2898:9 scaled [1] - 2798:8 scan [1] - 2880:20 scans [1] - 2906:20 scenario [3] - 2795:5, 2808:2, 2836:17 schedule [1] - 2895:8 SCHELL [1] - 2771:8 school [1] - 2811:19 science [10] - 2792:24, 2795:1, 2801:19, 2806:3, 2808:11, 2811:18, 2811:20, 2815:12, 2822:12, 2835:17 scientific [2] - 2907:7, 2912:19 scientifically \({ }_{[1]}\) - 2893:14 scientist [1] - 2845:4 scientists [1] - 2811:9 SCOTT [1] - 2768:20 scrape [1] - 2852:7 screen [9]-2860:24, 2862:1, 2862:6, 2864:16, 2864:19, 2868:25, 2880:13, 2880:18, 2884:18 screens [1] - 2880:14 Sea [3]-2845:1, 2845:8, 2845:9 seal [5] - 2859:6, 2859:8, 2862:4, 2867:1 sealed [1] - 2865:23 SEAN [1] - 2770:22 seat [1] - 2843:2 seated [1] - 2842:23 second [13] - 2791:5, 2791:6, 2791:11, 2851:22, 2858:22,```

UNOFFICIAL TRANSCRIPT

2861:17, 2862:10, 2863:12, 2872:2, 2875:22, 2877:21, 2889:11
SECTION [4] - 2766:4, 2766:8, 2766:11, 2768:19
section [23] - 2812:3, 2821:15, 2821:21, 2821:25, 2827:17, 2827:21, 2830:12, 2830:25, 2831:20, 2832:22, 2832:24, 2833:1, 2833:15, 2867:5, 2867:7, 2867:19, 2867:20, 2867:21, 2875:23, 2881:7, 2883:6, 2884:25
sectional [10] -
2784:24, 2785:3, 2816:16, 2819:8, 2822:10, 2823:3, 2825:12, 2825:25, 2868:2, 2868:3 sections [2] -
2819:20, 2820:2
see [101] - 2779:6, 2782:3, 2789:23, 2790:1, 2790:2, 2790:7, 2791:23, 2792:9, 2792:13, 2792:16, 2796:9, 2796:16, 2796:23, 2797:2, 2797:15, 2800:7, 2800:9, 2801:11, 2804:2, 2806:19, 2814:6, 2817:19, 2817:24, 2818:1, 2818:4, 2819:19, 2820:6, 2823:16, 2831:19, 2831:22, 2833:19, 2837:17, 2838:16, 2857:19, 2858:8, 2858:10, 2860:24, 2861:24, 2861:25, 2862:6, 2862:14, 2862:15, 2864:16, 2864:19, 2864:20, 2864:22, 2864:25, 2865:12, 2865:14, 2867:6, 2868:16, 2868:18, 2869:2, 2870:9, 2870:12, 2870:13, 2870:21, 2872:2, 2872:6, 2872:7, 2872:10, 2872:13, 2872:15, 2872:25, 2873:4,

2875:10, 2875:17
2876:2, 2876:15 2876:17, 2878:12, 2880:14, 2880:17, 2880:23, 2881:6, 2881:13, 2883:10, 2883:13, 2884:12, 2884:15, 2884:20, 2884:24, 2885:13, 2885:19, 2886:4, 2887:3, 2887:19, 2888:7, 2890:2, 2892:2, 2894:20, 2895:5, 2895:12, 2895:14, 2898:8, 2899:21, 2901:6, 2901:10, 2902:6 seeing [2] - 2790:16, 2860:21
seem [1] - 2887:1 sees [3] - 2878:9, 2881:4, 2883:5 segment [1] - 2827:19 segments [1] - 2782:6 select [2] - 2857:12, 2876:23
selected [1] - 2873:17
self [1] - 2841:13 self-consistent [1] 2841:13
senior [1] - 2846:5
sense [3] - 2905:16, 2911:2, 2912:10 sensible [1] - 2909:6 separate [1] - 2814:3
separated [1] 2901:25 separately [1] 2910:12
series [3] - 2797:16, 2838:25, 2890:1
SERVICES [1] 2770:19 SESSION [1] -
2766:14
set [2]-2855:13, 2862:9
several [2] - 2782:6, 2802:1
severe [1] - 2859:5 severed [3] - 2865:3, 2865:5, 2867:7
severely [1] - 2858:22
severs [1] - 2858:18
shape [8] - 2798:18, 2798:23, 2830:18, 2833:14, 2871:12, 2876:12, 2876:14, 2876:15
shaped [4] - 2809:1,

2832:18, 2833:5, 2833:12
shapes [3] - 2803:22, 2805:2, 2826:14 share [2] - 2847:8, 2861:11
shared [2] - 2846:13, 2853:12
sharp [1] - 2865:8 shear [35] - 2855:9, 2859:2, 2860:9, 2860:18, 2861:5, 2861:7, 2862:11, 2863:21, 2876:14, 2884:3, 2884:7, 2885:16, 2885:25, 2886:16, 2886:20, 2887:4, 2895:9, 2895:24, 2897:24, 2898:19, 2910:6, 2910:8, 2910:14, 2911:17, 2912:5, 2912:9, 2912:12, 2912:17, 2912:23, 2912:25, 2914:1, 2914:6, 2914:14, 2914:16, 2915:4 sheer [26] - 2855:19, 2855:21, 2855:22, 2857:8, 2858:16, 2860:25, 2862:23, 2863:3, 2863:17, 2864:9, 2864:11, 2864:25, 2865:14, 2865:21, 2874:12, 2879:17, 2883:21, 2886:10, 2895:23, 2899:8, 2899:20, 2899:22, 2910:5
sheering [1] - 2875:18
SHELL [1] - 2769:5 short [2] - 2774:1, 2867:12
shortcut [3] - 2782:23,
2783:2, 2838:20
shot [1] - 2910:16
show [15] - 2811:17,
2846:3, 2847:1, 2855:23, 2858:22, 2859:14, 2862:7, 2863:3, 2863:12, 2863:18, 2880:3, 2880:6, 2884:5, 2886:17, 2894:14 showed [3] - 2823:23, 2858:21, 2904:5 showing [3] -
2855:14, 2878:4, 2906:21
shown [6] - 2857:16,
$2866: 4,2867: 3$
$2872: 8,2879: 24$
$2913: 25$ 2913:25
shows [8] - 2842:1, 2851:10, 2875:4, 2884:2, 2884:16, 2894:15, 2895:9, 2897:11
shut [1] - 2897:24
shut-in [1] - 2897:24
shuts [2]-2858:17, 2858:18
sibling [1] - 2872:11
side [19] - 2773:9,
2804:3, 2806:24, 2806:25, 2807:3, 2807:4, 2807:9, 2847:12, 2847:16, 2860:2, 2869:9, 2870:11, 2873:6, 2875:21, 2877:7, 2879:8, 2885:9, 2886:25, 2887:5
sides [9] - 2783:20, 2862:19, 2863:8, 2863:15, 2873:10, 2876:1, 2883:11, 2885:3, 2885:5
sideways [2] - 2863:6, 2883:9
significance [3] 2852:12, 2884:21, 2902:9
significant [7] 2855:19, 2855:22, 2858:5, 2860:3, 2860:22, 2864:6, 2903:6
Significant [1] 2858:9 significantly [2] 2799:10, 2856:1 signpost [2] 2859:16, 2869:13 signposts [1] 2854:11 similar [8] - 2794:21, 2794:22, 2796:8, 2876:17, 2886:23, 2888:1, 2889:19, 2890:21
simple [5] - 2851:24, 2868:1, 2878:9, 2892:20, 2900:21 simplest [4] -
2893:15, 2893:16, 2899:13, 2915:16 simplification [1] 2851:9
simplify [3] - 2783:3,

2783:4, 2827:2
simply [2]-2889:15, 2906:17
simulated [2] 2861:19, 2889:23 simulation [12] 2880:7, 2880:8, 2881:18, 2881:25, 2882:4, 2883:14, 2885:17, 2886:19, 2889:6, 2889:20, 2891:20, 2892:5 simulations [16] 2856:13, 2863:11, 2884:2, 2889:17, 2890:17, 2890:21, 2890:23, 2892:18, 2892:20, 2894:11, 2898:17, 2898:24, 2899:25, 2913:21, 2914:5, 2915:15
simulator [3] - 2810:3,
2840:23, 2841:10
SINCLAIR [1] -
2767:22
single [12] - 2775:23,
2776:17, 2777:3,
2780:22, 2820:25, 2821:3, 2821:5, 2822:5, 2829:25, 2838:10, 2839:3, 2839:4
singled [2] - 2857:2,
2897:4
singling [1] - 2895:23
sit [1] - 2884:9
sits [2] - 2801:12,
2801:13
situation [18] - 2793:1, 2795:7, 2825:9, 2829:25, 2830:24, 2837:21, 2838:2, 2838:22, 2838:23, 2841:1, 2841:16, 2842:5, 2851:9, 2886:9, 2886:23, 2888:2, 2888:11, 2902:14
situations [1] 2792:25
size [10] - 2780:8,
2795:11, 2804:18, 2804:22, 2806:25, 2807:4, 2810:6, 2810:24, 2811:24, 2817:24
sketch [1] - 2870:9
skip [1] - $2821: 12$
sliced [1] - 2873:3
slide [10] - 2841:23,


```throw [1] - 2792:3 thrust [1] - 2906:19 tight [4]-2864:13, 2881:8, 2881:11, 2883:10 Tim [6] - 2815:25, 2816:12, 2833:17, 2833:19, 2834:1 timekeepers [1] - 2774:23 timeline [4] - 2858:9, 2863:18, 2901:7, 2903:16 tiny \({ }_{[1]}-2795: 11\) titled [1] - 2858:8 TO [1] - 2773:4 today [3]-2846:9, 2846:22, 2853:14 together [12]-2814:4, 2814:11, 2838:20, 2864:6, 2864:10, 2894:13, 2895:15, 2895:24, 2910:13, 2911:1, 2911:19, 2913:25 TOLLES \({ }_{[1]}\) - 2770:13 took [15] - 2779:1, 2798:8, 2809:1, 2810:12, 2812:25, 2815:7, 2847:10, 2855:9, 2862:16, 2873:3, 2879:23, 2890:2, 2908:7, 2910:12, 2913:5 tool [2] - 2867:2, 2889:5 top [10]-2790:1, 2795:8, 2800:14, 2815:20, 2819:7, 2857:18, 2865:1, 2870:4, 2870:14, 2875:12 topic [4]-2817:20, 2850:10, 2900:3, 2916:4 topics [3]-2844:16, 2850:15 TORTS [1] - 2768:14 total [7]-2775:23, 2778:11, 2802:24, 2802:25, 2829:19, 2836:15, 2898:4 totally [2] - 2862:14, 2907:22 touches [1] - 2839:13 touching [1] - 2802:14 towards [2] - 2848:3, 2884:9 TOWER [1] - 2770:22 tower [1] - 2839:1```	```traditional [1] - 2801:12 TRANSCRIPT \({ }_{[2]}\) - 2766:14, 2771:23 transcript [1] - 2916:14 transform [5] - 2780:12, 2834:5, 2834:6, 2834:9 transformation [17] - 2780:14, 2786:10, 2786:11, 2789:6, 2795:16, 2809:22, 2811:6, 2811:10, 2811:11, 2811:12, 2816:17, 2816:18, 2832:4, 2832:15, 2832:23, 2833:7, 2840:25 transformations [2] - 2832:14, 2832:18 transforming [1] - 2830:22 transient [15] - 2780:20, 2889:3, 2889:6, 2889:16, 2892:5, 2892:18, 2892:19, 2898:17, 2898:20, 2905:16, 2914:19, 2914:22, 2915:15, 2916:1 translated [1] - 2851:24 TRANSOCEAN [3] - 2770:3, 2770:3, 2770:5 transparent [2] - 2884:12, 2898:10 transpose [1] - 2899:24 traveled [1] - 2860:15 treated [1]-2813:1 tremendously \({ }_{[1]}\) - 2856:3 trend [2]-2892:21, 2893:1 TREX-11529R \({ }_{[1]}\) - 2854:18 TREX-11683.57 [1] - 2839:23 TREX-130544.444 [1] - 2837:12 TRIAL [1] - 2766:14 tried [5] - 2827:1, 2862:4, 2890:22, 2897:9, 2904:6 TRITON \({ }_{[1]}\) - 2766:8 true [30]-2781:17, 2782:23, 2784:11, 2784:13, 2784:15,```	2784:16, 2784:18, 2789:1, 2795:2, 2795:20, 2797:10, 2799:19, 2816:10, 2816:12, 2826:6, 2827:11, 2834:16, 2834:20, 2834:25, 2835:3, 2835:25, 2836:1, 2836:23, 2852:14, 2904:12, 2906:19, 2907:16, 2910:5, 2910:13, 2914:21   truth [1]-2910:21 try [7]-2813:15, 2835:21, 2841:16, 2897:8, 2904:8, 2905:12, 2914:19 trying [13]-2784:6, 2793:4, 2799:12, 2799:13, 2813:23, 2830:24, 2834:8, 2835:15, 2888:7, 2898:10, 2904:16, 2906:1, 2913:6 turbulent [2] 2820:19, 2820:24 turn [10] - 2860:7, 2863:16, 2865:10, 2865:25, 2873:15, 2877:10, 2878:23, 2885:4, 2885:5, 2916:1 turning [1]-2867:20 turns [1] - 2887:3 twice [2] - 2857:14, 2911:8   two [73] - 2776:13, 2779:3, 2783:19, 2784:9, 2786:8, 2787:5, 2790:10, 2790:15, 2794:16, 2802:7, 2802:10, 2802:15, 2802:16, 2803:11, 2803:16, 2803:22, 2805:2, 2805:22, 2807:19, 2808:5, 2808:15, 2809:8, 2809:9, 2809:10, 2809:16, 2809:19, 2810:5, 2816:23, 2854:11, 2857:13, 2857:25, 2860:25, 2861:20, 2861:25, 2862:9, 2862:13, 2864:18, 2867:6, 2869:6, 2869:14, 2869:16, 2871:6, 2871:23, 2872:7, 2872:18,		


$\begin{aligned} & \text { 2911:17, 2911:20, } \\ & \text { 2912:7 } \end{aligned}$	$\begin{aligned} & 2841: 9 \\ & \text { velocity [68] - } \end{aligned}$	visually ${ }_{[1]}$ - 2891:8   volume [4] - 2775:21,	$\begin{aligned} & \text { 2809:19, 2815:1, } \\ & \text { 2824:1, 2829:6 } \end{aligned}$	Y
upstream [5] -	2776:19, 2777:17,	2775:22, 2807:10,	whereas [1] - 2848:2	$\begin{aligned} & \text { y-axis [2] - } 2796: 18, \\ & 2797: 16 \end{aligned}$
2800:20, 2800:25,	2777:23, 2778:1,	2809:3	white [1] - 2880:16	
2827:17, 2827:19,	2778:4, 2778:5,	volumetric [15] -	WHITELEY [1] -2768:8	$\begin{aligned} & \text { year [5] - 2790:6, } \\ & 2790: 10,2790: 13, \end{aligned}$
2872:18	2778:15, 2787:5,	2775:17, 2775:22,		
upwards [1] - 2871:11	2787:10, 2788:9,	2785:13, 2787:3,	whole [8]-2784:7,2807:5, 2814:18,	2790:15, 2797:21
user [3] - 2828:2,	2788:24, 2789:1,	2793:11, 2794:4,		$\begin{gathered} \text { years [3] - 2846:1, } \\ 2849: 1,2888: 5 \end{gathered}$
2828:6, 2828:8	2791:10, 2793:20,	2794:24, 2801:17,	2807:5, 2814:18, 2895:24, 2903:16, 2904:9, $2905 \cdot 25$	
users [1] - 2832:16	2794:4, 2794:20,	2821:19, 2822:6,		2849:1, 2888:5
uses [2]-2785:15,	2794:23, 2796:25,	2822:18, 2823:8,	$\begin{aligned} & \text { 2910:24 } \\ & \text { whoops [1] - 2876:16 } \end{aligned}$	$\begin{aligned} & \text { 2775:17, 2776:4, } \\ & \text { 2778:22, 2779:25, } \end{aligned}$
2834:9	2797:1, 2797:18,	2825:13, 2825:25,		
V	798:18, 2798:19,		wildly [1] - 2907:8   wind [2] - 2797:22,   2800:19	2780:11, 2781:25,   $2789 \cdot 10,2800 \cdot 12$
	2798:20, 2799:1,	W		2817:14, 2828:2
valve [3]-2858:17,	2799:2, 2799:4,		winds [1] - 2886:14 WINFIELD [1]-	YORK ${ }_{[2]}$ - 2767:8,
2866:23, 2866:24 variables [6] -	$\begin{aligned} & \text { 2799:6, 2799:9, } \\ & \text { 2801:15, 2803:23, } \end{aligned}$	$\begin{aligned} & \text { wait [4] - 2787:19, } \\ & \text { 2905:24 } \end{aligned}$	WINFIELD [1] -   2767:22	$\begin{aligned} & \text { yourself [2] - 2870:19, } \\ & 2896: 23 \end{aligned}$
$\begin{aligned} & \text { 2822:12, 2822:19, } \\ & \text { 2825:19, 2826:2, } \end{aligned}$	$\begin{aligned} & \text { 2818:14, 2818:18, } \\ & \text { 2822:2, 2822:6, } \end{aligned}$	$\begin{gathered} \text { walk }[4]-2809: 12, \\ 2810: 4,2823: 22, \end{gathered}$	withdraw [1] - 2830:1	
2841:14, 2841:18	2822:8, 2822:16,	2855:8	2859:3	Z
various [10]-2828:15,	2823:3, 2825:17,	wall [3]-2793:16,	WITNESS [26] -   2775:4 2790:4	
2845:14, 2848:11,   2868:14, 2879:16	$\begin{aligned} & \text { 2825:23, 2826:3, } \\ & \text { 2826:4, 2827:6, } \end{aligned}$	$2845: 24$		
2879:21, 2890:24,	$2827: 8,2827: 11,$	$2811: 4$	$\begin{aligned} & \text { 2775:4, 2790:4, } \\ & \text { 2814:24, 2838:5, } \end{aligned}$	Zaldivar [6]-2775:2,
2901:13, 2906:20	2829:10, 2829:14,	WARREN [1] -	2870:19, 2872:7,	$\begin{aligned} & \text { 2775:9, 2775:11, } \\ & \text { 2837:4, 2837:9, } \end{aligned}$
vary [1] - 2794:24	2834:18, 2834:19,	2771:13	2872:24, 2873:2,	
Vaziri [9]-2859:23, 2873.21, 2874:3	$\begin{aligned} & \text { 2834:20, 2835:2, } \\ & \text { 2835:4. 2835:5 } \end{aligned}$	WASHINGTON $[5]$ -   2768:15, 2768:24	2882:22, 2883:3,	2837:20
$\begin{aligned} & \text { 28/3:21, 28/4:3, } \\ & \text { 2877:2, 2907:18, } \end{aligned}$	2835:7, 2835:10,	2769:20, 2769:24,	$\begin{aligned} & \text { 2896:5, 2896:7, } \\ & \text { 2896:10, 2896:12, } \end{aligned}$	2916:17
2907:23, 2908:15,	2836:3, 2841:6,	2771:14	$\begin{aligned} & \text { 2896:10, 2896:12, } \\ & \text { 2896:14, 2903:19, } \end{aligned}$	
2909:24	41:11, 2852:20,	watched [1] - 2880:24	2908:15, 2908:18,	ZIELIE [2] - 2771:17, 2916:16
Vaziri's [6] - 2874:9, 2877:7, 2907:10,	$\begin{gathered} \text { 2900:16, 2900:18 } \\ \text { verified }[1]-2903: 13 \end{gathered}$	$\begin{gathered} \text { water }[11]-2804: 1, \\ 2804: 3,2804: 14, \end{gathered}$	$\begin{aligned} & \text { 2908:22, 2908:24, } \\ & \text { 2909:2, 2909:11, } \end{aligned}$	Zimmerman [2] 2773:16, 2774:16
2907:14, 2909:17,	verify [1] - 2874:8	2804:15, 2806:15,	$\begin{aligned} & \text { 2909:2, 2909:11, } \\ & \text { 2909:13, 2911:13 } \end{aligned}$	
2909:21	versa [1] - 2879:6	2807:6, 2813:9,	witness [5]-2787:20, 2833:23, 2842:17	"
velocities [49] -	$\begin{aligned} & \text { version [7]-2828:9, } \\ & \text { 2863:2, 2863:7, } \end{aligned}$	2814:1, 2815:7,		
2785:17, 2785:18,		2833:23, 2839:1	2842:18, 2850:19	"MIKE" ${ }^{11}$ - 2769:23
$2785: 20,2786: 4,$   2786:7, 2786:9,	$\begin{aligned} & \text { 2864:8, 2879:23, } \\ & \text { 2884:22, 2914:12 } \end{aligned}$	wave [1]-2915:6 waves [3]-2789:23,	wonder [1]-2890:12	
2786:24, 2786:25,	versus [3]-2793:20,	2790:8, 2790:16	word [5] - 2777:25, 2805:8, 2832:14,	
2789:18, 2789:19,	2878:4, 2902:10	wavy [2]-2776:8,	$\begin{aligned} & 2805: 8,2832: 1 \\ & 2907: 4,2907: 8 \end{aligned}$	
2789:20, 2789:21,	vertical [1] - 2894:16	2798:9	words [8]-2776:13,	
2793:14, 2795:21,	vice [1] - 2879:6	ways [2]-2853:11,	2789:17, 2853:20,	
2797:5, 2797:8,	vice-versa [1] - 2879:6	2886:23	2870:8, 2885:21,	
2797:20, 2797:21,	video [1] - 2800:11	week [4]-2856:1,	2888:6, 2892:22,	
2798:22, 2799:7,	videos [1] - 2779:13	2859:1, 2910:6,	2900:17	
2799:17, 2799:18,	view [6] - 2840:9,	2910:25	workers [1] - 2773:8	
2800:23, 2801:2,	2868:9, 2871:6,	weeks [3] - 2874:5,	works [1] - 2775:18	
2801:7, 2801:18,	2875:8, 2884:9,	2874:6, 2877:11	world [2] - 2847:24,	
2806:8, 2811:13,	2910:24	weight ${ }_{[1]}$ - 2843:13	2907:8	
2817:2, 2817:4,	virgin [1] - 2889:9	WEINER [1] - 2771:9	worry [2]-2778:2,	
2819:15, 2824:16,	virtual ${ }_{[1]}-2861: 20$	$\text { WEITZ }{ }_{[1]}-2767: 7$	2781:14	
$\begin{aligned} & \text { 2826:13, 2826:20, } \\ & \text { 2826:21, 2826:22, } \end{aligned}$	virtually [1] - 2862:13	well-made [1] - 2864:7	WRIGHT ${ }_{[1]}-2766: 22$	
$\begin{aligned} & \text { 2826:21, 2826:22, } \\ & \text { 2827:5, 2827:10, } \end{aligned}$	viscosity [2] 2790:21, 2902:2	$\begin{aligned} & \text { wetted [15] - 2782:17, } \\ & 2784: 25,2785: 5, \end{aligned}$	wrote [1] - 2832:12	
2828:25, 2836:23,	visible [2] - 2876:1,	2785:11, 2793:18,	X	
2837:2, 2840:17,	2880:13	2802:18, 2802:24,		
$\begin{aligned} & \text { 2840:19, 2841:2, } \\ & \text { 2841:3, 2841:8, } \end{aligned}$	$\begin{aligned} & \text { visual }[2]-2874: 7, \\ & 2893: 9 \end{aligned}$	$\begin{aligned} & \text { 2808:3, 2808:25, } \\ & \text { 2809:16, 2809:18, } \end{aligned}$	x-axis [1] - 2797:16	

UNOFFICIAL TRANSCRIPT

